
Noname manuscript No.
(will be inserted by the editor)

Parameter Synthesis for Hierarchical Concurrent
Real-Time Systems?

Étienne André · Yang Liu · Jun Sun ·
Jin-Song Dong

Received: date / Accepted: date

Abstract Modeling and verifying complex real-time systems, involving tim-
ing delays, are notoriously difficult problems. Checking the correctness of a
system for one particular value for each delay does not give any information
for other values. It is thus interesting to reason parametrically, by considering
that the delays are parameters (unknown constants) and synthesizing a con-
straint guaranteeing a correct behavior. We present here Parametric Stateful
Timed CSP, a language capable of specifying and verifying parametric hier-
archical real-time systems with complex data structures. Although we prove
that the synthesis is undecidable in general, we present several semi-algorithms
for efficient parameter synthesis, which behave well in practice. This work has
been implemented in a real-time model checker, PSyHCoS, and validated on
a set of case studies.

Keywords real-time specification · parametric timed verification · model
checking · robustness

? This is an author version of the paper of the same name accepted in Springer’s Real-
Time Systems Journal, volume 50(5–6), pages 620–679. The official version is available at
http://dx.doi.org/10.1007/s11241-014-9208-6.

É. André
Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS UMR 7030, Villetaneuse, France
E-mail: Etienne.Andre@univ-paris13.fr

Y. Liu
School of Computer Engineering, Nanyang Technological University, Singapore
E-mail: yangliu@ntu.edu.sg

J. Sun
Singapore University of Technology and Design
E-mail: sunjun@sutd.edu.sg

J. S. Dong
School of Computing, National University of Singapore
E-mail: dongjs@comp.nus.edu.sg

http://dx.doi.org/10.1007/s11241-014-9208-6

2 Étienne André et al.

1 Introduction

The specification and verification of real-time systems, involving complex data
structures and timing requirements, are notoriously difficult problems. The
correctness of real-time systems usually depends on the values of these timing
requirements. One can check the correctness for one particular value of each
timing requirement using classical techniques of timed model checking, but
in general this does not guarantee the correctness for other values. Checking
the correctness for all possible timing requirements, even in a bounded in-
terval, may require an infinite number of calls to a model checker, because
these requirements can have real values. It is therefore interesting to reason
parametrically, by considering that the values of the timing requirements are
unknown constants, or parameters, and to try to synthesize a constraint (i.e., a
conjunction of linear inequalities) on these parameters to guarantee a correct
behavior.

Motivation. We are interested here in the good parameters problem for real-
time systems: “find a set of parameter valuations for which the system is
correct”. This problem stands between verification and control, in the sense
that we actually change (the timed part of) the system in order to guarantee
some property. In this paper, the notion of correctness will generally refer to
the validity of a property, e.g., a linear-time property. Furthermore, we aim
at defining a formalism that is intuitive, powerful (with the use of external
variables, structures and user defined functions), and that allows efficient pa-
rameter synthesis and verification.

Parameter synthesis for timed concurrent systems. Timed automata (TA) [AD94]
are finite state automata equipped with clocks. Clocks are real-valued vari-
ables uniformly increasing, and compared with constants in guards and invari-
ants [HNSY94]. TA have been widely used in the last two decades to verify
timed systems, in particular using the Uppaal model checker [LPY97]. The
parametric extension of TA (viz., parametric timed automata, or PTA) allows
the use of parameters within guards and invariants [AHV93].

The parameter design problem for PTA was formulated in [HWT95], where
a straightforward solution is given, based on the generation of the whole state
space. Unfortunately, this is unrealistic in most cases. The HyTech model
checker [HHWT97], one of the first for parametric timed (and more gener-
ally hybrid) automata, has been used to solve several case studies. Unfor-
tunately, it can hardly verify even medium sized examples due to arithmetics
with limited precision and static composition of automata, which quickly leads
to memory overflow.1 The parameter synthesis problem has then been applied

1 For example, the PTA model of the SPSMALL memory [CEFX09] is made of 10 PTA in
parallel, but only 31 symbolic states are reachable according to the semantics of [AHV93].
Due to the static composition of PTA, HyTech crashes by memory overflow even before
starting the actual exploration; in contrast, Imitator [AFKS12] finishes the analysis within
0.079 second while using only 3.1 MiB of memory. Details are available in http://www.lsv.

ens-cachan.fr/Software/imitator/hytech/.

http://www.lsv.ens-cachan.fr/Software/imitator/hytech/
http://www.lsv.ens-cachan.fr/Software/imitator/hytech/

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 3

in particular to communication protocols (e.g., Bounded Retransmission pro-
tocol [DKRT97] or Root Contention protocol [CS01] using TReX [ABS01])
and asynchronous circuits (e.g., [YKM02,CC07]). Efficient optimizations and
data structures were developed for timed automata, such as DBMs (Difference
Bound Matrices); unfortunately, most of them do not apply to the paramet-
ric setting, or to only partially parameterized systems (e.g., [BLR05], where
a non-parametric model is verified against a parameterized formula), or are
much less efficient than their non-parametric counterpart (e.g., parameterized
DBMs [HRSV02]). In [ACEF09,AS13], the inverse method synthesizes con-
straints for fully parameterized systems modeled using PTA. Different from
CEGAR-based methods [CGJ+00], this semi-algorithm2 is based on a “good”
parameter valuation, and synthesizes a constraint to guarantee the same time
abstract behavior as for the reference parameter valuation, and thus to quan-
tify the robustness of the system. As an interesting consequence, the preserva-
tion of the time-abstract behavior guarantees the preservation of linear time
properties (expressed, e.g., in LTL). The authors of [KP12] synthesize a set of
parameter valuations under which a given property specified in the existential
part of CTL without the next operator (viz., the ECTL−X logic) holds in a
system modeled by PTA. This is done by applying bounded model checking
techniques to PTA. Semi-algorithms have been proposed in [TLR09] for syn-
thesizing parameters for time Petri nets with stopwatches, and implemented in
Roméo [LRST09]. Different from our setting, the constraint satisfies a formula
expressed using a non-recursive subset of parametric TCTL; furthermore, their
implementation does not support user defined data structures.

Most problems for parametric timed formalisms are undecidable, including
the emptiness problem (that is, the existence of at least one parameter valu-
ation implying the reachability of a discrete state). However, this problem is
known to be decidable (actually PSPACE-complete) for L/U PTA, that is a
subclass of PTA [HRSV02] in which each parameter can be used either as an
upped bound, or as a lower bound, but not both. However, the implementa-
tion (based on parametric DBMs) proposed in [HRSV02] may not terminate.
Similarly, the emptiness problem for the corresponding subclass of paramet-
ric time Petri nets, called L/U parametric time Petri nets [TLR09], is also
decidable. Further problems (universality and finiteness of the valuation set
for infinite runs acceptance properties) have been shown to be decidable for
L/U PTA [BL09]. Most other problems for L/U PTA are undecidable, even
for even more restricted subclasses such as L-PTA or U-PTA [JLR13]. The
case of the synthesis of bounded integers (which is trivially decidable, since it
suffices to enumerate all possible parameter valuations) has also been consid-
ered in [JLR13]: it is shown that the problem of the existence of parameter
valuations such that a TCTL property is satisfied is PSPACE-complete, and
can be performed efficiently using symbolic techniques.

2 A semi-algorithm is a procedure that may not terminate but, if it does, then its result
is correct.

4 Étienne André et al.

In [KLP+98,KLS99], parametric analyses of scheduling problems are per-
formed, based on the process algebra ACSR-VP. Constraints are synthesized
using symbolic bisimulation methods, guaranteeing the feasibility of a schedul-
ing problem. These works are closer to our approach, in the sense that they
synthesize timing parameters in a process algebra; however, they are dedicated
to scheduling problems only, whereas our approach is general.

Although it does not strictly treat the parameter synthesis, the AASAP
(Almost As Soon As Possible) semantics by Raskin et al. is a semantics that
considers a parameter ∆ corresponding to the reaction time of the controller.
Hence, this semantics discards infinitely fast behaviors, that are not realistic
in practice. Its most interesting property is that, once the system has been
proved correct for a given ∆, any implementation using a faster controller
(i.e., with a smaller ∆) will be correct too. More generally, the robustness
problem consists in studying the influence of infinitesimally small variations of
the timing requirements or the clocks speed on the system correctness; many
such problems are decidable for (subclasses of) timed automata or time Petri
nets (see, e.g., [BLM+11,Mar11,JR11,AHJR12,BMS12,BMS13,San13]). Pa-
rameter synthesis techniques have also been used to solve robustness problems
(e.g., [Tra12]). The inverse method (that we extend to PSTCSP in Section 5.3
to show the applicability of our formalism) can also be used to perform ro-
bustness analyses, as shown in the setting of parametric time Petri nets with
stopwatches [APP13].

Stateful Timed CSP. CSP (Communicating Sequential Processes) [Hoa85] is a
powerful event-based formalism for describing patterns of interactions in con-
current systems. Timed CSP (see, e.g., [Sch00]) extends CSP with timed con-
structs for modeling real-time systems. Stateful Timed CSP (STCSP) [SLD+13]
further extends Timed CSP with more timed constructs and shared variables
in the spirit of CSP] [SLDC09] in order to specify hierarchical complex real-
time systems. Through dynamic zone abstraction, finite-state zone graphs can
be generated automatically from STCSP models, which are subject to model
checking. Stateful Timed CSP offers an intuitive way of modeling hierarchical
systems, with a textual representation and more flexible recursive definitions.
An advantage of Timed CSP over TA is the lower number of clocks neces-
sary to verify the systems [SLD+13], because, unlike TA, clocks are implicit in
STCSP, and are only activated when necessary. STCSP is implemented into
the PAT model checker [SLDP09].

Contribution. Our first contribution is to introduce Parametric Stateful Timed
CSP (PSTCSP). This parameterization of STCSP is a powerful language capa-
ble of specifying hierarchical real-time systems with shared variables and com-
plex, user-defined data structures, in an intuitive manner. PSTCSP shares
similar design principles with integrated specification languages like Timed
Communicating Object Z (TCOZ) [MD99] and CSP-OZ-DC [HO02]. The main
idea is to support shared variables and manipulation of global variables (se-
quential termination programs) using imperative programing languages. The

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 5

result is a highly expressive modeling language that can be automatically an-
alyzed by tools. Although we show that the expressiveness of PSTCSP is close
to the one of PTA, there are key differences of PSTCSP with PTA. First,
clocks are implicit in PSTCSP, thus avoiding errors when manually writing
constraints using clocks and parameters. Second, hierarchy is a native feature
of PSTCSP, allowing the designer to develop the system using nested compo-
nents. Many systems can be designed more intuitively using hierarchy, and it
may allow one to handle refinement as well as closed (“black box” or “gray
box”) systems. Third, user defined variables, data structures and functions
can be defined and used in PSTCSP processes, thus making the specification
and verification of real-time systems intuitive.

Although we show that the emptiness problem is undecidable for PSTCSP,
our second contribution is to develop and compare three semi-algorithms
for parameter synthesis. The first one, computing all reachable states, al-
lows the application of finite state timed model checking techniques defined
in [SLD+13], but may not terminate. From the set of reachable states, one can
also perform parameter synthesis, and we give as an example an algorithm that
synthesizes all parameter valuations such that a given process (or a given vari-
able valuation) is reachable. The second one is an algorithm useful for defining
good sets of values for the timing parameters in problems such as schedula-
bility problems. In the third one, we extend the inverse method [ACEF09,
AS13] to PSTCSP, and give a sufficient termination condition; this algorithm
behaves well in practice, allowing efficient parameter synthesis even for fully
parameterized systems, i.e., where all timing requirements are parametric.

Our third contribution is to implement the proposed techniques in a model
checker named PSyHCoS to support both an intuitive modeling facility using
a graphical interface, and efficient algorithms for verification and parameter
synthesis.

This paper is an extended version of [ALSD12]. In addition to the re-
sults of [ALSD12], this paper contains all proofs of the theoretical results,
refines several results (in particular makes more clear the notion of emptiness
for PSTCSP), and contains detailed examples. Furthermore, we prove the se-
mantic equivalence between some syntactic constructs of PSTCSP. We also
introduce a new synthesis algorithm dedicated to problems such as schedula-
bility problems. Finally, the inverse method for PSTCSP is fully characterized
(correctness, confluence, completeness and termination).

Plan of the paper. We recall preliminary notions in Section 2. We introduce
PSTCSP in Section 3 and study its expressiveness and decidability questions
in Section 4. We introduce algorithms for parameter synthesis in Section 5, and
apply them to case studies in Section 6 using our implementation PSyHCoS.
We give future directions of research in Section 7.

6 Étienne André et al.

2 Preliminaries

Finite-domain variables. We assume a finite set Var of finite-domain variables.
Given Var ⊂ Var, a variable valuation for Var is a function assigning to each
variable a value in its domain. We denote by V(Var) the set of all variable
valuations.

Constraints on clocks and parameters. Let R+ be the set of non-negative real
numbers. We assume that X is a set of clocks, disjoint from Var. A clock is a
variable with value in R+. All clocks evolve linearly at the same rate. Given
a finite set X = {x1, . . . , xH} ⊂ X , a clock valuation for X is a function
w : X → R+ assigning a non-negative real value to each clock. We will often
identify a valuation w with the point (w(x1), . . . , w(xH)). Given d ∈ R+, we
use X + d to denote {x1 + d, . . . , xH + d}.

We also assume a fixed set U of parameters (i.e., unknown constants) dis-
joint from Var and X . Given a finite set U = {u1, . . . , uM} ⊂ U , a parameter
valuation is a function π : U → R+ assigning a non-negative real3 value
to each parameter. There is a one-to-one correspondence between valuations
and points in (R+)M . We will often identify a valuation π with the point
(π(u1), . . . , π(uM)).

Given X ⊂ X and U ⊂ U , an inequality over X and U is e ≺ e′, where
≺∈ {<,≤}, and e, e′ are two linear terms of the form

∑
1≤i≤N αizi + d with

zi ∈ X ∪ U , αi ∈ R+ for 1 ≤ i ≤ N , and d ∈ R+. We define similarly
inequalities over X (resp. U). A constraint is a conjunction of inequalities. We
denote by KX , KU and KX∪U the sets of all constraints over X, over U , and
over X and U , respectively. In the sequel, we use the following conventions: w
(resp. π) denotes a clock (resp. parameter) valuation; J denotes an inequality
over U ; D ∈ KX ; K ∈ KU ; and C ∈ KX∪U .

We denote by D[w] the expression obtained by replacing each clock x in D
with w(x). If D[w] evaluates to true, we say that w satisfies D (denoted by
w |= D). We denote by C[π] the constraint over X obtained by replacing
in C each u ∈ U with π(u). Likewise, we denote by C[π][w] the expression
obtained by replacing each clock x in C[π] with w(x). If C[π][w] evaluates to
true, we write <w, π> |= C. If the set of clock valuations that satisfy C[π] is
nonempty, i.e., ∃w : <w, π> |= C, then π satisfies C, denoted by π |= C. Given
C1, C2 ∈ KX∪U , we write C1 ⊆ C2 if ∀w, π : <w, π> |= C1 ⇒ <w, π> |= C2.
We write C1 = C2 if C1 ⊆ C2 and C2 ⊆ C1.

Similarly to the semantics of constraints over X and U , we say that a pa-
rameter valuation π satisfies K, denoted by π |= K, if the expression obtained
by replacing in K each u ∈ U with π(u) evaluates to true.

Given a subset of clocks X ′ ⊆ X, we denote by C↓X′∪U the constraint
obtained from C after elimination of the clocks not in X ′, i.e., by projecting
C onto X ′ ∪ U . This is obtained using variable elimination techniques such

3 In the literature related to parametric timed systems, constants are either in the real or
the rational domain. Here, to maintain consistency with STCSP [SLD+13], where constants
are defined in R+, we choose reals.

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 7

as Fourier-Motzkin elimination [Sch86]. Formally, C↓X′∪U = {<w, π> | w :
X ′ → R+ ∧ π : U → R+ ∧ <w, π> |= C}. In particular, we denote by C↓U
the constraint over U obtained by projecting C onto the parameters, i.e., the
constraint obtained from C after elimination of all clocks. Formally, C↓U =
{π | π |= C}. (Note that, by expanding the definition of π |= C, we have that
C↓U = {π | ∃w : X → R+ s.t. <w, π> |= C}.)

Sometimes we will refer to a variable domain X ′, which is obtained by
renaming the variables in X. Explicit renaming of variables is denoted by
the substitution operation. Here, C[X←X′] denotes the constraint obtained by
replacing in C the variables of X with the corresponding variables of X ′.

We define the time elapsing of C, denoted by C↑, as the constraint over X
and U obtained from C by delaying an arbitrary amount of time. Formally:

C↑ =
(

(C ∧X ′ = X + d)↓X′∪U
)
[X′←X]

where d is a new parameter with values in R+, and X ′ is a renamed set
of clocks. The inner part of the expression adds a delay d to all clocks; the
projection onto X ′ ∪ U eliminates the original set of clocks X, as well as the
variable d; the outer part of the expression renames clocks X ′ with X.

We show below two simple results that will be useful in the proofs in
Section 4.

Lemma 1 Let C,C1, C2 ∈ KX∪U . If C1↓U ⊆ C↓U , then (C1 ∧C2)↓U ⊆ C↓U .

Proof By definition of the projection, C↓U = {π | π |= C}. C1↓U ⊆ C↓U
implies that {π | π |= C1} ⊆ {π | π |= C}. Since C1 ∧ C2 ⊆ C1, then
{π | π |= C1 ∧ C2} ⊆ {π | π |= C1}. Hence {π | π |= C1 ∧ C2} ⊆ {π | π |= C}.

ut

Lemma 2 Let C ∈ KX∪U . Then (C↑)↓U = C↓U .

Proof From its definition, time elapsing adds new clock constraints (X ′ =
X + d), removes the clocks X, and renames X ′ with X; all these operations
keep the projection onto the parameters unchanged. ut

Events. In the following, τ denotes an unobservable event; X denotes the
special event of process termination; Σ denotes the set of observable events
such that τ /∈ Σ and X ∈ Σ; Στ = Σ ∪ {τ}. Furthermore, the following event
naming convention is adopted: e ∈ Σ denotes an observable event; a ∈ Στ
denotes an observable event or τ ; E ⊆ Σ denotes a set of observable events.

Labeled transition systems. Labeled transition systems will be used later to
define the semantics of PSTCSP.

Definition 1 A labeled transition system (LTS) is a tuple L = (S, s0,Symb,⇒)
where S is a set of states, s0 ∈ S is the initial state, Symb is a set of symbols,
and ⇒ : S × Symb × S is a labeled transition relation.

8 Étienne André et al.

We write s
a⇒ s′ for (s, a, s′) ∈ ⇒. A run of L is an alternating sequence of

states si ∈ S and symbols ai ∈ Symb in the form of s0
a0⇒ s1

a1⇒ s2 · · · . A state
si is reachable if it belongs to some run r. We denote by Runs(L) the set of
runs of L.

A run is said to be maximal if either it is infinite, or it is finite and its last
state has no successor.

3 Syntax and Semantics of PSTCSP

3.1 Syntax

PSTCSP models the control logic of the system using a rich set of process
constructs. A process P is defined by the grammar in Figure 1, where u ∈ U .4

Processes marked with * are parametric timed processes; they allow the use
of parameters instead of timing constants as in STCSP. P denotes the set of
all possible processes. Note that this grammar allows recursions (and hence
cyclic behaviors), since a given process P can refer to itself; for example, the
event prefixing rule allows one to define P

.
= e → P , which may lead to an

infinite number of e events.

P
.
= Stop inaction
| Skip termination
| e→ P event prefixing
| a{program} → P data operation
| if (b) {P} else {Q} conditional choice
| P � Q external choice
| P \E hiding
| P ;Q sequential composition
| P JEK Q parallel composition
| Wait[u] delay*
| P timeout[u] Q timeout*
| P interrupt[u] Q timed interrupt*
| P within[u] timed responsiveness*
| P deadline[u] deadline*
| Q process referencing

Fig. 1: Syntax of PSTCSP processes

Definition 2 A Parametric Stateful Timed CSP (or PSTCSP) model is a
tuple M = (Var , U, V0, P0,K0) where Var ⊂ Var, U ⊂ U , V0 is the initial
variable valuation, P0 ∈ P is a process, and K0 ∈ KU is an initial constraint.

4 An alternative could be u ∈ (U∪R+). Our implementation actually allows the definition
of either constants or parameters in the timed constructs, but defining u ∈ U simplifies the
subsequent reasoning and proofs.

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 9

The initial constraint K0 allows one to define constrained models, where
some parameters are already related. For example, in a timed model with two
parameters min and max , one may want to constrain min to be always smaller
or equal to max , i.e., K0 = {min ≤ max}.

Hierarchy comes from the nested definitions of processes. Each component
may have internal hierarchies, and allow for abstraction and refinement: a
subprocess may be replaced with another equivalent one in some cases. Also,
this offers a readable syntax, starting from the top level of the system, and
being more precisely defined when one goes to lower hierarchical levels.

Valuation of a model. Given a PSTCSP model M = (Var , U, V0, P0,K0) and a
parameter valuation π = (π1, . . . , πM), M[π] denotes the valuation of M with π,
viz., the model (Var , U, V0, P0[π],K), where P0[π] denotes process P0 where
all occurrences of a parameter ui were replaced by constant πi in the timed
constructs, and K is K0 ∧

∧M
i=1(ui = πi). We say that M is valuated with π.

This corresponds to the PSTCSP model obtained from M by substituting every
occurrence of a parameter ui with constant πi in the timed constructs. Note
that M[π] is a (non-parametric) STCSP model.

Additional notation. In the following, given a process P , we use Σ(P) to de-
note the alphabet of process P . Hence, Σ(P) includes all visible events occur-
ring in P and its subprocesses, including X.

Recursivity. We define below the notion of recursive models (i.e., cyclic de-
pendencies between processes).

Definition 3 (Recursive model) A PSTCSP model is recursive if at least
one process is referred to in one of its subprocesses.

For example, the model of Fischer’s mutual exclusion protocol introduced
in Section 3.3 is recursive, since Active(i) is a subprocess of proc(i), and proc(i)
refers to Active(i).

3.2 Informal Semantics

Untimed constructs. We first briefly describe the untimed constructs, which
are identical to the ones in STCSP.

Process Stop does nothing but idling.
Process Skip terminates, possibly after idling for some time.
Process e→ P engages in event e first and then behaves as P . Note that e

may serve as a synchronization barrier, if combined with parallel composition.
In order to seamlessly integrate operations on complex data structures, se-

quential programs may be attached to events. By complex data structures, we
mean any user-defined finite-domain structure, such as tuples, lists, but also
more complex structures such as hashtables, or combinations of structures,

10 Étienne André et al.

such as a pair made of a string hashtable and a list of bounded integers. Pro-
cess a{program} → P executes the sequential program whilst generating event
a, and then behaves as P . The program may be a simple procedure updating
data variables (e.g., a{v1 := 5; v2 := 3}, where v1, v2 ∈ Var) or a more com-
plicated sequential program. Our implementation (see Section 6) supports an
imperative language (similar to C, C] and Java) to be used inside program.

A conditional choice is written as if (b) {P} else {Q}. If b is true, then
it behaves as P ; otherwise it behaves as Q.

Process P � Q offers an external choice between P and Q. As in CSP,
the first observable event determines which of P and Q is executed. That is,
P � Q is resolved by the first observable event occurring in either P (in which
case the process continues with P) or Q (in which case the process continues
with Q).5

Process P ;Q behaves as P until P terminates and then behaves as Q
immediately.

P \E hides occurrences of events in E.

The parallel composition of two processes is written as P JEK Q, where P
and Q may communicate via multi-party event synchronization (following CSP
rules [Hoa85]) or shared variables; P and Q synchronize only on events belong-
ing to the specified set E of events. For example, (a→ Skip) J{a}K (a→ Skip)
will result in a synchronization on the event a, whereas (a→ Skip) J{}K (a→
Skip) will result in an interleaving between both a events.

Timed constructs. We now explain the parametric timed constructs, where
parameter u is an unknown (constant) non-negative real number.

– Process Wait[u] idles for u time units.
– In process P timeout[u] Q, the first observable event of P shall occur no

later than u time units. Otherwise, Q takes over the control after exactly
u time units.

– Process P interrupt[u] Q behaves exactly as P until u time units, and
then Q takes over. In contrast to P timeout[u] Q, P may engage in multiple
observable events before it is interrupted. Also note that Q will be executed
in any case, whereas in P timeout[u] Q, process Q will only be executed
if no observable event occurs before u time units.

– Process P within[u] must react within u time units, i.e., an observable
event must be engaged by process P within u time units.

– Process P deadline[u] constrains P to terminate, possibly after engaging
in multiple observable events, before u time units.

5 For simplicity, in the following, we leave out general and internal choices from the classic
CSP [Hoa85]. The terminology is a little ambiguous in the literature: We assume that a
general choice (P | Q) can be resolved by an occurrence of any event; an external choice
(P � Q) can be resolved only by visible events (not τ); and an internal choice (P � Q) is
resolved “immediately”, hence cannot be delayed (which generates a τ -transition). Although
we only consider external choice in the following, all three constructions implemented in
PSyHCoS, and used in our case studies.

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 11

Discussing the notion of deadline. The deadline timed construct intuitively
means that a process must terminate within a certain amount of time. Dif-
ferent definitions of deadline actually appear in the literature. In [FHW99], a
definition of the deadline command is given, and an instantiation as an ex-
tension to the high-integrity Spark programming language is proposed. In
this case, a static analysis is performed during the compiling process and, in
the case where an inability to meet the timing constraints occurs, then an
appropriate error feedback is sent to the programmer. As a consequence, the
deadline construction guarantees that the constrained process will terminate
before the specified deadline.

In [QDC03], the authors use Unifying Theory of Programming in order to
formalize the semantics of TCOZ. As in [FHW99], they consider that the dead-
line imposes a timing constraint on P , which thus requires the computation
of P to be finished within the time mentioned in the deadline.

In contrast to [QDC03,FHW99], we choose here to keep a semantics similar
to the one of STCSP [SLD+13], and we consider a deadline semantics as an
attempt to terminate a process before a certain time. If the process does not
terminate before the deadline, it is just stopped (in that case, time elapsing
may be stopped too). Also observe that the within construct in (P)STCSP
has a similar effect in our setting.

Syntactic sugar. Urgent event prefixing [Dav93], written as e� P , is defined
as (e→ P) within[0], i.e., e must occur immediately, that is within 0 units of
time. Furthermore, we use P ‖ Q for P JΣ(P) ∩Σ(Q)K Q.

3.3 Example: Fischer Mutual Exclusion

We introduce below a simple example6 to show that PSTCSP is expressive
enough to capture hierarchical concurrent real-time models. Although this
example is compositional, which reflects the nature of hierarchical systems, it
does not feature multiple hierarchy due to space constraint. Complex STCSP
system models have been presented [SLD+13], and all the STCSP examples
can be parameterized to obtain a PSTCSP model.

Example 1 Fischer’s mutual exclusion algorithm is modeled as a PSTCSP
model (Var , U, V0,FME ,True), where U = {δ, γ}, and Var = {turn, cnt}.
The turn variable indicates which process attempted to access the critical sec-
tion most recently. The cnt variable counts the number of processes accessing
the critical section. The initial valuation V0 maps turn to −1 (which denotes
that no process is attempting initially) and cnt to 0 (which denotes that no
process is in the critical section initially). Process FME is defined as follows.

6 This example is a parametrization of the example from [SLD+13, page 3:5].

12 Étienne André et al.

FME
.
= proc(1) ‖ proc(2) ‖ · · · ‖ proc(n)

proc(i)
.
= if (turn = −1) {Active(i)} else {proc(i)}

Active(i)
.
= (update.i{turn := i} → Wait[γ]) within[δ];

if (turn = i)
cs.i{cnt := cnt + 1} →
exit .i{cnt := cnt − 1; turn := −1} → proc(i)

else

proc(i)
where n is a constant representing the number of processes.

Process proc(i) models a process with a unique integer identifier i. If turn
is −1 (i.e., no other process is attempting), proc(i) behaves as specified by
process Active(i). In process Active(i), turn is first set to i (i.e., the ith process
is now attempting) by event update.i. Note that update.i must occur within δ
time units (expressed by within[δ]). Next, the process idles for γ time units
(expressed by Wait[γ]). It then checks if turn is still i. If so, it enters the
critical section and leaves later. Otherwise, it restarts from the beginning.

This model is hierarchical, due to the nested definition of the processes;
for example, each process proc(i) is defined using the nested process Active(i).
(Actually, this is a recursive definition since Active(i) is itself defined using
proc(i).) This model is concurrent because the n processes are executed in
parallel. And it is real-time since concurrent timing constraints (Wait[γ] and
within[δ]) for each process may occur in parallel.

A classical parameter synthesis problem is to find values of δ and γ for
which mutual exclusion is guaranteed. One way to verify mutual exclusion is
to show that cnt ≤ 1 is always true. A solution to this problem will be given
in Section 6.3.

3.4 Formal Semantics

In the following, we introduce the formal semantics for PSTCSP in terms
of states containing a variable valuation, a process, and a constraint over X
and U .

Definition 4 Let M = (Var , U, V0, P0,K0) be a PSTCSP model. A (symbolic)
state s of M is a triple (V, P,C) where V is a variable valuation, P ∈ P is a
process, and C ∈ KX∪U .

3.4.1 Clock Activation

As in STCSP, clocks in PSTCSP are implicitly associated with timed processes
– which is different from PTA. For instance, given a process P timeout[u] Q,
an implicit clock should start whenever this process is activated. A clock starts
ticking once the process becomes activated. Before defining the semantics, we
need to associate clocks with timed processes explicitly. In theory, each timed
process construct is associated with a unique clock. Nonetheless, as in STCSP,

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 13

multiple timed processes can be activated at the same time during system
execution and, therefore, the associated clocks always have the same value.
Consider the following process:

P
.
= (Wait[u1]; Wait[u2]) interrupt[u3] Q.

There are three implicit clocks, one associated with Wait[u1] (say x1), one with
Wait[u2] (say x2) and one with P (because of interrupt[u3], say x3). Clocks x1
and x3 start at the same time because the execution of interrupt is linked
with Wait[u1]. In contrast, clock x2 starts only when Wait[u1] terminates. It
can be shown that x1 and x3 always have the same value and thus one clock
is sufficient. In order to minimize the number of clocks, we introduce clocks at
runtime so that timed processes which are activated at the same time share
the same clock. Intuitively, a clock is introduced if and only if one or more
timed processes have just become activated.

We recall from [SLD+13] how to systematically associate clocks with timed
processes. To distinguish from ordinary PSTCSP processes, let Pact denote the
set of processes associated with explicit clocks. We write Wait[u]x (and, simi-
larly, P timeout[u]x Q, P interrupt[u]x Q, P within[u]x, P deadline[u]x)
to denote that the process is associated with clock x. Given a process P and a
clock x, we use function Act(P, x) to define the corresponding process in Pact .

Act(Stop, x) = Stop A1
Act(Skip, x) = Skip A2
Act(e→ P, x) = e→ P A3
Act(a{program} → P, x) = a{program} → P A4
Act(if (b) {P} else {Q}, x) = if (b) {P} else {Q} A5
Act(Wait[u], x) = Wait[u]x A6
Act(P timeout[u] Q, x) = Act(P, x) timeout[u]x Q A7
Act(P interrupt[u] Q, x) = Act(P, x) interrupt[u]x Q A8
Act(P within[u], x) = Act(P, x) within[u]x A9
Act(P deadline[u], x) = Act(P, x) deadline[u]x A10
Act(Wait[u]y , x) = Wait[u]y A11
Act(P timeout[u]y Q, x) = Act(P, x) timeout[u]y Q A12
Act(P interrupt[u]y Q, x) = Act(P, x) interrupt[u]y Q A13
Act(P within[u]y , x) = Act(P, x) within[u]y A14
Act(P deadline[u]y , x) = Act(P, x) deadline[u]y A15
Act(P � Q, x) = Act(P, x) � Act(Q, x) A16
Act(P \E, x) = Act(P, x) \E A17
Act(P ;Q, x) = Act(P, x);Q A18
Act(P JEK Q, x) = Act(P, x) JEK Act(Q, x) A19
Act(P, x) = Act(Q, x) if P

.
= Q A20

Fig. 2: Clock activation function for PSTCSP

Figure 2 presents the detailed definitions of Act(P, x). Rules A1 to A5
state that if a process is untimed and none of its subprocesses is activated,
then it is unchanged. Rules A6 to A10 state that if the process is timed, then
it is associated with x. If a timed process has already been associated with a
clock y, then it will not be associated with the new clock. This is captured

14 Étienne André et al.

by rules A11 to A15, where Wait[u]y denotes that Wait[u] is associated with
clock y. If a subprocess is activated, then function Act is applied recursively,
as captured by rules A7 to A10 and A12 to A19. Rule A20 states that if P is
defined as Q, then Act(P, x) can be obtained by applying Act to Q.

We denote by cl(P) the set of active clocks associated with P . For instance,
the set of active clocks associated with P timeout[u]x Q contains x and the
clocks associated with P . Notice that there is no clock associated with Q
because it has not yet been activated.

Example 2 In the Fischer’s mutual exclusion example, assume that there are
three processes. The first and second processes have evaluated the condition
“if (turn = −1)” and become Active(0) and Active(1) respectively, whereas
the third process has not made any move. So the current process is Active(1) ‖
Active(2) ‖ proc(3). Assume that x is a fresh clock. Then applying function
Act with x returns:

(update.1{turn := 1} → Wait[γ]) withinx[δ]; · · ·
‖ (update.2{turn := 2} → Wait[γ]) withinx[δ]; · · ·
‖ if (turn = −1) { Active(3) } else { proc(3) }

Clock x is associated with the first process and the second process, but not
with the third process. Note that Wait[γ] has not yet been activated.

3.4.2 Idling Function

We adapt in the following the function idle (initially defined for STCSP
in [SLD+13]) which, given a process in Pact , calculates a constraint expressing
how long the process can idle. Here, the result is in the form of a constraint over
the clocks and the parameters. Figure 3 shows the detailed definition. Rules
idle1 to idle5 state that if the process is untimed and none of its subprocesses
is activated, then the function returns True. Intuitively, it means that the pro-
cess may idle for an arbitrary amount of time. Rules idle6 to idle9 state that
if subprocesses of the process are activated, then function idle is applied to
the subprocesses. For instance, if the process is a choice (rule idle6) or a par-
allel composition (rule idle9) of P and Q, then the result is idle(P)∧ idle(Q).
Intuitively, this means that process P � Q (or P JEK Q) may idle as long
as both P and Q can idle. Rules idle10 to idle14 define the cases when the
process is timed. For instance, process Wait[u]x may idle as long as x is less
than or equal to u.

3.4.3 Operational Semantics

We now define the semantics of PSTCSP in the form of an LTS. Let Y =
〈x0, x1, · · ·〉 be a sequence of clocks.

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 15

idle(Stop) = True idle1
idle(Skip) = True idle2
idle(e→ P) = True idle3
idle(a{program} → P) = True idle4
idle(if (b) {P} else {Q}) = True idle5
idle(P � Q) = idle(P) ∧ idle(Q) idle6
idle(P \E) = idle(P) idle7
idle(P ;Q) = idle(P) idle8
idle(P JEK Q) = idle(P) ∧ idle(Q) idle9
idle(Wait[u]x) = x ≤ u idle10
idle(P timeout[u]x Q) = x ≤ u ∧ idle(P) idle11
idle(P interrupt[u]x Q) = x ≤ u ∧ idle(P) idle12
idle(P within[u]x) = x ≤ u ∧ idle(P) idle13
idle(P deadline[u]x) = x ≤ u ∧ idle(P) idle14
idle(P) = idle(Q) if P

.
= Q idle15

Fig. 3: Idling calculation

Definition 5 Let M = (Var , U, V0, P0,K0) be a PSTCSP model. The seman-
tics of M, denoted by LM, is an LTS (S, s0,⇒, Στ) where

S = {(V, P,C) ∈ V(Var)× P ×KX∪U},
s0 = (V0, P0,K0)

and the transition relation ⇒ is the smallest transition relation satisfying the
following. For all (V, P,C) ∈ S, if x is the first clock in the sequence Y which

is not in cl(P), and (V,Act(P, x), C ∧ x = 0)
a
 (V ′, P ′, C ′), where C ′ is

satisfiable, then we have:
(
(V, P,C), a, (V ′, P ′, C ′↓cl(P ′)∪U)

)
∈ ⇒.

We say that a given variable valuation V is reachable in M if there exists
a state (V, P,C), for some P and some C, that is reachable in LM. We also
say that a run of M passes by V . Similarly, we say that a given process P is
reachable in M if there exists a state (V, P,C), for some V and some C, that
is reachable in LM.

The transition relation is specified by a set of rules, given in Appendix A.
We explain below some of the rules defining the transition relation . Other
rules can be explained similarly.

– Rule await defines the semantics of Wait[u].

(V, Wait[u]x, C)
τ
 (V, Skip, C↑ ∧ x = u)

(await)

It states that a τ -transition occurs exactly when clock x is equal to u.
Intuitively, C↑ ∧ x = u denotes the time when u time units elapsed since x
has started. Afterwards, the process becomes Skip.

– Rules ato1, ato2 and ato3 define the semantics of P timeout[u] Q. Rule
ato1 states that if a τ -transition transforms (V, P,C) to (V ′, P ′, C ′), then
a τ -transition may occur, giving (V, P timeout[u]x Q,C), if constraint
C ′ ∧ x ≤ u is satisfiable. Intuitively, this means that the τ -transition must
occur before u time units since x has started.

16 Étienne André et al.

(V, P,C)
τ
 (V ′, P ′, C ′)

(V, P timeout[u]x Q,C)
τ
 (V ′, P ′ timeout[u]x Q,C

′ ∧ x ≤ u)
(ato1)

Similarly, rule ato2 ensures that the occurrence of an observable event e
from process P may occur only if x ≤ u, i.e., before timeout occurs.

(V, P,C)
e
 (V ′, P ′, C ′)

(V, P timeout[u]x Q,C)
e
 (V ′, P ′, C ′ ∧ x ≤ u)

(ato2)

Rule ato3 states that timeout results in a τ -transition when x is exactly
equal to u. The constraint x = u∧ idle(P) ensures that process P may idle
all the way until timeout occurs.

(V, P timeout[u]x Q,C)
τ
 (V,Q,C↑ ∧ x = u ∧ idle(P))

(ato3)

Let us explain Definition 5 further. First, given a state (V, P,C), a clock x
which is not currently associated with P is picked. Then, the state (V, P,C)
is transformed into (V,Act(P, x), C ∧ x = 0), i.e., timed processes which just
became activated are associated with x, and C is conjuncted with x = 0.
Then, a firing rule is applied to get a target state (V ′, P ′, C ′) such that C ′ be
satisfiable (otherwise, the transition is infeasible). Lastly, clocks which are not
in cl(P ′) are pruned from C ′. Notice that one clock may be introduced and
zero or more clocks may be pruned during a transition.

Example 3 Let us consider the following state:

s1 = (V, Wait[u1] interrupt[u2] Skip, u2 < u1).

Activation with x1 gives:

(V, Wait[u1]x1
interrupt[u2]x1

Skip, u2 < u1 ∧ x1 = 0).

Applying firing rule ait2 gives state (V, Skip, C) with C = {(u2 < u1 ∧ x1 = 0)
↑

∧x1 = u2∧ idle(Wait[u1]x1)}, viz., u2 < u1∧x1 ≥ 0∧x1 = u2∧x1 ≤ u1. Then,
we remove x1 from C because it does not appear within Skip; this gives the
new state s2 = (V, Skip, u2 < u1).

We can also apply firing rule ait1 (and hence await) to s1, which gives
(V, Skip interrupt[u2]x1

, C ′) with C ′ = u2 < u1 ∧ x1 = u1 ∧ x1 ≤ u2. This
constraint is unsatisfiable, hence this state is discarded.

3.5 Traces

We now introduce the notion of trace, that abstracts part of a system’s behav-
ior. In the literature (see, e.g., [BK08]), the approaches considered are either
state-based (which corresponds here to a sequence of processes) or event-based
(which corresponds here to a sequence of events). As a matter of consistency

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 17

with previous works [ACEF09], we consider here a combined state- and event-
based approach: That is, we define a trace as an alternating sequence of pro-
cesses and events. The following definition introduces traces for parametric
PSTCSP models. Note that, since an STCSP model is a simplified case of a
PSTCSP model, this definition can also be used for non-parametric models.

Definition 6 (Trace) Given a PSTCSP model M and a run r of LM of the

form (V0, P0, C0)
a0⇒ · · · am−1⇒ (Vm, Pm, Cm), the trace associated with r is the

alternating sequence of processes with variables and events (V0, P0)
a0⇒ · · · am−1⇒

(Vm, Pm). The trace set of M is the set of all traces associated with the runs
of M.

Traces abstract away the constraint C; hence, all the continuous informa-
tion (values of the clocks and of the parameters) is abstracted away.

4 General Results for PSTCSP

In this section, we first define a subset of PSTCSP, called regular PSTCSP,
so as to maintain the consistency with regular STCSP (Section 4.1). We then
show that all the parametric timed constructs can be defined using two of them
only (Section 4.2). We then characterize the expressiveness of regular PSTCSP
(Section 4.3), study the (un)decidability of the membership and emptiness
problems (Section 4.4), and prove results relating parametric runs and non-
parametric runs (Section 4.5).

4.1 Regular PSTCSP

The results stated in [SLD+13] are valid for a subset of STCSP called regular
STCSP. “A Stateful Timed CSP model is regular if a process expression is
constituted by finitely many process constructs, for every reachable configu-
ration.” [SLD+13] In other words, the discrete part of the reachable states is
finite. This can be seen as equivalent to the finite number of locations in timed
automata, or the finite number of places together with their boundedness in
time Petri nets.

We define regular PSTCSP the same way: a PSTCSP model M is regular
if P is a process expression constituted by finitely many process constructs,
for every reachable configuration (V, P,C). Now, since the state space (even
symbolic) is infinite for PSTCSP, we do not need this restriction in our work.
However, we will consider regular PSTCSP when comparing to STCSP, i.e.,
when considering the expressiveness (Section 4.3) and some of the decidability
problems (Section 4.4).

18 Étienne André et al.

4.2 Equivalence of Timed Constructs

We show here that all timed constructs in the syntax defined in Figure 1 can
actually be defined using only two timed constructs: Wait and deadline.

As in [Dav93], the timeout construct can be defined using the Wait con-
struct as follows, where eto is a fresh event.

P timeout[u] Q =
(
P � (Wait[u]; eto � Q)

)
\ {eto}

The interrupt construct can be defined using Wait as follows.

P interrupt[u] Q =
(
(P ‖ R) JeintK (Wait[u]; eint � Q)

)
\ {eint}

with R
.
=
(
� e∈Σ(P)(e → R)

)
� (eint → Skip), where eint is a fresh event.

Intuitively, R synchronizes on any observable event of P as many times as
necessary, until event eint occurs, in which case it derives to Skip. From the
right part of the expression, event eint occurs immediately after Wait[u] has
completed, i.e., after u units of time. Then Q takes over. After u units of time,
any observable event of P is blocked due to the fact that R is now Skip, and
cannot synchronize with P anymore. Note that we use � e∈Σ(P)(e → R)
to denote the process (e1 → R) � . . . � (en → R), assuming that Σ(P) =
{e1, . . . , en}.

The within construct can be defined using the deadline construct: con-
sidering P within[u], this can be achieved by executing P in parallel with
Q deadline[u];R, with Q a process synchronizing once on any observable
event with P , and R a process synchronizing, possibly several times, on any
observable event with P . Formally:

P within[u] = P ‖ (Q deadline[u];R)

with Q
.
= � e∈Σ(P)(e→ Skip) and R

.
= (Q;R).

Although we showed that some timed constructs are equivalent, since one
of the advantages of PSTCSP is its conciseness and convenient, user-friendly
syntax, we keep these “syntactic sugar” constructs in our language. Further-
more, this maintains consistency with STCSP (for which these constructs are
also redundant, but this had not been studied when STCSP was first defined).

4.3 Expressiveness

We consider here the expressive power of regular PSTCSP, i.e., the set of timed
words for any parameter valuation. Timed words are alternating sequences of
events and real-valued timing delays, and usually characterize the language of
a formalism to model real-time systems such as timed automata or time(d)
Petri nets. We will show in the following that the expressive power of regular
PSTCSP is equal to parametric closed timed automata with ε-transitions.

Let us first recall that regular STCSP is equivalent to that of closed
timed automata with ε-transitions. Recall from [OW03b] that closed timed

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 19

automata with ε-transitions are timed safety automata [HNSY94] (i.e., timed
automata [AD94] without acceptance conditions and with location invariants)
augmented with ε-transitions [BPDG98], and with the restriction of exclusively
closed guards and invariants (i.e., whose inequalities are of the form e ≤ e′,
with e, e′ linear terms). It is usually considered that this restriction is benign
in practice, due to the fact that any timed automaton can be infinitesimally
approximated by one with closed constraints [OW03a,OW03b,AMP98].

The following result comes from [SLD+13]. Although it is not made explicit
in [SLD+13], the expressive power is understood in this result in terms of timed
words, that is alternating sequences of events and real-valued timing durations.

Lemma 3 ([SLD+13, Section 4.4]) The expressive power of regular Stateful
Timed CSP is equal to that of closed timed automata with ε-transitions.

We define parametric closed timed automata with ε-transitions as a para-
metric extension of closed timed automata with ε-transitions, following the pa-
rameterization of TA into PTA [AHV93], i.e., by allowing parameters within
guards and invariants. We consider here the expressive power as the set of
timed words for all possible parameter valuations.

Proposition 1 The expressive power of regular Parametric Stateful Timed
CSP is equal to that of parametric closed timed automata with ε-transitions.

Proof From the fact that both parametric formalisms are obtained exactly the
same way: regular Parametric Stateful Timed CSP is obtained from regular
Stateful Timed CSP by allowing the use of parameters in place of any constant
in the system, and similarly for parametric closed timed automata with ε-
transitions. ut

Since closed timed automata with ε-transitions are a (strict) subclass of
timed automata with ε-transitions [BGP96,AM04], then parametric closed
timed automata with ε-transitions are a subclass of parametric timed automata
with ε-transitions. From Proposition 1 and the fact that timed automata with
ε-transitions are incomparable with standard TA [BGP96,AM04], we can infer
that regular PSTCSP is less expressive than parametric timed automata with
ε-transitions, but incomparable with standard PTA.

Remark 1 (Definition of expressiveness) We considered here a (common) def-
inition of expressiveness that considers the union of all timed words for all
parameter valuations. An alternative definition could be to consider the inter-
section of all timed words for all parameter valuations. In that case, the result
of Proposition 1 holds too, following the same reasoning.

We believe that PSTCSP is an interesting formalism because one can make
use of user-defined data structures, and hierarchical composition is supported
in PSTCSP, which is missing in PTA. Furthermore, high level real-time system
requirements often state system timing constraints in terms of deadline, time-
out or wait, which can be regarded as common timing patterns. For example,

20 Étienne André et al.

“task P must complete within u units of time” is a typical one (deadline[u]).
We believe that PSTCSP is well-suited for specifying the requirements of com-
plex real-time systems because it has the exact language constructs that can
directly capture those common timing patterns. On the other hand, to express
high level real-time requirements in PTA, one often needs to manually cast
those timing patterns into a set of clock variables explicitly and to carefully
design constraints. This is error-prone, in the sense that there is a risk to
forget clocks, or to write ill-formed clock constraints. Now, it may be useful
to provide (parametric) timed automata with timing requirement patterns to
simplify the modeling (see, e.g., [DHQ+08]); however, PSTCSP features these
patterns in a native manner.

Furthermore, for hierarchical systems, PSTCSP offers a rich set of system
composition functions which are inspired by CSP and Timed CSP; as a result,
it may be easier to model a system where components form a hierarchy of more
than 2 levels than using parametric timed automata. Although tools exist for
specifying hierarchy or some data structures for (non-parametric) TA, such as
Uppaal [LPY97], PSTCSP is, to the best of our knowledge, the first paramet-
ric real-time formalism combining hierarchical aspects, shared variables and
complex data structures in a single formalism based on an intuitive syntax.

Remark 2 (Expressiveness of the data structures) It has long been known (see
for example [Hoa85,Ros01,SLD+13]) that it is possible to model a finite do-
main variable (and hence any complex finite-domain data structure) as a finite-
state process in parallel to the one that uses it. As a consequence, the use of
data structures does not increase the expressiveness of regular PSTCSP. Hence,
it would have been possible to define the semantics of PSTCSP without these
data structures. Similarly, (parametric) timed automata [AD94,AHV93] are
usually extended with (bounded) integers (or with more complex data struc-
tures in tools such as Uppaal [LPY97]), although their theoretical definition
rarely includes them. However, we believe that this is not satisfactory for two
reasons.

First, since PSTCSP is a parametric extension of STCSP (that defines
variables in its semantics), we make the same choice to include the variables in
our semantics. Second, some algorithms may need to explicitly access the value
of data structures (this is the case of our algorithm 3VPsynthesis introduced
in Section 5.2). Hence, in contrast to the literature on timed automata, where
each paper may extend the original formalism for its own needs (bounded
integers, broadcast communication, use of lists, etc.), we provide here a unified
semantics, that we hope to be rich enough for defining further algorithms
making use of variables and data structures.

4.4 Membership and Emptiness Problems

We show in this section that parameter synthesis is undecidable in general for
regular PSTCSP.

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 21

We consider the following problems, defined in [AHV93,JLR13] for para-
metric timed automata, and adapted here to our setting:7

1. EF-membership problem: Given M a PSTCSP model, V a variable
valuation and π a parameter valuation, is V reachable in M[π]?

2. EF-emptiness problem: Given M a PSTCSP model and V a variable
valuation, does there exist a parameter valuation π such that V is reachable
in M[π]?

3. AF-membership problem: Given M a PSTCSP model, V a variable
valuation and π a parameter valuation, do all maximal runs of M[π] pass
by V ?

4. AF-emptiness problem: Given M a PSTCSP model and V a variable
valuation, does there exist a parameter valuation π such that all maximal
runs of M[π] pass by V ?

The two former problems refer to reachability whereas the two latter refer
to unavoidability.

Membership. Both membership problems (1 and 3) are obviously decidable
for regular PSTCSP: it suffices to consider the non-parametric regular STCSP
model M[π] and solve this problem using techniques developed in [SLD+13],
e.g., by building the set of all reachable states, which is finite.

Proposition 2 (Decidability of membership) The EF-membership and
AF-membership problems are decidable for regular PSTCSP.

EF-Emptiness. We now show that Problem 2 is undecidable. We first consider
the case of general PSTCSP.

Theorem 1 (Undecidability of EF-emptiness) The EF-emptiness prob-
lem is undecidable for PSTCSP.

Proof We reduce the halting problem for 2-counter machines (known to be
undecidable [Min67]) to the problem of testing if, given M a PSTCSP process
and V a variable valuation, there exists a parameter valuation π such that V
is reachable in M[π].

As in [AHV93], we consider a 2-counter machine CM with two counters C1

and C2. The control variable l of CM ranges over the set {l1, . . . , ln}. Each
instruction of CM can either increment or decrement one of the counters, or
test if one of the counters is equal to 0, and change the location of control. A
configuration of CM is a triple (li, c1, c2), specifying the values of l, C1 and C2,
respectively. The initial configuration of CM is (l0, 0, 0). The halting problem
consists of deciding if CM can reach a given configuration (li, c1, c2).

7 In parametric timed automata [JLR13], the notion of reachable state is based on lo-
cations, viz., discrete control states. In PSTCSP, there are no such discrete control states;
hence, we could define reachability based on a variable valuation, on a given process, or a
combination of both. We choose here the first option to simplify the proof, but our results
extend directly to the two other cases (see Remark 3).

22 Étienne André et al.

We construct in the following a PSTCSP model MCM such that there
exists a parameter valuation π such that V is reachable in MCM [π] if and only
if CM halts. In order to simplify the proof, we consider that no instruction
corresponds to control variable ln (i.e., if the machine reaches ln, it will halt).

In the following, we use a similar reduction to that of [AHV93], and adapt
it to PSTCSP. Let us first recall the construction used in [AHV93]. That
construction constructs a PTA using three clocks x, y, z and six parameters
a, a−1, a+1, b, b−1, b+1 such that a = a−1+1 = a+1−1 and b = b−1+1 = b+1−1.
A configuration is encoded using the triple (li, b− y, b− a− z), where y and z
are two of the three clocks used in the construction. Hence, the value of C1 is
encoded by b − y, and the value of C2 by b − a − z. Each control variable is
encoded using a dedicated PTA location. Then, for each instruction, a sequence
of locations and transitions is added; for example, the instruction “if l = li
then C1 := C1 +1 and l := li′” is modeled in [AHV93] by adding a path to the
PTA modeling CM , using the scheme recalled in Figure 4. Indeed, if the initial
configuration is (li, b− y, b−a− z) then, after this sequence of transitions, the
configuration when reaching l′i is (li, b − y − 1, b − a − z), correctly encoding
the fact that the location changed from li to l′i and that C1 was incremented
by 1. The instructions of the form “if l = li then C1 := C1 − 1 and l := li′”
and “if l = li and C1 = 0 then l := li′” are encoded in a similar manner (and
similarly for C2).

li li′

y = b+1

y := 0 x = a
z = b
z := 0

x = b
x := 0

Fig. 4: Undecidability proof of [AHV93]

Our encoding is similar: we also use 6 parameters a, a−1, a+1, b, b−1, b+1,
and we define processes for each different control variable li. The main difficulty
when adapting the proof of [AHV93] to PSTCSP is the fact that clocks are
now implicit. We hence encode the 3 clocks x, y and z of [AHV93] using three
processes X, Y and Z, respectively, running in parallel and that ensure that
the elapsing of time conforms to the value of clocks in the proof of [AHV93].
We also define an additional process W in order to synchronize on events. We
finally define a single Boolean variable v, that is initially set to False, and
will be updated to True in only one special process; then we will show that
v = True can be reached if and only if the machine halts.

We set MCM = (Var , U, V0, PCM ,K0), with

– Var = {v};
– U = {a, a−1, a+1, b, b−1, b+1};
– V0 initializes v to False;
– K0 = {a = a+1 − 1 = a−1 + 1 ∧ b = b+1 − 1 = b−1 + 1}; and
– PCM is explained in the following.

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 23

For each control variable li of CM , consider the set of instructions starting
in this control variable (i.e., of the form “if l = li then . . . ”). For each control
variable li, let Iij be the jth instruction starting in the control variable i.
Figure 4 depicts one such instruction Iij for some j. For each instruction Iij ,we
will define 4 processes. Consider an instruction of the form “if l = li then
C1 := C1 + 1 and l := li′”. The 4 processes defined for this instruction are as
follows.

Xij
.
= Wait[b− a]; e4ij �

(
(e1ij → Skip)within[a]

)
; e2ij � Xi′

Yij
.
= Wait[b+1]; e1ij � Yi′

Zij
.
= Wait[b]; e3ij � Zi′

Wij
.
= e4ij → e1ij → e2ij → e3ij →Wi′

The three processes X, Y , Z correspond to the three clocks x, y, z, re-
spectively, of Figure 4. They synchronize on a set of events, and the order
between the events, which is crucial in order to constrain the parameters, is
achieved by process W . We name those events e1ij to e4ij , where ekij corresponds
to the kth transition of Figure 4. The within construct in process X is used
in order to let event e1ij occur anytime between e4ij and e2ij . Figure 5 gives the
idea for our construction, and specifies in particular the duration between any
two events for the sake of better understanding. Note that our construction is
slightly different from that of [AHV93] in the sense that we start the sequence
of transitions from the point where x is reset, hence technically in the pre-
vious transition in the PTA model of [AHV93]; hence the first event for the
jth instruction in control variable i is e4ij . This also explains the order of the
events in Wij .

Xij

Yij

Zij

Wij

e4ij e1ij e2ij e3ij

b− a− c2
c1 + 1

a− c1 − 1

c2

b− a a

Fig. 5: Proof of undecidability: synchronization between processes

For an instruction of the form “if l = li then C1 := C1− 1 and l := li′”, we
define the four processes in the same way, except Yij where Wait[b+1] should
be replaced with Wait[b−1].

For an instruction of the form “if l = li and C1 = 0 then l := li′”, we
define the four processes in the same way, except Yij where Wait[b+1] should
be replaced with Wait[b], and Xij is defined as follows.

24 Étienne André et al.

Xij
.
= Wait[b− a]; e4ij � e1ij � Wait[a];Xi′

We also define four sets of processes, for i = 1, . . . , n− 1, as follows.

Xi
.
=
⋃
Xij , Yi

.
=
⋃
Yij , Zi

.
=
⋃
Zij , Wi

.
=
⋃
Wij

where
⋃
Xij denotes a general choice between the m processes starting in

control variable i, i.e., Xi1 | · · · | Xim.
The final processes Yn, Zn and Wn are all defined as en → Skip. And we

define Xn
.
= en → {v := True} Skip. This gives the final synchronization

updating v to True.
The global process encoding our construction scheme is given by:

PCM
.
= P0;

(
(Skip;X1) ‖ Y1 ‖ (Skip;Z1) ‖ (Skip;W1)

)
The Skip construction prefixing each process except Y1 allows these processes
to idle for some time before starting, as the four processes are out of phase
(see Figure 5).

Then, if CM does not halt, there is no way to reach a configuration where
v is True, and there exists no parameter valuation such that this valuation
is reachable. If CM does halt, and suppose the value of C1 (resp. C2) never
exceeds some constant c1 (resp. c2), then the set of parameter valuations for
which v = True is reachable is {a = a+1 − 1 = a−1 + 1 ∧ b = b+1 − 1 =
b−1 + 1 ∧ a ≥ c1 ∧ b− a ≥ c2}. ut

Now, we show that the problem remains undecidable even for regular
PSTCSP, which directly comes from the expressiveness of regular PSTCSP.

Theorem 2 (Undecidability of EF-emptiness (regular PSTCSP)) The
EF-emptiness problem is undecidable for regular PSTCSP.

Proof The construction in [AHV93] uses a translation from a 2-counter ma-
chine to a PTA using 3 clocks. This PTA actually belongs to the class of
parametric closed timed automata, itself a subclass of parametric closed timed
automata with ε-transitions, which has been shown in Section 4.3 to be equiv-
alent to regular PSTCSP. ut

AF-Membership. We now show that problem 4 is undecidable too.

Theorem 3 (Undecidability of AF-emptiness) The AF-emptiness prob-
lem is undecidable for PSTCSP.

Proof The AF-emptiness problem has been shown to be undecidable for U-
PTA [JLR13]. The formalism of U-PTA is a subclass of PTA. Furthermore,
the proof of [JLR13] only uses non-strict inequalities; as a consequence, the
U-PTA used for the proof is a parametric closed timed automaton, and hence a
subclass of parametric closed timed automata with ε-transitions. From Propo-
sition 1, this U-PTA is equivalent to a regular PSTCSP model. As a conse-
quence, this problem is also undecidable for regular PSTCSP, and hence for
full PSTCSP.

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 25

Remark 3 (Reachability) We considered so far the reachability of a variable
valuation V . This notion can be generalized to the reachability of a given
process, or to the reachability of both a given process and a variable valuation.
The first case (viz., the reachability of a given process P) can be obtained
from the proof of Theorem 1 by replacing Xn

.
= en → {v := True} Skip with

Xn
.
= en → P . The second case (viz., the reachability of a given process P

and a variable valuation V) can be obtained using Xn
.
= en → {Var := V } P .

Another interesting problem is to determine, given a PSTCSP model M =
(Var , U, V0, P0,K0), whether there exists a parameter valuation such that P0

can derive back to P0 in a non-null number of steps. It follows from Remark 3
that this problem (that could be called return-to-init-emptiness problem) is a
subcase of the EF-emptiness problem (by choosing PCM as P in the proof of
Theorem 1), and is thus undecidable.

4.5 Time-Abstract Equivalent Runs

We prove here theoretical results that relate parametric runs (in PSTCSP)
with non-parametric runs (in STCSP). These results will be needed when
proving the correctness of the inverse method (see Section 5.3).

First, we need to recall the syntax and formal semantics of STCSP. (We
sometime adapt the notations and names to our setting.)

4.5.1 Syntax and Semantics of Stateful Timed CSP

An STCSP model (originally defined in [SLD+13, Section 3.1]) is a tuple
M = (Var , V0, P0) where Var ⊂ Var, V0 is the initial variable valuation, and
P0 ∈ PNP is a process. The set PNP of all possible non-parametric processes
(originally defined in [SLD+13, Section 3.1]) is the set of all processes defined
using the grammar in Figure 1, with the exception that u ∈ R+. That is, only
constant reals (instead of parameters) are allowed in the timing constructs.

We now recall the non-parametric semantics of STCSP models (called
“time-abstract semantics” in [SLD+13]). This semantics relies on the following
notion of non-parametric symbolic states (called “abstract system configura-
tions” in [SLD+13]).

Definition 7 (Non-parametric symbolic state) Given an STCSP model,
a non-parametric symbolic state is a triple (V, P,D), where V is a variable
valuation, P ∈ PNP is a process and D ∈ KX is a constraint on the clocks.

We now adapt to our notations the non-parametric semantics of STCSP
models (originally defined in [SLD+13, Definition 4.2]) as follows.

Definition 8 (Non-parametric semantics) Let Y = 〈x0, · · ·〉 be a se-
quence of clocks. Let M = (Var , V0, P0) be an STCSP model. The non-
parametric semantics of M , denoted by LM , is an LTS (S, s0,⇒NP , Στ) where

S = {(V, P,D) ∈ V(Var)× P ×KX},
s0 = (V0, P0,True)

26 Étienne André et al.

and the transition relation ⇒NP is the smallest transition relation satisfying
the following. For all (V, P,D) ∈ S, if x is the first clock in the sequence Y

which is not in cl(P), and (V,ActNP (P, x), D∧x = 0)
a
 NP (V ′, P ′, D′), where

D′ is satisfiable, then we have:
(
(V, P,D), a, (V ′, P ′, D′↓cl(P ′))

)
∈ ⇒NP .

In this definition, ActNP denotes the activation function for STCSP. This
function (originally defined in [SLD+13, Figure 3]) is identical to the activa-
tion function Act for PSTCSP defined in Figure 2, with the exception that
u denotes a constant real instead of a parameter. As in PSTCSP, cl(P) de-
notes the set of active clocks associated with an STCSP process P . The NP

transition relation for STCSP is defined using a set of rules. For the sake of
conciseness, these rules (defined in [SLD+13, Figure 6]) are not recalled here,
but are identical to the firing rules for PSTCSP (defined in Appendix A), with
the exception that parameters are replaced with constants.

In the following, we will write s1
a⇒NP s2 for (s1, a, s2) ∈ ⇒NP .

Remark 4 The semantics of a PSTCSP model can now be understood intu-
itively as the union of the semantics of the valuated non-parametric STCSP
models, for all possible parameter valuations. For each parameter valuation π,
we may view a symbolic state s = (V, P,C) as the set of triples (V, P,D) such
that for all clock valuation w such that w |= D, we have <w, π> |= C.

4.5.2 Results

The main result of this section will be Theorem 4, that relates non-parametric
and parametric semantics. Similar results have been proved for parametric
timed automata [HRSV02] and parametric time Petri nets [TLR09]; we will
reuse here the same reasoning, with some modifications due to the specific
nature of PSTCSP.

Due to the presence of timing constructs in the processes contained in the
traces (in contrast to PTA where traces contain only locations with no timing
information), we define the notion of π-equivalence for traces. A trace of M
and a trace of M[π] are π-equivalent if they agree on all elements (events,
variables), except on the processes, that must be such that Pπ = P [π] for
each process of the trace.

Definition 9 (π-equivalence) Let M be a PSTCSP model, and π be a pa-
rameter valuation.

Let t = (V0, P0)
a0⇒ · · · am−1⇒ (Vm, Pm) be a trace of M.

Let tπ = (V π0 , P
π
0)

aπ0⇒NP · · ·
aπm−1⇒NP (V πm, P

π
m) be a trace of M[π].

We say that t and tπ are π-equivalent if

1. for all 0 ≤ i ≤ m− 1, we have ai = aπi , and
2. for all 0 ≤ i ≤ m, we have Vi = V πi and Pi[π] = Pπi .

We extend the notion of π-equivalence to trace sets, and say that two
trace sets are π-equivalent if each trace of the first one is π-equivalent to a

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 27

trace of the second one, and vice-versa. We say that two traces (resp. trace
sets) are equivalent if there exists some π such that they are π-equivalent. We
finally define below the notion of time-abstract equivalence for runs, derived
from π-equivalence. The term “time-abstract” comes from the fact that two
runs are time-abstract equivalent if they have the same traces, hence the same
time-abstract behavior. Also note that this notion is equivalent to the “trace
simulation” used in, e.g., [HRSV02,ACEF09].

Definition 10 (Time-abstract equivalence) Let M be a PSTCSP model,
and π be a parameter valuation. Let r be a run of M, and rπ a run of M[π].
We say that r and rπ are time-abstract equivalent if their associated traces are
π-equivalent.

We will show in Propositions 3 and 4 that, given a parameter valuation π
that satisfies some conditions, each run in M[π] is time-abstract equivalent to
a run in M.

The following lemma states that constraints on the parameters can only
become more restrictive along a run.

Lemma 4 Let M = (Var , U, V0, P0,K0) be a PSTCSP model. Let (V, P,C)
a⇒

(V ′, P ′, C ′) be a transition in the semantics of M. Then C ′↓U ⊆ C↓U .

Proof From the symbolic semantics of PSTCSP, C ′ is obtained from C through
the following steps:
1) C is first conjuncted with x = 0. For sake of clarity, let C1 = (C ∧ x = 0).
From Lemma 1, we have C1↓U = C↓U .
2) Then, a constraint (say C2) is obtained from C1 using the transition re-
lation . Since the transition relation is recursive, we need to reason by
induction to show that C2↓U ⊆ C1↓U . Base case: let us show that this holds
for the non-recursive rules (viz., aki, aev, aac, co2, co3, await, ato3, ait2). For
all these rules, C2 is of the form C1

↑ ∧C ′, where C ′ ∈ KX∪U . (The constraint
C ′, possibly equal to True, is made of a conjunction of inequalities such as
x = u or idle(P).) Recall from Lemma 2 that time elapsing keeps the paramet-
ric constraint unchanged. Since (C1

↑)↓U = C1↓U , then (C1
↑ ∧ C ′)↓U ⊆ C1↓U ,

from Lemma 1. This completes the base case.
Induction case: the general form of C2 is C ′ ∧ C ′′ for all recursive rules (ex-
cept ase2 and apa3), where C ′ is obtained from C1 by recursively applying
transition relation , and C ′′ ∈ KX∪U . (The constraint C ′′, possibly equal to
True, is made of a conjunction of inequalities such as x ≤ u or idle(P). For
example, in rule aex1, C ′′ is idle(P).) Assume that C ′↓U ⊆ C1↓U and let us
show that C2↓U ⊆ C1↓U . Since C ′↓U ⊆ C1↓U , and C2 = C ′ ∧ C ′′ then the
result is immediate from Lemma 1. The case for rule ase2 is similar, except
that the form of C2 is C1∧C ′; since C ′↓U ⊆ C1↓U holds (by induction hypoth-
esis), then (C1 ∧ C ′)↓U ⊆ C1↓U holds from Lemma 1. For rule apa3, C2 is of
the form C ′ ∧C ′′, where both C ′ and C ′′ are obtained from C1 by recursively
applying transition relation . From the induction hypothesis, C ′↓U ⊆ C1↓U
and C ′′↓U ⊆ C1↓U hence (C ′ ∧C ′′)↓U ⊆ C1↓U from Lemma 1. This completes

28 Étienne André et al.

the induction step.
3) Finally, C ′ is obtained from C2 by removing the clocks not in cl(P ′), i.e.,
by projecting onto cl(P ′) ∪ U . By definition of the projection, C2↓cl(P ′)∪U =
{<w, π> | w : cl(P ′)→ R+ ∧π : U → R+ ∧<w, π> |= C}. Since U ⊆ cl(P ′)∪
U , then (C2↓cl(P ′)∪U)↓U = C2↓U . Since C2↓U ⊆ C1↓U then (C2↓cl(P ′)∪U)↓U ⊆
C1↓U . This completes the proof. ut

The following lemma relates the initial state in the parametric and non-
parametric semantics.

Lemma 5 Let M = (Var , U, V0, P0,K0) be a PSTCSP model. Let π |= K0.
Suppose that (P0, V0,K0) is the initial state of the semantics of M. Then the
initial state of the semantics of M[π] is (Vπ, Pπ, Dπ) with Pπ = P0[π], Vπ = V0,
and Dπ = K0[π].

Proof From the definition of the model valuation, Pπ = P0[π], and Vπ = V0.
From Definition 5, the initial state of the semantics of M is (V0, P0,K0). From
Definition 8, the initial state of the semantics of M[π] is (V0, P0[π],True). Since
K0 is a constraint on the parameters and π |= K0, then K0[π] = True. Hence
Dπ = K0[π]. ut

The following two lemmas relate a given transition in the parametric and
non-parametric semantics.

Lemma 6 Let M = (Var , U, V0, P0,K0) be a PSTCSP model. Suppose that

(V, P,C)
a⇒ (V ′, P ′, C ′) is a transition in the semantics of M. Let π |= C ′.

Suppose that (V, P [π], C[π]) is a state of the semantics of M[π]. Then the tran-

sition (V, P [π], C[π])
a⇒NP (V ′, P ′[π], C ′[π]) belongs to the semantics of M[π].

Proof First note that, from the definition of a transition in the semantics of M,
C ′ is satisfiable. By definition of the safisfiability, there exists at least one π
such that π |= C ′. The proof of the result then comes from the fact that
each firing rule of PSTCSP (see Appendix A) has an equivalent firing rule in
STCSP (see [SLD+13, Figure 6]), where a parameter is simply replaced with
the corresponding constant in π. Hence the transition relation is equivalent in
both formalisms. ut

Lemma 7 Let M = (Var , U, V0, P0,K0) be a PSTCSP model. Suppose that

(V, Pπ, Dπ)
a⇒ (V ′, P ′π, D

′
π) is a transition in the semantics of M[π]. Let π |=

C ′. Suppose that (V, P,C) is a state of the semantics of M, with Pπ = P [π]

and Dπ = C[π]. Then a transition (V, P,C)
a⇒ (V ′, P ′, C ′) belongs to the

semantics of M, with P ′π = P ′[π] and D′π = C ′[π].

Proof As for Lemma 6, the proof comes from the fact the transition relation
is equivalent in both formalisms. ut

The following proposition is the equivalent for PSTCSP of Proposition 3.17
in [HRSV02] in the setting of parametric timed automata.

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 29

Proposition 3 Let M = (Var , U, V0, P0,K0) be a PSTCSP model. For each
parameter valuation π, if there is a run in the semantics of M reaching state
(V ′, P ′, C ′), with π |= C ′, then this run is time-abstract equivalent to a run in
the semantics of M[π] reaching state (V ′, P ′[π], C ′[π]).

Proof By induction on the number of transitions in the run.

Base case: From Lemma 5.
Induction step: Assume there exists a run in the semantics of M ending with

a transition (V, P,C)
a⇒ (V ′, P ′, C ′) with π |= C ′. From Lemma 4, π |= C.

From the induction hypothesis, there is a run in the semantics of M[π]
leading up to state (V, P [π], C[π]). Since π |= C ′, by Lemma 6, we have

that (V, P [π], C[π])
a⇒NP (V ′, P ′[π], C ′[π]) is a transition in the semantics

of M[π]. Hence the run in the semantics of M is time-abstract equivalent
to a run in the semantics of M[π].

ut

The following proposition is the equivalent for PSTCSP of Proposition 3.18
in [HRSV02] in the setting of parametric timed automata.

Proposition 4 Let M = (Var , U, V0, P0,K0) be a PSTCSP model. For each
parameter valuation π, if there is a run in the semantics of M[π] reaching
state (V ′, P ′π, D

′
π), then this run is time-abstract equivalent to a run in the

semantics of M reaching state (V ′, P ′, C ′), with P ′π = P ′[π] and D′π = C ′[π].

Proof By induction on the number of transitions in the run.

Base case: From Lemma 5.
Induction step: Assume there exists a run in the semantics of M[π] ending with

a transition (V ′, P ′π, C
′
π)

a⇒NP (V, Pπ, Dπ) From the induction hypothesis,
there is a run in the semantics of M[π] leading up to a state (V, P,C) such
that Pπ = P [π] and Dπ = C[π]. By Lemma 7, we have that a transition

(V, P,C)
a⇒ (V ′, P ′, C ′) belongs to the semantics of M, with P ′π = P ′[π]

and D′π = C ′[π]. Hence the run in the semantics of M[π] is time-abstract
equivalent to a run in the semantics of M.

ut

The following theorem defines the reachability condition of a process, and
relates non-parametric runs and parametric runs. This is the equivalent for
PSTCSP of Theorem 13 in [TLR09] in the setting of parametric time Petri
nets.

Theorem 4 Let M = (Var , U, V0, P0,K0) be a PSTCSP model, and let (V, P,C)
be a state of M. Let π be a parameter valuation. Then:

(V, P [π], C[π]) ∈ M[π] iff π ∈ C↓U .

C↓U is called the reachability condition of C.

Proof From Propositions 3 and 4. ut

30 Étienne André et al.

Algorithm 1: Algorithm reachAll(M)

input : A PSTCSP model M with initial state s0
output: Set of reachable states

1 S ← {s0}
2 while True do
3 if PostM(S) ⊆ S then return S ;
4 S ← S ∪ PostM(S)

5 Parameter Synthesis

In this section, we define three algorithms, all allowing for synthesizing param-
eters for PSTCSP corresponding to various notions of correctness. The first
one (Section 5.1) simply explores the set of all reachable states, and can serve
as a basis for classical algorithms for parameter synthesis such as the reach-
ability of a given variable valuation or process. The second one (Section 5.2)
synthesizes parameter valuations satisfying a 3-value predicate. The third one
(Section 5.3) is based on a reference parameter valuation and synthesizes other
parameter valuations having the same time-abstract behavior.

5.1 State Space Exploration

We first define a semi-algorithm to explore the state space until a fixpoint is
reached, i.e., until no new state can be computed, or all new states have been
encountered before. Recall from Definition 1 that a state s is reachable in one
step from another state s′ if s is the successor of s′ in a run. This definition
extends to sets of states: Given a PSTCSP model M, we define PostM(S) (resp.
Post iM(S)) as the set of states reachable from a set S of states in one step (resp.

i steps). Formally, PostM(S) = {s′ | ∃s ∈ S,∃a ∈ Στ : s
a⇒ s′}. And Post∗M(S)

is defined as the set of all states reachable from S in M (i.e., Post∗M(S) =⋃
i≥0 Post iM(S)). We give in Algorithm 1 a semi-algorithm for computing the

set of all reachable states. The inclusion test (used in PostM(S) ⊆ S) denotes
the classical set inclusion, i.e., S ⊆ S′ if ∀s ∈ S, s ∈ S′. This inclusion test can
be implemented using an SMT solver (as it is proposed, e.g., in [HRSV02]); in
our implementation PSyHCoS (see Section 6), we use the polyhedra inclusion
test provided by the Parma Polyhedra Library (PPL) [BHZ08].

Application to an example. We first introduce an example of a PSTCSP model
that will be used to show the application of reachAll (and then of IM in
Section 5.3).

Example 4 Consider the following PSTCSP model.

Mnp
ex = (∅, ∅, ∅, Pnp ,True)

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 31

This model is actually non-parametric (np stands for non-parametric), with
no variables. Process Pnp is defined as follows.

Pnp .
= (a→ Wait[2]; b→ Stop) interrupt[1] c→ Pnp

Intuitively, b never occurs because interrupt occurs before Wait[2] is achieved.
We give in Figure 6 the set of reachable states in the form of an LTS.

s0 s1 s2
a

τ

τ

c

Fig. 6: Reachable states of process Pnp

Now consider the following parametrized version of Mnp
ex .

Mex = (∅, {u1, u2}, ∅, P,True)

Process P , still containing no variables, is defined as follows.

P
.
= (a→ Wait[u2]; b→ Stop) interrupt[u1] c→ P

Let us apply reachAll to Mex . Since there are no variables in Mex , we
denote for the sake of conciseness the states by the pair (P,C), where P is the
current process, and C the current constraint over X and U . The initial state
is s0 = (P,True). Let 〈x1, x2, · · ·〉 be a sequence of clocks. Starting with s0,
we pick the first unused clock (i.e., x1) and apply Act to P with x1 to get:

s′0 = (a→ Wait[u2]; b→ Stop) interrupt[u1]x1
c→ P , x1 = 0

Next, we can apply either rule ait1 or ait2. We apply ait1 (with ase1, aev):

s1 = (Wait[u2]; b→ Stop) interrupt[u1]x1 c→ P , 0 ≤ x1 ≤ u1

By applying rule ait2 to s0, we get s2 = (c → P, x1 ≥ 0 ∧ x1 = u1). Note
that clock x1 becomes irrelevant after the transition. After pruning x1, we get
s′2 = (c→ P,True).

Now consider state s1. We pick the first unused clock (x2) and apply Act
with x2 to get:

s′1 = (Wait[u2]x2
; b→ Stop) interrupt[u1]x1

c→ P , 0 ≤ x1 ≤ u1 ∧ x2 = 0

We can apply rule ait1 (with ase1, await) to s′1, and get (after pruning of x2):

s3 = (Skip; b→ Stop) interrupt[u1]x1
c→ P , u2 ≤ x1 ≤ u1

We can also apply rule ait2 (and idle8, idle10) to s′1, and get:

c→ P , 0 ≤ x1 − x2 ≤ u1 ∧ x1 = u1 ∧ x2 ≤ u2

32 Étienne André et al.

After pruning of both x1 and x2, we get (c→ P,True), which is equal to s′2.
We can apply rule aev to s′2 to get (P,True), which is equal to s0.
Now consider state s3. We can first apply rule ait1 (with ase2, aki) to get:

s4 = (b→ Stop) interrupt[u1]x1
c→ P , u2 ≤ x1 ≤ u1

We can also apply rule ait2 (with idle8, idle2) to s3 to get:

s5 = c→ P , u2 ≤ x1 ∧ x1 = u1

Which gives after pruning of x1: s′5 = c→ P , u2 ≤ u1. Note that s′5 is not
equal to s2, because the associated constraint is different.

Now consider state s4. We can first apply rule ait1 (with aev) to get:

s6 = Stop interrupt[u1]x1 c→ P , u2 ≤ x1 ≤ u1
We can also apply rule ait2 (with idle8, idle2) to s4, which gives s5.

From s6, one can only apply rule ait2 (with idle1), which also gives s5.
From state s′5, one can apply rule aev and get: s7 = P, u2 ≤ u1, which is

almost equivalent to s′0 after application of Act with x1, but with the addition
of the constraint u2 ≤ u1.

From s7, one can apply rule ait1 (with ase1, aev) and get, after application
of Act with x2:

s8 = (Wait[u2]x2
; b→ Stop) interrupt[u1]x1

c→ P ,

0 ≤ x1 ≤ u1 ∧ x2 = 0 ∧ u2 ≤ u1
From s7, one can also apply rule ait2 (with idle8, idle3), which gives s5.

Then, from s8, one can either apply ait1 (with ase1, await), which gives s4,
or apply ait2 (with idle8, idle10), which gives s5.

We finally reach the fixpoint, and reachAll terminates. The set of reachable
states is now stable, and is depicted in Figure 7 in the form of an LTS.

s′0

s′1

s′2

s3

s4

s′5

s6 s8

s7

a

τ

τ

τ

c

τ

τ

b
τ

c

τ
a

τ

τ

τ

Fig. 7: States reachable in model Mex

The interpretation of the graph is as follows. The projection onto U of the
constraint associated with states s′0, s′1 and s′2 is True. Hence, these states
can be reached for any valuation of u1 and u2. The projection onto U of the
constraint associated with the other states is u2 ≤ u1. Hence, these states can
only be reached for parameter valuations satisfying this inequality. Observe
that Pnp can only reach states (equivalent to) s′0, s′1 and s′2. Indeed, we have
that Mnp

ex = Mex [π], where π = {u1 = 1, u2 = 2}, hence u1 < u2.

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 33

Application to parameter synthesis. We showed in Theorem 1 that parameter
synthesis is undecidable for PSTCSP. Still, from the set of symbolic states
computed by reachAll , one can apply classical semi-algorithms for parameter
synthesis. Suppose the result of reachAll is an oriented graph (in the form of
the one depicted in Figure 7), and let succ(s) be the set of successors of a given
reachable state s. For example, in Figure 7, we have succ(s′0) = {s′1, s′2}. Then,
from the result of reachAll , we can for example retrieve the set of parameter
valuations such that a given variable valuation, and/or a given process Q (see
Remark 3 on page 25) is reachable. This procedure, that we name EFQ(s,R),
can be defined as follows (following the form defined in [JLR13]):

EFQ
(
(V, P,C), R

)
=


C↓U if P = Q
∅ if (V, P,C) ∈ R⋃
s′∈succ(V,P,C) EFQ

(
s′, R ∪ {(V, P,C)}

)
otherwise

In this algorithm, Q denotes a process to be reached (the case with a
reachable variable valuation is similar), (V, P,C) denotes the current state
explored, and R denotes the set of states explored so far. Recall from [JLR13]
that the algorithm is initially called on the initial state of the model (see
Definition 5) and on an empty set of reachable states, viz., EFQ((V0, P0,K0), ∅).
This algorithm returns the projection of a constraint onto the parameters if
the process P is the one searched for (case P = Q); otherwise, if the current
state has been visited (case (V, P,C) ∈ R), it stops; otherwise, it returns the
union of the recursive application of the algorithm on all successor states of
the current state, and adds the current state to the set of reachable states.
Although this algorithm may be used to synthesize “good” (correct) parameter
valuations, it is usually used to synthesize “bad” ones: usually, the process Q
to be reached is a “bad” process, and the set of correct valuations is then all
parameter valuations except the ones output by EFQ.

Let us now synthesize the set of parameter valuations such that the pro-
cess Q

.
= (Skip; b → Stop) interrupt[u1]x1 c → P is reachable in the model

of Example 4. Hence, we call EFQ(s′0, ∅). Since the process in s′0 is different
from Q, the first case of the algorithm does not apply (recall that the de-
scription of states is available above); since R = ∅, the second case does not
apply; from the third case, and since s′0 has two successors s′1 and s′2, we get
EFQ(s′1, {s′0}) ∪ EFQ(s′2, {s′0}). In the call EFQ(s′1, R{s′0}), the third case will
again apply; since s′1 has two successors s′2 and s3, we get EFQ(s′2, {s′0, s′1}) ∪
EFQ(s3, {s′0, s′1}). In the call EFQ(s3, R{s′0, s′1}), we now have that the pro-
cess associated with s3 is equal to Q. Hence, this call returns the projection
onto U of the constraint associated with s3, viz., u2 ≤ u1. The remaining
calls, after a few more iterations, will return the same constraint. Hence the
result of EFQ(s′0, ∅) is {u2 ≤ u1}. If Q is a “bad” process, then the set of good
parameter valuations is u2 > u1.

Non-termination.

34 Étienne André et al.

Proposition 5 (Non-termination) Let M be a PSTCSP model. Then Al-
gorithm reachAll(M) does not terminate in the general case.

Proof See counterexample in Example 5. ut

Example 5 Consider the PSTCSP model M = (∅, {u1, u2}, ∅, P,True) where P
is defined as follows.

P
.
= Q interrupt[u1] b

Q
.
= a→ Wait[u2];Q

It can be shown that reachAll will go into an infinite loop, by generating
in particular states of the form:

(Skip;Q) interrupt[u1]x1 b→ Skip , i ∗ u2 ≤ x1 ≤ u1

with i growing without bound.

Model checking. When the set of reachable states is finite, i.e., when reachAll
terminates, one can apply to the reachability graph finite-state model check-
ing techniques, such as most techniques defined in [SLD+13] for STCSP (e.g.,
model checking with or without non-Zenoness assumption, refinement check-
ing, etc.).

Unfortunately, in most cases, the set of reachable states in PSTCSP (as
in other parametric timed formalisms) is infinite.8 Hence the techniques (even
on-the-fly) defined in the non-parametric setting do not apply anymore.

5.2 Parameter Synthesis Based on 3-Value Predicates

5.2.1 3-Value Predicates

We consider here 3-value predicates: these predicates are properties on the
model variables that can be true, false, or neither true nor false. The appli-
cation is to differentiate between “good” states, “bad” states and states that
are neither good nor bad.

Differentiating between good states, bad states, and neither good nor bad
states can be used to encode observers. Observers are special processes ana-
lyzed in parallel with the system, the discrete state of which depends on the
rest of the system’s evolution. For example, they can monitor a predefined
order of events, or check that some deadlines are met. A major advantage
of observers is that they reduce complex properties (encoded in the observer
process) to reachability testing. In many cases (see, e.g., observers for timed
automata and STCSP [ABL98,ABBL98,And13]), observers use good states
and bad states (the other states being neither good nor bad). In that case, the
property encoded in the observer is true if and only if at least one good state

8 For timed systems, the state space is always infinite because of dense time. Here, we
mean that the number of (symbolic) states (V, P,C) is infinite too.

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 35

is reachable, and no bad state is reachable. This is the problem we address
here.

More specifically, this can be used when modeling scheduling problems.
For example, consider an acylic scheduling problem where a set of tasks has
to be completed (only once) within a given timing bound; since the model
is acyclic, the state space can be seen as an acyclic directed graph, where
each branch encodes one possible order of the events encoding the starting
and ending points of the different tasks. In this case, only the terminal states
(i.e., the last state of each branch) can be said to be good or bad; the other
states are not relevant, in the sense that one does not know (yet) whether the
deadline is met or not. The problem consists in defining sets of values for the
parameters for which the system is guaranteed to meet its deadline.

Given a valuation V of the variables, we write ϕ(V) = True if the predicate
is true, ϕ(V) = False if the predicate is false, and ϕ(V) = Unknown otherwise.

Example 6 Consider the following 3-value predicate on a single integer-valued
variable v:

ϕ(v) =

True if v = 2
False if v = 1
Unknown otherwise

An example of the application of this 3-value predicate to a reachability graph
is given in Figure 8, where the value of v is given to the left of each state. The
value according to the predicate is True for the states s4, s9, and s10 (since
v = 2), False for states s7, s12, s13 and s14 (since v = 1), and Unknown for
the other states (since v = 0).

s0

s2s1 s3

s6s5s4 s7 s8 s5 s9

s11 s10 s12 s13

s14

0

0 0 0

2 0 0 1 0 2

20 1 1

1

τ
τ

τ

a
τ

τ c τ τ b

abτ c c

c

Fig. 8: An example of a 3-value predicate applied to a state space

In the rest of this subsection, we will address the problem of synthesizing
parameters ensuring that at least one good state is reachable, and no bad state
is reachable.

36 Étienne André et al.

Remark 5 We consider 3-value predicates on the variables only. This restric-
tion is not strong in practice (see Remark 3), and one could easily extend
predicates to processes (e.g., one may want to define a 3-value predicate that
is true if the process does not contain any deadline, or more generally any
timed construct).

5.2.2 Synthesis Algorithm

Before describing our synthesis algorithm with respect to 3-value predicates,
we make two assumptions throughout this subsection. First, we assume that
models are non-recursive (as defined in Definition 3).

Assumption 1 All models are non-recursive.

The recursive case is discussed at the end of the subsection. Our algorithm
does not depend on this assumption but, for recursive models, it may not
terminate.

Second, we assume that no bad state can occur after a good state on the
same run.

Assumption 2 For any model, for any parameter valuation, no bad state can
occur after a good state on the same run.

Hence, a good state must be seen as a kind of terminal state. Our algorithm
relies directly on this assumption: synthesizing parameter valuations for mod-
els not satisfying Assumption 2 would require a different algorithm. Note that
this assumption is true for acyclic schedulability problems: only the last state
of a run can be said to be good (if the deadline is met) or bad (otherwise).
Hence, no bad state can occur after a good state.

We introduce our algorithm 3VPsynthesis in Algorithm 2. Given a PSTCSP
model M and a 3-value predicate ϕ, this algorithm synthesizes a set of param-
eter valuations guaranteeing the following notion of correctness: at least one
good state and no bad state is reachable according to ϕ.

The algorithm maintains two constraints: the constraint K guaranteeing
that at least one good state (according to ϕ) is reachable, and the constraint
Kbad guaranteeing that no bad state is reachable. The algorithm also maintains
the set S of visited states. Initially, K is set to false (no good state has been
reached yet), Kbad is set to the initial constraint, and S is set to the initial
state (line 1). Then, the algorithm iteratively computes states in a breadth-
first manner. If a new state is such that ϕ(V) = True, then the projection
onto the parameters of its constraint is added to K as a disjunction (line 5),
so as to allow this state to be reached in at least one run. Conversely, if a
new state is such that ϕ(V) = False, then the negation of the projection onto
the parameters of its constraint is added to K as a conjunction (line 7), so as
to forbid this state to be reachable in all runs. Otherwise, the state is added
to the list of visited states (line 9), and its successors will be visited at the
next iteration. Finally, if no new state is computed, or all new states have

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 37

Algorithm 2: Algorithm 3VPsynthesis(M, ϕ)

input : PSTCSP model M = (Var , U, V0, P0,K0)
input : 3-value predicate ϕ
output: (non-convex) constraint K over the parameters

1 K ← False ; Kbad ← K0 ; S ← {(V0, P0,K0)}
2 while True do
3 foreach (V, P,C) ∈ PostM(S) do
4 if ϕ(V) = True then
5 K ← K ∨ C↓U ;
6 else if ϕ(V) = False then
7 Kbad ← Kbad ∧ ¬C↓U ;
8 else
9 S ← S ∪ {(V, P,C)} ;

10 if PostM(S) ⊆ S then
11 return K ∧Kbad ;

been visited before (fixpoint condition line 10), then the intersection of K
with Kbad is returned (line 11). Note that the resulting constraint is in general
non-convex due to the use of disjunctions.

5.2.3 Application to an Example

Example 7 Consider the following example of a PSTCSP model M =
(Var , U, V0, P,K0), where Var = {v}, U = {u1, u2, u3}, V0 assigns v to 0,
K0 = True, and P is defined as follows.

P
.
= (P1 � P2)timeout[u3](c{v := 1}� Stop)

P1
.
= (Wait[u1]; a{v := 2}� Skip) within[u1]

P2
.
= (Wait[u2]; b{v := 2}� Skip) within[u2]

In this example, P1 (resp. P2) is a process that first waits for u1 (resp. u2)
time units; then event a (resp. b) occurs immediately (due to the urgent tran-
sition) and sets v to 2, before deriving to Skip. The main process P is an
external choice between P1 and P2, that will timeout after u3 units of time
(i.e., if neither a nor b occur at that time), in which case v is set to 1, and the
process stops. Note that P is non-recursive.

A possible interpretation of this example is that either a task with a du-
ration of u1 time units or a task with a duration of u2 time units must be
completed before a deadline of u3 time units. The variable v encodes that one
task is completed before the deadline (v = 2) or no task is completed before
the deadline (v = 1), which can be seen as a deadline miss.

It is interesting to know for which values of the parameters it is guar-
anteed that one task is completed before the deadline. Hence, let us apply
3VPsynthesis to M and to the 3-value predicate ϕ defined in Example 6,
that assigns True to 2, False to 1, and Unknown otherwise. The initial as-
signment (line 1 in Algorithm 2) gives K ← False, Kbad ← True, and
S ← {(v = 0, P0,True)}. Let us now iterate the while loop. The state space

38 Étienne André et al.

s v P C

s0 0
(
((Wait[u1]; a{v := 2} � Skip) within[u1])

� ((Wait[u2]; b{v := 2} � Skip) within[u2])
)

timeout[u3](c{v := 1}� Stop)

True

s1 0
(
((Skip; a{v := 2} � Skip) within[u1]x1)

� ((Wait[u2]x1 ; b{v := 2} � Skip) within[u2]x1)
)

timeout[u3]x1 (c{v := 1}� Stop)

x1 = u1 ∧ x1 ≤ u2 ∧ x1 ≤ u3

s2 0 c{v := 1}� Stop u3 ≤ u1 ∧ u3 ≤ u2
s3 0

(
((Wait[u1]x1 ; a{v := 2} � Skip) within[u1]x1)

� ((Skip; b{v := 2} � Skip)
)

within[u2]x1)
timeout[u3]x1 (c{v := 1}� Stop)

x1 = u2 ∧ x1 ≤ u1 ∧ x1 ≤ u3

s4 2 Skip u1 ≤ u2 ∧ u1 ≤ u3
s5 0

(
((Skip; a{v := 2} � Skip) within[u1]x1)

� ((Skip; b{v := 2} � Skip) within[u2]x1)
)

timeout[u3]x1 (c{v := 1}� Stop)

x1 = u1 ∧ x1 = u2 ∧ x1 ≤ u3

s6 0 c{v := 1}� Stop u1 = u3 ∧ u1 ≤ u2
s7 1 Stop u3 ≤ u1 ∧ u3 ≤ u2
s8 0 c{v := 1}� Stop u2 = u3 ∧ u2 ≤ u1
s9 2 Skip u2 ≤ u1 ∧ u2 ≤ u3
s10 2 Skip u1 = u2 ∧ u1 ≤ u3
s11 0 c{v := 1}� Stop u1 = u2 = u3
s12 1 Stop u1 = u3 ∧ u1 ≤ u2
s13 1 Stop u2 = u3 ∧ u2 ≤ u1
s14 0 Stop u1 = u2 = u3

Table 1: Description of the states in Figure 8

will be the one given in Figure 8. We store the description of the states in
Table 1 for better readability.

First iteration. Let us compute PostM(S). If Wait[u1] finishes first, then
state s1 is reached from s0. The value of v is 0 in s1; hence ϕ(v) = Unknown,
hence the algorithm only performs S ← S ∪ {s1} (line 9).

If timeout[u3] occurs first, a state s2 is reached from s0. Again, the value
of v is 0 in s2; hence s2 is added to S.

Symmetrically to s1, if Wait[u2] finishes first, a state s3 is reached from s0.
Again, the value of v is 0 in s3; hence s3 is added to S.

All s1, s2 and s3 have successor states that are not yet computed,9 hence
we do not have that PostM(S) ⊆ S (line 10), hence the algorithm goes one
iteration further.

Second iteration. From state s1, there are three possible successors: if a (which
is an urgent event) occurs first, then state s4 is reached. Since v = 2, then
ϕ(v) = True; hence, we perform K ← K ∨ C4↓U (line 5), and we now have
K = u1 ≤ u2 ∧ u1 ≤ u3. Alternatively, Wait[u2] can complete before a occurs,

9 The test PostM(S) ⊆ S is a classical fixpoint test given in an algorithmic manner. Here,
one does not know yet whether PostM(S) ⊆ S, since PostM(S) will be computed at the
next iteration. In practice, this is handled using a set of “old” states (computed at previous
iterations), and a set of “new” states (computed at the current iteration).

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 39

reaching state s5; since a is an urgent event, this happens in a 0-time duration,
which explains the equality x1 = u1 = u2 in C5. Alternatively, timeout[u3]
can occur first, reaching state s6; again, there is an equality u1 = u3 in C6

due to the fact that a is an urgent event. Both s5 and s6 are such that ϕ(v) =
Unknown, hence they are stored within S.

From state s2, there is only one successor s7. This state is such that ϕ(v) =
False; hence, the algorithm performs Kbad ← Kbad ∧ ¬C7↓U (line 7), and we
now have Kbad = ¬(u3 ≤ u1 ∧ u3 ≤ u2).

The successors of s3 are symmetrical to those of s1, and lead to states s8,
s5 (already reached from s1) and s9.

At the end of the second iteration, we have K = u1 ≤ u2 ∧ u1 ≤ u3 ∨ u2 ≤
u1 ∧ u2 ≤ u3, and Kbad = ¬(u3 ≤ u1 ∧ u3 ≤ u2). Some of the new computed
states have successor states that are not yet computed, hence the algorithm
goes one iteration further.

Third iteration. From state s5, there are three possible successors: if a (which
is an urgent event) occurs first, then state s10 is reached, with ϕ(v) = True,
hence u1 = u2∧u1 ≤ u3 is added to K (as a disjunction). Similarly, if b occurs
first, then the same state s10 is reached. And if timeout[u3] occurs first, then
state s11 is reached, with ϕ(v) = Unknown; hence, s11 is added to S.

From state s6, there is one successor s12, where ϕ(v) = False; hence, ¬(u1 =
u3 ∧ u1 ≤ u2) is added to Kbad (as a conjunction).

Symmetrically, from state s8, there is one successor s13, where ϕ(v) =
False; hence, ¬(u2 = u3 ∧ u2 ≤ u1) is added to Kbad .

At the end of the third iteration, we have K = (u1 ≤ u2∧u1 ≤ u3)∨ (u2 ≤
u1∧u2 ≤ u3)∨(u1 = u2∧u1 ≤ u3), and Kbad = ¬(u3 ≤ u1∧u3 ≤ u2)∧¬(u1 =
u3 ∧ u1 ≤ u2) ∧ ¬(u2 = u3 ∧ u2 ≤ u1). Some of the new computed states have
successor states that are not yet computed, hence the algorithm goes one
iteration further.

Fourth iteration. From state s11, there is one successor s14, where ϕ(v) =
False; hence, ¬(u1 = u2 = u3) is added to Kbad .

Now, all states in S have either no successor, or a successor in S. Hence
the fixpoint condition (line 10) is verified, and the algorithm terminates.

At the end of the algorithm, we have K = (u1 ≤ u2 ∧ u1 ≤ u3) ∨ (u2 ≤
u1∧u2 ≤ u3)∨(u1 = u2∧u1 ≤ u3), and Kbad = ¬(u3 ≤ u1∧u3 ≤ u2)∧¬(u1 =
u3 ∧ u1 ≤ u2) ∧ ¬(u2 = u3 ∧ u2 ≤ u1) ∧ ¬(u1 = u2 = u3).

The result of the algorithm K ∧Kbad can be simplified (manually or using
a constraint solver) into (u1 ≤ u2 ∧ u1 < u3) ∨ (u2 ≤ u1 ∧ u2 < u3) ∨ (u1 =
u2 ∧ u1 < u3). It will be shown in Proposition 7 that, for any parameter
valuation satisfying this constraint, the system reaches at least one state where
v = 2, and cannot reach any state where v = 1. An example of a parameter
valuation satisfying this constraint is u1 = 1 ∧ u2 = 2 ∧ u3 = 3. We remark
that the resulting constraint is equivalent to u3 > min(u1, u2); this is consistent
with the correctness condition of this example, i.e., either the task of length

40 Étienne André et al.

u1 time units or the task of length u2 time units must be completed before
the deadline of u3 time units.

5.2.4 Soundness and Completeness

The algorithm trivially terminates under Assumption 1 (non-recursivity).

Proposition 6 (Termination) Let M be a PSTCSP model, and ϕ be a 3-
value predicate on the variables of M. Then 3VPsynthesis(M, ϕ) terminates.

Proof Due to the finite number of possible process derivations coming from
Assumption 1. ut

We show below that, for all π |= 3VPsynthesis(M, ϕ), at least one good
state is reachable, and no bad state is reachable. Of course, this result relies
on Assumption 2 that states that, once a good state has been reached, no bad
state is reachable on the same run.

The following lemma will be used in the proof of Proposition 7.

Lemma 8 (Unreachability of bad states) Let M be a PSTCSP model, and
ϕ be a 3-value predicate on the variables of M. Suppose 3VPsynthesis(M, ϕ)
terminates. Consider the constraint Kbad just before the end of the algorithm.
Then for all π |= Kbad , no bad state is reachable in M[π].

Proof By contradiction. Let π |= Kbad . Suppose a bad state is reachable in
M[π], i.e., there exists a run rπ reaching a state (V, Pπ, Dπ) in the semantics
of M[π]. From Proposition 4, this run is time-abstract equivalent to a run r in
the semantics of M reaching state (V, P,C), with Pπ = P [π] and Dπ = C[π].
If this bad state (V, P,C) occurs after a good state on the same run r, then
this violates Assumption 2. Hence, no good state occurs on the run leading
to (V, P,C). Suppose without loss of generality that this bad state (V, P,C) is
the first one along r, i.e., no bad state occurs earlier on the same run. (If this
is not the case, then let us consider the first bad state instead.) Now, recall
that Algorithm 2 computes all successor states along a run until a good or bad
state is met. As a consequence, (V, P,C) has been met by Algorithm 2 and
¬C↓U has been added to Kbad (line 7). Since π |= Kbad , then π 6|= C↓U . Hence,
from Theorem 4, no state (V, Pπ, Dπ) is reachable in M[π], which contradicts
the initial assumption. ut

Proposition 7 (Soundness) Let M be a PSTCSP model, and ϕ be a 3-value
predicate on the variables of M. Suppose 3VPsynthesis(M, ϕ) terminates with
result K.

Then for all π |= K, at least one good state is reachable in M[π], and no
bad state is reachable in M[π].

Proof The result of 3VPsynthesis is of the form (K1 ∨K2 ∨ · · · ∨Kn)∧Kbad .
This can be rewritten K1 ∧ Kbad ∨ K2 ∧ Kbad ∨ · · · ∨ Kn ∧ Kbad . Consider
Ki∧Kbad for some 1 ≤ i ≤ n. Observe that Ki characterizes a good state (see

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 41

line 5 in Algorithm 2). Hence, from Proposition 3, this good state is reachable
for any π |= Ki. Since Ki ∧Kbad ⊆ Ki, this good state is also reachable for
any π |= Ki ∧ Kbad . Furthermore, from Lemma 8, no bad state is reachable
in M[π], since Kbad contains the negation of an inequality associated with each
of these reachable bad states. ut

We finally state that 3VPsynthesis is complete, i.e., that it synthesizes all
possible parameter valuations such that at least one good state is reachable
and no bad state is reachable.

Proposition 8 (Completeness) Let M be a PSTCSP model, and ϕ be a
3-value predicate on the variables of M. Let π be a parameter valuation. Let
K = 3VPsynthesis(M, ϕ).

If at least one good state is reachable in M[π], and no bad state is reachable
in M[π], then π |= K.

Proof From Theorem 4, the conjunction of the negated parametric constraints
associated with the bad states is the minimal constraint (in terms of number
of points) guaranteeing the non-reachability of the bad states. Similarly, from
Theorem 4, the union of all the parametric constraints associated to the good
states is the minimal constraint (in terms of number of points) guaranteeing
the reachability of at least one good state. ut

Recursive models. We briefly discuss the case of recursive models. Although
3VPsynthesis is guaranteed to terminate for non-recursive models (due to the
finite number of possible process derivations), there exist models for which
3VPsynthesis may not terminate. However, if 3VPsynthesis does terminate
for a given input, then its soundness and completeness are still ensured (since
none of these proofs require the assumption of non-recursivity). Hence it is a
semi-algorithm.

5.3 Parameter Synthesis Using the Inverse Method

We extend here the inverse method IM to PSTCSP.

History The inverse method was first proposed in the framework of “time
separation of events” [EF08]. The “direct problem” in the framework of time
separation of events can be stated as follows: “Given a system made of several
connected components, each one entailing a local delay known with uncer-
tainty, what is the maximum time for traversing the global system?” In [EF08],
the authors focus on the following inverse problem: “find intervals for compo-
nent delays for which the global traversal time is guaranteed to be no greater
than a specified maximum”. The authors then introduce a method, the so-
called inverse method, and show that this method solves the inverse problem
in polynomial time. The inverse method was then formalized and extended
to PTA in [ACEF09,AS13], guaranteeing that the discrete behavior of the
system (what we call here trace set) is preserved for any parameter valuation
satisfying the constraint output by IM .

42 Étienne André et al.

5.3.1 The Inverse Method for PSTCSP

Similarly to PTA, the main property of IM for PSTCSP will be the following:
Given a PSTCSP model M and a reference parameter valuation π, IM synthe-
sizes a constraint K on the parameters such that, for any π′ |= K, the trace sets
of M[π] and M[π′] are equivalent. This method guarantees the time-abstract
equivalence of the behaviors. Hence, all linear time properties valid in M[π]
are also valid in M[π′], and vice versa. Note that the algorithm IM is somehow
independent of the notion of correctness (e.g., in contrast to 3VPsynthesis that
explicitly takes as input a 3-value predicate). However, if the behavior of the
original system M[π] is correct (for whatever criterion of correctness based on
the trace set), then M[π′] is correct for any π′ |= K (and conversely if M[π] is
incorrect).

In IM , we need to check whether the constraint associated with a state is
satisfied by a given parameter valuation. This refers to the following notion.

Definition 11 (π-compatibility) Let M be a PSTCSP model, π be a pa-
rameter valuation, and s = (V, P,C) be a state of M. The state s is said to be
π-compatible if π |= C, and π-incompatible otherwise.

We introduce in Algorithm 3 the inverse method IM (M, π) for PSTCSP.
We consider in the following the model M = (Var , U, V0, P0,K0). Starting with
a constraint over the parameters K = K0, we iteratively compute a growing
set of reachable states. When a π-incompatible state (V, P,C) is encountered
(i.e., when π 6|= C), K is refined as follows. A π-incompatible inequality J (i.e.,
such that π 6|= J) is selected within the projection of C onto the parameters U
(line 5) and the negation ¬J of J is added to K (line 6). The procedure is
then started again with this new K, and so on, until a fixpoint is reached, i.e.,
all states have been visited before, and no new state is reachable (line 8). The
algorithm finally returns the intersection of the projection onto the parame-
ters U of the constraints associated with all reachable states (line 9).

The two main steps of the algorithm are the following ones:

1. the iterative negation of the π-incompatible states (by negating a π-
incompatible inequality J) prevents for any π′ |= K any behavior different
from the admissible behaviors under π;

2. the intersection of the constraints associated with all the reachable states
guarantees that all the behaviors under π are allowed for all π′ |= K.

5.3.2 Application to Example 4

Let us apply IM to Mex and the following reference parameter valuation:
π = {u1 = 1, u2 = 2}. Since Var = ∅, we denote each state by (P,C), where P
is the current process, and C the current constraint on X and U .

We start with i = 0, K = True and S = {s′0}, with

s′0 =
(
(a→ Wait[u2]; b→ Stop) interrupt[u1]x1

c→ P, x1 = 0
)
.

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 43

Algorithm 3: Algorithm IM (M, π)

input : PSTCSP model M = (Var , U, V0, P0,K0)
input : Parameter valuation π
output: Constraint K over the parameters

1 i← 0 ; K ← K0 ; S ← {(V0, P0,K)}
2 while True do
3 while there are π-incompatible states in S do
4 Select a π-incompatible state (V, P,C) of S (i.e., s.t. π 6|= C) ;
5 Select a π-incompatible J in C↓U (i.e., s.t. π 6|= J) ;
6 K ← K ∧ ¬J ;

7 S ←
⋃i
j=0 PostjM({(V0, P0,K)}) ;

8 if PostM(S) ⊆ S then
9 return

⋂
(V,P,C)∈S C↓U ;

10 i← i+ 1 ;

11 S ← S ∪ PostM(S) ; /* S =
⋃i
j=0 PostjM({(V0, P0,K)}) */

The projection of x1 = 0 onto the parameters gives True; hence, s′0 is π-
compatible and we perform i← i+ 1 and S ← S ∪ PostM(S).

Now, we have i = 1 and S = {s′0, s′1, s′2}, with

s′1 =
(
(Wait[u2]x2

; b→ Stop) interrupt[u1]x1
c→ P, 0 ≤ x1 ≤ u1 ∧ x2 = 0

)
and s′2 = (c→ P,True). The projection onto the parameters of the constraint
associated with both s′1 and s′2 gives True; hence, S is π-compatible and we
perform again i← i+ 1 and S ← S ∪ PostM(S).

Now, we have i = 2 and S = {s′0, s′1, s′2, s3}, with

s3 =
(
(Skip; b→ Stop) interrupt[u1]x1

c→ P, u2 ≤ x1 ≤ u1
)
.

The projection onto U of the constraint associated with s3 gives u2 ≤ u1, which
is π-incompatible. As a consequence, we negate this inequality, and add it toK,
which gives K = u2 > u1. Next, we perform

⋃i
j=0 PostjM({(V0, P0,K)}); this

gives a set of states similar to the last S computed above, except that s3 is now
absent from S, and all three states s′0, s′1, s′2 contain the inequality u2 > u1
in their associated constraint. The fixpoint is reached, and the intersection of
the constraints on the parameters is returned (viz., u2 > u1).

From Theorem 5 (see below), for all π′ |= u2 > u1, the trace set of Mex [π′]
is equivalent to the one of Mex [π], depicted in Figure 6 page 31.

It can also be shown that the application of IM to Mex and a reference
parameter valuation such that u2 ≤ u1 (e.g., u1 = 2 and u2 = 1) leads to the
result u2 ≤ u1.

5.3.3 Correctness

We show in Theorem 5 that IM preserves the equivalence of trace sets. We
first show that π |= K, where K is the result of IM . In the following, we
consider that M is a PSTCSP model, and π is a parameter valuation.

44 Étienne André et al.

Proposition 9 Let K = IM (M, π). Then π |= K.

Proof By construction, K is the result of intersecting all reachable states of S.
Since there are no π-incompatible states in S after the while loop, then K
contains only π-compatible inequalities. ut

We will show in Proposition 10 the equivalence of trace sets for M[π′] and
M(Kend), where π′ |= K and Kend is the value of constraint K before the end
of the algorithm IM , i.e., the conjunction of π-incompatible inequalities. The
following lemma will be used in the proof of Proposition 10.

Lemma 9 Let K = IM (M, π). Let Kend be the value of constraint K before
the end of the algorithm IM . Let π′ |= K. Then for all runs of M(Kend)
reaching (V, P,C), we have π′ |= C.

Proof Consider a run of M(Kend) reaching (V, P,C). We have (V, P,C) ∈
S, where S is the set of states at the end of the algorithm IM , since S =
Post∗M({(V0, P0,K)}). Moreover, we have K =

⋂
(V,P,C)∈S C↓U . Hence π′ |=

C↓U . Hence π′ |= C. ut

Proposition 10 Let K = IM (M, π). Let Kend be the value of constraint K be-
fore the end of the algorithm IM . Let π′ |= K. Then the trace sets of M(Kend)
and M[π′] are equivalent.

Proof 1. We first show that each run of M(Kend) is time-abstract equivalent
to a run in M[π′]. Consider a run of M(Kend) that ends in state (V, P,C).
From Lemma 9, π′ |= C. From Proposition 3, this run is time-abstract
equivalent to a run in M[π′].

2. We then show that each run of M[π′] is time-abstract equivalent to a run
in M(Kend). Since K ⊆ Kend and π′ |= K, then π′ |= Kend . Hence, from
Proposition 4, each run of M[π′] is time-abstract equivalent to a run in
M(Kend).

ut

Theorem 5 Let K = IM (M, π). Then:

1. π |= K, and
2. for all π′ ∈ K, the trace sets of M[π] and M[π′] are equivalent.

Proof Item 1: From Proposition 9.
Item 2: Since π |= K and π′ |= K, their trace sets are both equivalent to

the trace set of M(Kend), by Proposition 10. Hence their trace sets are
equivalent to each other.

ut

As a consequence, all linear-time properties valid for M[π] are preserved in
M[π′], for all π′ ∈ K. This is not only the case for properties expressed using
the Linear Temporal Logic (LTL) [Pnu77], but also for properties expressed
using the SE-LTL logic [CCO+04], which is a linear temporal logic constituted
by both atomic state propositions and events. Furthermore, since the programs
modifying the values of the variables are only attached to events (and do not
depend, e.g., on time), then the values of the variables are the same as well.

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 45

5.3.4 Termination

Similarly to the setting of PTA, termination of IM for PSTCSP is not guar-
anteed in the general case. Nevertheless, we give a criterion for termination.

First, consider an example of a PTA, depicted in Figure 9a, for which
IM (in the setting of PTA) does not terminate. Clocks can have any initial
value (viz., x1 ≥ 0 ∧ x2 ≥ 0). Consider the following reference valuation π:
{p1 = 1, p2 = 2}. Then no π-incompatible state is found, and an infinite
number of states is generated, with constraints of the form (i+ 1)∗p2 ≥ i∗p1,
with i growing without bound.

q1 q2

x1 ≤ p2 x2 ≤ p1

a
x1 := 0

x2 = p1
b

x2 := 0

(a) For PTA

P
.
= X1 ‖ X2 ‖ Q1

Q1
.
= a→ Q2

Q2
.
= b→ Q1

X1
.
= (a→ X1) within[p2]

X2
.
= (Wait[p1]; b→ X2) within[p1]

(b) For PSTCSP

Fig. 9: Counter-example showing the non-termination of IM

It is possible to translate this PTA to a PSTCSP model with no variables,
as given in Figure 9b. For this PSTCSP process, it can be shown that IM does
not terminate, also generating constraints of the form (i+1)∗p2 ≥ i∗p1, with
i infinitely growing.

Proposition 11 IM (M, π) may not terminate in the general case.

We now show that the non-recursivity of a model is a sufficient condi-
tion to ensure termination of IM . Note that this condition can be checked
syntactically.

Proposition 12 (Termination condition for IM) Let M be a PSTCSP
model and π a valuation of its parameters.

IM (M, π) terminates if M is not recursive.

Proof Since processes have no recursion, only a finite number of events can
occur. Furthermore, since our semantics considers symbolic time elapsing (a
construct Wait[u] will lead to only one successor state in the LTS), the LTS
will have a finite number of states.

Now, the inner loop of IM will necessarily terminate since, at one depth
(encoded by variable i), only a finite number of new inequalities can be gen-
erated (this is true even for recursive models). As for the outer loop, since the
LTS is finite, it has a bounded depth, and the algorithm will reach a given i
for which no state has any successor. ut

46 Étienne André et al.

Despite Proposition 11, termination of the inverse method actually occurs
for all our case studies (see Table 2), even those that do not meet the criterion
of Proposition 12. For instance, IM terminates for Example 5, although it
contains a recursive definition (because process P is defined using Q, and Q
itself defined using Q). On the other hand, a standard parametric reachability
analysis (using reachAll) would go into an infinite loop, because the recursion
is under the parameterized interrupt construct, where u1 can be arbitrarily
large when compared to u2. This result is of particular interest since parameter
synthesis is undecidable in general for PSTCSP. Exhibiting further syntactic
criteria for the termination of IM is the subject of future work (see Section 7).

5.3.5 Non-Completeness

Non-confluence. We first show that IM for PSTCSP is non-confluent. That
is, for a given PSTCSP model M and a given parameter valuation π, the result
of IM (M, π) is not necessarily always the same.

Proposition 13 (Non-confluence) There exist a PSTCSP model M and a
valuation π such that two executions of IM (M, π) may output two different
constraints.

Proof Consider the following PSTCSP model M = (∅, {u1, u2, u3}, ∅, P,True),
with P

.
= (((a→ P) within[u2]) within[u1]) within[u3]. Consider the follow-

ing reference valuation π = {u1 = 1, u2 = 2, u3 = 3}. Then, depending on the
nondeterministic selection of the inequality (“J”) to negate, the algorithm will
return, besides the two “trivial” inequalities u1 ≥ 0 ∧ u2 ≤ 0, either u3 > u1
or u3 > u2. Of course, these two constraints are incomparable. ut

Non-completeness. From the result of non-confluence, we infer that IM is
not complete; by non-completeness, we mean that there may exist parameter
valuations outside of the constraint output by IM that still have the same
trace set as the reference valuation π.

Corollary 1 (Completeness) There exist a PSTCSP model M, a valua-
tion π, and a valuation π′ such that

1. π′ 6|= IM (M, π), and
2. M[π] and M[π′] have the same trace sets.

Proof From Proposition 13, there exist a PSTCSP model M and a valuation
π such that two runs of IM (M, π) may output two different constraints. Let
K1 and K2 be two different constraints corresponding to a first and a second
run of IM , respectively. Note that, from the correctness of IM , for any π′ |=
K1∪K2, the trace set of M[π′] is always the same. Since K1 6= K2, then either
(1) K1 (K2 or (2) K2 (K1 or (3) K1 6(K2 and K2 6(K1, where K1 (K2

denotes that K1 is strictly included in K2, that is K1 ⊆ K2 but we do not
have that K1 = K2.

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 47

1. If K1 (K2 then there exists π′ |= K2 such as π′ 6|= K1. Hence we have
that π′ 6|= K1, and M[π] and M[π′] have the same trace sets.

2. The case K2 (K1 is dual.
3. If K1 6(K2 and K2 6(K1 then there exists π′ |= K2 such as π′ 6|= K1;

hence the reasoning is the same.
ut

Actually, non-completeness comes from the fact that the complete set of
parameter valuations having the same trace set as M[π] can be non-convex
(or even disjoint), whereas IM always outputs a convex constraint. Hence, in
general, there may be no parameter valuation such that IM (M, π) outputs the
complete set of parameter valuations having the same trace set as M[π].

Although IM is not complete, it remains interesting in practice. First,
depending on the final application, engineers may not be interested in all
possible parameter valuations guaranteeing a good behavior, but only in some
of them. Indeed, in the end, the real system will be implemented using one
parameter valuation only; what is important is to guarantee that the system
behaves well around the parameter valuation (in case of small variability of the
valuation in practice), but not necessarily to know all possible good parameter
valuations. Second, even when the resulting constraint is not the maximum
set of parameter valuations such that the system is time-abstract equivalent to
the system under π, it always outputs a dense set of parameter valuations (see
below). Hence, the resulting constraint gives a (possibly partial) measure of
the robustness of the system that can help to understand the system behavior
around the reference parameter valuation (see Section 5.3.6).

Density of the resulting constraint. We show here that IM always outputs a
constraint non-reduced to a point. A constraint reduced to a point means that
the only valuation in K is the reference valuation π itself. This cannot happen
in IM : indeed, the inequalities output come from the parametric reachability
of the state space, following the semantics of PSTCSP. No constant can sud-
denly “appear” in the inequalities, since the model is fully parametric (see our
assumption in footnote 4). Hence, in the worst case, the inequalities output
may be equalities of the form u1 = u2 = · · · = uM . Although this constraint is
not dense (it is not a volume), it is not reduced to a point: this corresponds to
an infinite (hyper)line in M dimensions passing by the origin and by π, and it
means that the reference valuation can scale.

Furthermore, we note that a sufficient (but non-necessary) condition for
IM to output a dense constraint K (non-reduced to a line) is that, in the
reference valuation, all constants be different. (That is, the reference value for
u1 must be different from that of u2, u3, and so on.) Indeed, by correctness
of IM , we have that π |= K, hence all inequalities in K are π-compatible.
Since all parameter valuations are different in π, one cannot have an equality
between two parameters in K, otherwise it would be π-incompatible.

In all our experiments (see Section 6), the set of parameter valuations
synthesized is always dense, that is, not reduced to a (hyper)line.

48 Étienne André et al.

5.3.6 Discussion

Advantages. The efficiency of IM in practice comes from the fact that only a
small portion of the state space is explored; branches are cut as soon as they
differ from π. Furthermore, in contrast to classical model checking techniques,
transitions are not stored in memory; only states are needed (see Algorithm 3).
Although IM is not guaranteed to output the weakest constraint (i.e., the
largest set of parameters), it often does (see Section 6.3); and it is always
guaranteed to output a set of parameter valuations in |U | dimensions, both
non-null and non-reduced to a point.

Moreover, the preservation of time-abstract traces is particularly interest-
ing for PSTCSP: much research in real-time systems concentrated in timed
temporal properties, some of them allowing the use of clocks within the for-
mulas. But because clocks are implicit in PSTCSP, it does not make much
sense to consider properties based on a relationship between clocks, because
they do not appear in the original model. As for properties based, e.g., on
deadlines (“event a must occur no later than n units of time”), they can be
easily encoded using an observer process. This process, in parallel with the
rest of the system, fires an event success or failure depending on whether the
deadline is met or not. Hence, this becomes a property on traces.

Last but not least, IM quantifies the robustness (see, e.g., [Mar11,BMS13])
of the system: it guarantees that, if the system is correct for π, it will also be
correct for valuations around π (viz., for all valuations satisfying IM (M, π)).
This gives a quantitative measure of the implementability of a timed system.
Indeed, when a system is implemented, the values appearing in the system may
not be exactly the same as the ones in the model that has been proven correct.
The inverse method allows the designer to formally guarantee the correctness
of the system not only for the reference valuation, but also for neighboring
valuations.

Full coverage of the parametric space. One may be interested in covering the
whole parametric space. This is unlikely to obtain from a single call to the in-
verse method: this would mean that IM returns True, hence that all parameter
valuations have exactly the same trace set. However, one can call several times
the inverse method on different reference valuations, so as to obtain coverage
of the whole parametric space with a set of tiles; tiles are convex constraints
in which the trace set is always the same (two different tiles have two different
trace sets in general). This is the purpose of the behavioral cartography defined
for PTA in [AF10]. It was shown that the behavioral cartography for PTA is
usually not able to cover the whole, dense parametric space using a finite
number of calls to the inverse method. However, it is possible to cover a set
of arbitrarily tight points (e.g., integers, or multiple of 0.1 or 0.01, etc.) using
a finite number of calls to IM . Although extending the behavioral cartogra-
phy to PSTCSP is the object of future work, we believe that these properties
would be the same for PSTCSP due to the close expressiveness between both
formalisms.

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 49

Optimized implementation. The inverse method for PSTCSP has been defined
in Algorithm 3 in an algorithmic form, so as to ease the proofs. However, it is
clearly not efficient that way, since the algorithm needs to start from the initial
state every time an incompatible inequality J is selected (line 7). It was shown
in [And10] that it is instead equivalent to just add the negated inequality ¬J
to all the reached states (in S). Note that no state will become inconsistent
(that is, with an unsatisfiable constraint) because ¬J is π-compatible by con-
struction (that is, π |= ¬J), and so are the constraints of all the reached states.
It was this optimized version that we implemented in PSyHCoS.

6 Implementation and Experiments

6.1 Implementation within PSyHCoS

This work has been implemented in a tool, PSyHCoS (standing for Parame-
ter SYnthesis for Hierarchical COncurrent Systems), which is a self-contained
framework to support composing, simulating and automatically verifying para-
metric hierarchical concurrent real-time systems [ALS+13]. PSyHCoS comes
with user friendly interfaces, a feature-rich model editor and an animated sim-
ulator.

The implementation of PSTCSP within PSyHCoS allows in particular the
use (within process definitions) of complex data structures, such as counters,
lists, sets, and more generally any user-defined structure and function.

One of the major issues in the synthesis of timing parameters is the han-
dling of constraints on both clocks and parameters. Operations on such con-
straints (intersection, variable elimination, satisfiability, etc.) are far more com-
plex than equivalent operations on constraints on clocks, because the latter
benefit from the efficient representation using DBMs. Unfortunately, most op-
timizations defined for DBMs do not apply to parametric timed constraints.
In our setting, each state is implemented in the form of a pair (process id, con-
straint id), both stored as strings. This is an implementation choice. Although
not everything is represented using strings in PSyHCoS, some identifiers use
strings. An advantage of the string representation is that the constraint equal-
ity test (when checking whether this new state has been met before) reduces
to string equality.

We present in the remainder of this section an optimization for state space
reduction, as well as a set of case studies.

6.2 State Space Reduction

In PSTCSP, some states considered as different are actually equivalent. Con-
sider the following two states:

s1 = (∅, Wait[u1]x1
deadline[u2]x2

, x1 ≤ x2 ≤ u2)

50 Étienne André et al.

Case reachAll reachAll+ IM IM +
study |U | |X| |S| |T | t |S| |T | t |S| |T | t |S| |T | t
Mex 2 2 8 14 0.008 8 14 0.006 3 5 0.004 3 5 0.005
M′

ex 2 2 8 14 0.008 8 14 0.006 8 14 0.016 8 14 0.008
Bridge 4 2 - - OoM - - OoM 2.8k 5.5k 253 2.8k 5.5k 455

Fischer4 2 4 - - OoM - - OoM 11k 31k 41.9 2k 5.8k 8.65
Fischer5 2 5 - - OoM - - OoM 133k 447k 1176 13k 44k 84.5
Fischer6 2 6 - - OoM - - OoM - - OoM 86k 342k 1144
Jobshop 8 2 14k 20k 21.0 12k 17k 18.1 1112 1902 17.1 877 1497 22.8
RCS2 4 4 52 64 0.038 52 64 0.059 52 64 0.091 52 64 0.147
RCS3 4 4 233 296 0.186 233 296 0.300 233 296 0.310 233 296 0.513
RCS4 4 4 1070 1374 1.74 1070 1374 1.58 1070 1374 1.40 1070 1374 2.38
RCS5 4 4 5.6k 7.2k 10.5 5.6k 7.2k 9.54 5.6k 7.2k 7.83 5.6k 7.2k 16.7
RCS6 4 4 34k 43k 91.7 34k 43k 54.5 34k 43k 60.4 34k 43k 91.3

TrAHV 6 6 7.2k 13k 14.2 7.2k 13k 15.8 227 321 0.555 227 321 0.655

Table 2: Application of algorithms for parameter synthesis using PSyHCoS

s2 = (∅, Wait[u1]x2
deadline[u2]x1

, x2 ≤ x1 ≤ u2)

It is obvious that s1 = s2, except the names of clocks. Merging these states
may lead to an exponential decrease of the number of states. Hence, we im-
plemented a technique of state normalization based on anonymization of the
clock: first, the clocks in the process are renamed so that the first one (from
left to right) is named x1, the second x2, and so on. Second, the variables
in the constraint are swapped accordingly. This technique solves this problem
at the cost of several nontrivial operations (lists and strings sorting). We de-
note by reachAll+ (resp. IM +) the version of reachAll (resp. IM) using this
technique.

6.3 Experiments

We give in Table 2 the example name, the number |U | of parameters, the max-
imum number |X| of clocks required,10 and, for each algorithm, the number
|S| (resp. |T |) of states (resp. transitions),11 and the computation time t on
a Windows XP desktop computer with an Intel Quad Core 2.4 GHz proces-
sor with 4 GiB memory. “OoM” in a cell denotes “out of memory”. Binaries,
sources, models and results are available in PSyHCoS’ Web page.12

Description of the models. Bridge is a classical bridge crossing problem for 4
persons within 17 minutes. Fischeri is the mutual exclusion protocol for i pro-

10 In theory, nothing guarantees that the maximum number of clocks is the same for
reachAll , reachAll+, IM and IM +. Nevertheless, since it is always the same for all experi-
ments, we factor it to save some space in the columns.
11 Recall that IM does not need to maintain transitions. Hence, the transition number for

IM and IM + is only an integer maintained within the program for statistics purpose.
12 http://lipn.univ-paris13.fr/~andre/software/PSyHCoS/

http://lipn.univ-paris13.fr/~andre/software/PSyHCoS/

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 51

cesses. Jobshop is a scheduling problem [FLMS12]. TrAHV is the train example
from [AHV93]. RCSi is a railway control system with i trains [YPD95].

When reachAll (resp. reachAll+) terminates, one can apply classical model
checking techniques: for instance, we checked that all models are deadlock-free
(except Jobshop which is in fact acyclic). When reachAll does not terminate
(Bridge, Fischer), IM is interesting because it synthesizes constraints even for
infinite symbolic state space case studies; and when reachAll terminates slowly
(TrAHV), IM may synthesize constraints quickly. The reference valuation used
for IM either is the standard valuation for the considered problem (Bridge,
Jobshop, RCSi, TrAHV) or has been computed in order to satisfy a well-known
constraint of good behavior (Fischeri).

Interpretation of the resulting constraint. First, the synthesized constraint by
IM solves the good parameter problem, and may even output all possible cor-
rect parameter valuations. For instance, the constraint synthesized for Fischer
(δ < γ) is known to be the weakest constraint guaranteeing mutual exclusion.
(We used δ = 3 and γ = 4 as reference valuation.)

Second, it always gives a quantitative measure of the system robustness, by
defining a safety domain around each parameter, guaranteeing that the system
will keep the same (time-abstract) behavior, as long as all parameters remain
within K. As opposed to a simple “ball” output by robust timed automata
techniques, this domain is a convex constraint in |U | dimensions.

Third, it happens that the constraint is True (e.g., RCSi for all i). In
this case, one can safely refine the model by removing all timing constructs:
Wait, deadline and within can be directly removed, whereas interrupt and
timeout can be replaced with non-deterministic choice. In that case, tech-
niques for untimed systems (usually more efficient) can be applied to the sys-
tem. Although this refinement might be checked for one particular parameter
valuation using refinement techniques designed for STCSP, we prove it here
for any possible parameter valuation; indeed, since the discrete behavior is
the same for any parameter valuation satisfying True, hence for any parame-
ter valuation, the timed constructs can be safely dropped.

Performance. The number of clocks is significantly smaller than equivalent
models for PTA for some case studies: for instance, the Bridge case study would
obviously require four clocks because there are four independent processes in
parallel. Similarly, the RCSi case study would require at least i clocks, one
for each train (plus some other clocks for the environment); however, in our
setting, the maximum number of clocks is constant, and equal to 4, for all i.
Beyond the fact that it has been shown that the fewer clocks, the more efficient
real-time model checking is [BY04], a smaller number of clocks implies a more
compact state space in our setting: constraints are represented using arrays and
matrices; the fewer clocks, the smaller the constraints are, the more compact
the state space is.

Table 2 shows that, when IM + indeed reduces the number of states, it
is much more efficient than IM , not only w.r.t. memory, but also w.r.t. time

52 Étienne André et al.

(e.g., Fischeri for all i). However, with no surprise, when no state duplication
occurs (e.g., Bridge), i.e., when the state space is not reduced using this tech-
nique, the computation time is longer. Although reducing this computation is
a subject of ongoing work, we do not consider it as a significant drawback: pa-
rameter synthesis’ largest limitations are usually non-termination and memory
saturation. Slower analyses for some case studies (up to +80% for Bridge) are
acceptable when others benefit from a dramatic memory (and time) reduction
(-90% for Fischer5), allowing parameter synthesis even when IM runs out of
memory (Fischer6).

The implementation of PSTCSP within PSyHCoS seems to be efficient:
some case studies (e.g., Fischer5, Fischer6, RCS6) handle several dozens or
hundreds of thousands symbolic states in a reasonable amount of time, which,
to the best of our knowledge, is unheard of for parametric timed frameworks:
We did not find publications mentioning tools for parameter synthesis handling
more than a few thousands states.

Comparison with Imitator. To the best of our knowledge, no other tool
performs parameter synthesis for timed extensions of CSP; as for other for-
malisms, fair comparisons would be difficult due to model translations: whereas
translations between PTA and Petri Nets are rather straightforward, their
translation into process algebra is much trickier. We actually tried to perform
a comparison with Imitator 2.5, the implementation of the inverse method
for PTA [AFKS12]. Unfortunately, this comparison (performed using the same
machine with Ubuntu 11.10 64 bits) did not give accurate results. Indeed, the
(manual) translation of models from PTSCP to PTA (and conversely) is diffi-
cult: in all cases, the tool for which the model was initially designed performs
much better than the tool that runs on a translated model. For example, Job-
shop (8.96 s) and TrAHV (0.097 s) are quicker on Imitator, for which they
were initially designed. Conversely, Imitator does not terminate for Fischeri
for all i because of the explicit representation of the clocks in PTA (constraints
of the form x2 ≥ j ∗ ε+ x1, with j infinitely growing, are generated), whereas
the implicit clocks in PSTCSP prevent this. We did not find a better way to
encode an equivalent PTA model of our Fischer example for PSTCSP. Other
models (Bridge, RCSi) are too large to be manually translated. An automated
efficient translation mechanism, that could ease such a comparison, is the sub-
ject of future work. Unfortunately, nothing guarantees that encoding complex
data structures from PSTCSP into PTA is practicable. And, in any case, some
features specific to PSTCSP, such as hierarchy and implicit clocks, would be
lost by the translation.

Application to scheduling problems. The case studies we considered include
protocols (Fischeri), common puzzles (Bridge) and train control systems (RCSi,
TrAHV). These models naturally fit with process algebras, as similar case
studies have been used in the literature in the setting of (timed or untimed)
process algebras. We also included one scheduling problem (more precisely a

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 53

jobshop problem) [FLMS12]. PSTCSP can indeed model parametric schedu-
lability problems, that consists in deciding whether there exists a parameter
valuation for which a given number of tasks can be executed on a set of proces-
sors within a given (constant) time. Recall that schedulability problems can be
modeled (among other formalisms) using timed automata or timed automata
extended with stopwatches [AM02,AAM06]. Stopwatches add the power of
stopping time, which is necessary to handle preemptive jobs, where a task
with a higher priority can (temporarily) stop another one, that will resume
once the higher priority task is completed. PSTCSP cannot express the power
of stopping time, and hence is not able (in general) to model task preemp-
tion; however, PSTCSP can model non-preemptive schedulability problems.
Indeed, these problems can be expressed and solved using parametric timed
automata without strict constraints (see, e.g., [FLMS12]), that have a smaller
expressiveness than PSTCSP (see Section 4.3).

7 Conclusion and Future Work

We introduced here Parametric Stateful Timed CSP, an intuitive formalism
for reasoning parametrically in hierarchical real-time concurrent systems with
shared variables and complex data structures. A simple semi-algorithm reachAll
computing the set of reachable states is not guaranteed to terminate, as we
showed that parameter synthesis is undecidable. We then adapted the inverse
method IM , which synthesizes a set of parameters around a reference pa-
rameter valuation, guaranteeing the same time abstract behavior (in term of
traces), and providing the system with a measure of robustness. IM behaves
well in practice, and we give a simple sufficient termination condition. We also
introduce an algorithm 3VPsynthesis synthesizing a set of parameter valua-
tions guaranteeing that at least one good state and no bad state is reachable
according to a 3-value property. Our implementation within PSyHCoS leads to
efficient parameter synthesis, and handles more than 100,000 reachable sym-
bolic states in a very reasonable amount of time.

Future work. Among the theoretical questions is the decidability of the mem-
bership problem for non-regular PSTCSP. This problem is actually not related
to parameter synthesis, but rather to the existence or not of a finite abstrac-
tion of the state space of a non-regular STCSP model; this could be solved
using techniques for infinite-state systems.

We wish to improve the state space representation, following the lines of
the optimization of Section 6.2, and develop further state space reduction
techniques, such as the merging technique developed in [AFS13].

Beyond the algorithms developed in Section 5, we are interested in further
algorithms for parameter synthesis. An interesting problem is the existence
of (at least) one parameter valuation for which at least one unbounded run
is guaranteed to occur (and that we could name “EG-emptiness” problem).
Other synthesis algorithms should also be developed or adapted, for instance

54 Étienne André et al.

following the lines of algorithms for PTA [KP12,JLR13]. Furthermore, para-
metric refinement checking is the subject of future work.

It is also interesting to note that, although IM does not terminate in the
general case, it does for all of our case studies, even when they do not meet
the termination criterion of Proposition 12. As a consequence, it would be of
interest to exhibit a syntactical criterion that ensures termination in PSTCSP.

Improving our implementation PSyHCoS, and in particular implementing
Algorithm 3VPsynthesis, is also in our agenda.

Finally, although PSTCSP provides the designer with a rather high-level
syntax, an interesting future work will be to define higher-level patterns dedi-
cated to specific applications such as scheduling. For example, defining a set of
patterns modeling scheduling processes, schedulers with or without preemp-
tion, is of interest so as to allow designers to model a system by just assembling
predefined PSTCSP language blocks, in the line of [KMH01] (for models) or
[And13] (for properties).

Acknowledgments

We are grateful to the anonymous reviewers for their very constructive com-
ments, and to Zhu Huiquan for solving several implementation issues in our
model checking tool PSyHCoS. This manuscript also benefited from discus-
sions with Didier Lime. We thank Emmanuelle Encrenaz and Laurent Fribourg
for discussions regarding the comparison between Imitator and HyTech.

Yang Liu is supported by ”Formal Verification on Cloud” project under
Grant No: M4081155.020 and ”Verification of Security Protocol Implemen-
tations” project under Grant No: M4080996.020. Jun Sun is supported by
research grant “IDD11100102 / IDG31100105” from Singapore University of
Technology and Design. Jin-Song Dong is supported by MOE T2 Project “Ad-
vanced Model Checking Systems”. All four authors are supported by STIC
Asie project “CATS (Compositional Analysis of Timed Systems)”. Étienne
André is partially supported by the ANR national research program PACS
(ANR-2014).

References

AAM06. Yasmina Adbeddäım, Eugene Asarin, and Oded Maler. Scheduling with timed
automata. Theoretical Computer Science, 354(2):272–300, 2006. 53

ABBL98. Luca Aceto, Patricia Bouyer, Augusto Burgueño, and Kim Guldstrand Larsen.
The power of reachability testing for timed automata. In Vikraman Arvind and
Ramaswamy Ramanujam, editors, FSTTCS, volume 1530 of Lecture Notes in
Computer Science, pages 245–256. Springer, 1998. 34

ABL98. Luca Aceto, Augusto Burgueño, and Kim G. Larsen. Model checking via reach-
ability testing for timed automata. In Bernhard Steffen, editor, TACAS, volume
1384 of Lecture Notes in Computer Science, pages 263–280. Springer, 1998. 34

ABS01. Aurore Annichini, Ahmed Bouajjani, and Mihaela Sighireanu. TReX: A tool for
reachability analysis of complex systems. In CAV, volume 2102 of Lecture Notes
in Computer Science, pages 368–372. Springer, 2001. 3

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 55

ACEF09. Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and Laurent Fribourg.
An inverse method for parametric timed automata. International Journal of
Foundations of Computer Science, 20(5):819–836, 2009. 3, 5, 17, 27, 41

AD94. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Com-
puter Science, 126(2):183–235, 1994. 2, 19, 20

AF10. É. André and L. Fribourg. Behavioral cartography of timed automata. In An-
tońın Kučera and Igor Potapov, editors, RP, volume 6227 of Lecture Notes in
Computer Science, pages 76–90. Springer, 2010. 48

AFKS12. Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat. IMITA-
TOR 2.5: A tool for analyzing robustness in scheduling problems. In FM, volume
7436 of Lecture Notes in Computer Science, pages 33–36. Springer, 2012. 2, 52

AFS13. Étienne André, Laurent Fribourg, and Romain Soulat. Merge and conquer:
State merging in parametric timed automata. In Dang-Van Hung and Mizuhito
Ogawa, editors, ATVA, volume 8172 of Lecture Notes in Computer Science,
pages 381–396. Springer, 2013. 53

AHJR12. S. Akshay, Löıc Hélouët, Claude Jard, and Pierre-Alain Reynier. Robustness of
time Petri nets under guard enlargement. In RP, volume 7550 of Lecture Notes
in Computer Science, pages 92–106. Springer, 2012. 4

AHV93. Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-time
reasoning. In STOC, pages 592–601. ACM, 1993. 2, 19, 20, 21, 22, 23, 24, 51

ALS+13. Étienne André, Yang Liu, Jun Sun, Jin Song Dong, and Shang-Wei Lin.
PSyHCoS: Parameter synthesis for hierarchical concurrent real-time systems.
In Natasha Sharygina and Helmut Veith, editors, CAV, volume 8044 of Lecture
Notes in Computer Science, pages 984–989. Springer, July 2013. 49

ALSD12. Étienne André, Yang Liu, Jun Sun, and Jin-Song Dong. Parameter synthesis
for hierarchical concurrent real-time systems. In Isabelle Perseil, Marc Pouzet,
and Karin Breitman, editors, ICECCS, pages 253–262. IEEE Computer Society,
2012. 5

AM02. Yasmina Adbeddäım and Oded Maler. Preemptive job-shop scheduling using
stopwatch automata. In Joost-Pieter Katoen and Perdita Stevens, editors,
TACAS, volume 2280 of Lecture Notes in Computer Science, pages 113–126.
Springer-Verlag, 2002. 53

AM04. Rajeev Alur and Parthasarathy Madhusudan. Decision problems for timed au-
tomata: A survey. In Marco Bernardo and Flavio Corradini, editors, SFM-RT,
volume 3185 of Lecture Notes in Computer Science, pages 1–24. Springer-Verlag,
2004. 19

AMP98. Eugene Asarin, Oded Maler, and Amir Pnueli. On discretization of delays in
timed automata and digital circuits. In CONCUR, volume 1466 of Lecture Notes
in Computer Science, pages 470–484. Springer, 1998. 19

And10. Étienne André. An Inverse Method for the Synthesis of Timing Parameters
in Concurrent Systems. Ph.d. thesis, Laboratoire Spécification et Vérification,
ENS Cachan, France, December 2010. 49

And13. Étienne André. Observer patterns for real-time systems. In Yang Liu and
Andrew Martin, editors, ICECCS, pages 125–134. IEEE Computer Society, 2013.
34, 54

APP13. Étienne André, Laure Petrucci, and Giuseppe Pellegrino. Precise robustness
analysis of time Petri nets with inhibitor arcs. In Vı́ctor Braberman and Lau-
rent Fribourg, editors, FORMATS, volume 8053 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2013. 4

AS13. Étienne André and Romain Soulat. The Inverse Method. FOCUS Series in
Computer Engineering and Information Technology. ISTE Ltd and John Wiley
& Sons Inc., 2013. 176 pages. 3, 5, 41

BGP96. Béatrice Bérard, Paul Gastin, and Antoine Petit. On the power of non-observable
actions in timed automata. In STACS, volume 1046 of Lecture Notes in Com-
puter Science, pages 257–268. Springer, 1996. 19

BHZ08. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward
a complete set of numerical abstractions for the analysis and verification of
hardware and software systems. Science of Computer Programming, 72(1–2):3–
21, 2008. 30

56 Étienne André et al.

BK08. Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT
Press, 2008. 16

BL09. Laura Bozzelli and Salvatore La Torre. Decision problems for lower/upper bound
parametric timed automata. Formal Methods in System Design, 35(2):121–151,
2009. 3

BLM+11. Patricia Bouyer, Kim G. Larsen, Nicolas Markey, Ocan Sankur, and Claus R.
Thrane. Timed automata can always be made implementable. In Joost-Pieter
Katoen and Barbara König, editors, CONCUR, volume 6901 of Lecture Notes
in Computer Science, pages 76–91. Springer, 2011. 4

BLR05. Gerd Behrmann, Kim Guldstrand Larsen, and Jacob Illum Rasmussen. Beyond
liveness: Efficient parameter synthesis for time bounded liveness. In FORMATS,
volume 3829 of Lecture Notes in Computer Science, pages 81–94. Springer, 2005.
3

BMS12. Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robust reachability in
timed automata: A game-based approach. In Artur Czumaj, Kurt Mehlhorn,
Andrew M. Pitts, and Roger Wattenhofer, editors, ICALP 2012, volume 7392
of Lecture Notes in Computer Science, pages 128–140. Springer, 2012. 4

BMS13. Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robustness in timed au-
tomata. In Parosh Aziz Abdulla and Igor Potapov, editors, RP, volume 8169
of Lecture Notes in Computer Science, pages 1–18. Springer, September 2013.
Invited paper. 4, 48

BPDG98. Batrice Bérard, Antoine Petit, Volker Diekert, and Paul Gastin. Characterization
of the expressive power of silent transitions in timed automata. Fundamenta
Informaticae, 36:145–182, 1998. 19

BY04. Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and
tools. In Lectures on Concurrency and Petri Nets, volume 3098 of Lecture Notes
in Computer Science, pages 87–124. Springer, 2004. 51

CC07. Robert Clarisó and Jordi Cortadella. The octahedron abstract domain. Science
of Computer Programming, 64(1):115–139, 2007. 3

CCO+04. Sagar Chaki, Edmund M. Clarke, Joël Ouaknine, Natasha Sharygina, and Nis-
hant Sinha. State/event-based software model checking. In iFM, volume 2999
of Lecture Notes in Computer Science, pages 128–147. Springer, 2004. 44

CEFX09. Rémy Chevallier, Emmanuelle Encrenaz-Tiphène, Laurent Fribourg, and Wei-
wen Xu. Timed verification of the generic architecture of a memory circuit using
parametric timed automata. Formal Methods in System Design, 34(1):59–81,
2009. 2

CGJ+00. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In CAV, pages 154–169. Springer-Verlag, 2000.
3

CS01. Aurore Collomb-Annichini and Mihaela Sighireanu. Parameterized reachability
analysis of the IEEE 1394 root contention protocol using TReX. In RT-TOOLS,
2001. 3

Dav93. Jim Davies. Specification and Proof in Real-Time CSP. Cambridge University
Press, 1993. 11, 18

DHQ+08. Jin Song Dong, Ping Hao, Shengchao Qin, Jun Sun, and Wang Yi. Timed
automata patterns. IEEE Transactions on Software Engineering, 34(6):844–
859, 2008. 20

DKRT97. Pedro R. D’Argenio, Joost-Pieter Katoen, Theo C. Ruys, and Jan Tretmans.
The bounded retransmission protocol must be on time! In TACAS, volume 1217
of Lecture Notes in Computer Science, pages 416–431. Springer, 1997. 3

EF08. Emmanuelle Encrenaz and Laurent Fribourg. Time separation of events: An
inverse method. In LIX, volume 209 of Electronic Notes in Theoretical Computer
Science, pages 135–148, Palaiseau, France, 2008. Elsevier Science Publishers. 41

FHW99. Colin J. Fidge, Ian J. Hayes, and Geoffrey Watson. The deadline command. IEE
Proceedings Software, 146(2):104–111, 1999. 11

FLMS12. Laurent Fribourg, David Lesens, Pierre Moro, and Romain Soulat. Robustness
analysis for scheduling problems using the inverse method. In TIME, pages
73–80. IEEE Computer Society Press, 2012. 51, 53

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 57

HHWT97. T. A. Henzinger, P. H. Ho, and H. Wong-Toi. HyTech: A model checker for
hybrid systems. Software Tools for Technology Transfer, 1:460–463, 1997. 2

HNSY94. Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Sym-
bolic model checking for real-time systems. Information and Computation,
111(2):193–244, 1994. 2, 19

HO02. Jochen Hoenicke and Ernst-Rüdiger Olderog. Combining specification tech-
niques for processes, data and time. In iFM, volume 2335 of Lecture Notes in
Computer Science, pages 245–266. Springer, 2002. 4

Hoa85. C.A.R. Hoare. Communicating Sequential Processes. International Series in
Computer Science. Prentice-Hall, 1985. 4, 10, 20

HRSV02. Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager. Linear
parametric model checking of timed automata. Journal of Logic and Algebraic
Programming, 52-53:183–220, 2002. 3, 26, 27, 28, 29, 30

HWT95. Thomas A. Henzinger and Howard Wong-Toi. Using HyTech to synthesize con-
trol parameters for a steam boiler. In Formal Methods for Industrial Appli-
cations, volume 1165 of Lecture Notes in Computer Science, pages 265–282.
Springer, 1995. 2

JLR13. Aleksandra Jovanovic, Didier Lime, and Olivier H. Roux. Integer parameter
synthesis for timed automata. In Nir Piterman and Scott A. Smolka, editors,
TACAS, volume 7795 of Lecture Notes in Computer Science, pages 401–415.
Springer, 2013. 3, 21, 24, 33, 54

JR11. Rémi Jaubert and Pierre-Alain Reynier. Quantitative robustness analysis of flat
timed automata. In Martin Hofmann, editor, FoSSaCS, volume 6604 of Lecture
Notes in Computer Science, pages 229–244. Springer-Verlag, 2011. 4

KLP+98. Hee-Hwan Kwak, Insup Lee, Anna Philippou, Jin-Young Choi, and Oleg Sokol-
sky. Symbolic schedulability analysis of real-time systems. In IEEE RTSS, pages
409–418. IEEE Computer Society, 1998. 4

KLS99. Hee-Hwan Kwak, Insup Lee, and Oleg Sokolsky. Parametric approach to the
specification and analysis of real-time system designs based on ACSR-VP. Elec-
tronic Notes in Theoretical Computer Science, 25:38–49, 1999. 4

KMH01. Lina Khatib, Nicola Muscettola, and Klaus Havelund. Mapping temporal plan-
ning constraints into timed automata. In TIME, pages 21–27. IEEE Computer
Society, 2001. 54

KP12. Michal Knapik and Wojciech Penczek. Bounded model checking for parametric
timed automata. Transactions on Petri Nets and Other Models of Concurrency,
5:141–159, 2012. 3, 54

LPY97. Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell.
International Journal on Software Tools for Technology Transfer, 1(1-2):134–
152, 1997. 2, 20

LRST09. D. Lime, O. H. Roux, C. Seidner, and L.-M. Traonouez. Romeo: A parametric
model-checker for Petri nets with stopwatches. In Stefan Kowalewski and Anna
Philippou, editors, TACAS, volume 5505 of Lecture Notes in Computer Science,
pages 54–57. Springer, March 2009. 3

Mar11. Nicolas Markey. Robustness in real-time systems. In SIES, pages 28–34. IEEE
Computer Society Press, 2011. 4, 48

MD99. Brendan P. Mahony and Jin Song Dong. Overview of the semantics of TCOZ.
In iFM, pages 66–85. Springer, 1999. 4

Min67. Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1967. 21

OW03a. Joël Ouaknine and James Worrell. Revisiting digitization, robustness, and de-
cidability for timed automata. In LICS, pages 198–207. IEEE Computer Society,
2003. 19

OW03b. Joël Ouaknine and James Worrell. Timed CSP = closed timed ε-automata.
Nordic Journal of Computing, 10(2):99–133, 2003. 18, 19

Pnu77. Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE
Computer Society, 1977. 44

QDC03. Shengchao Qin, Jin Song Dong, and Wei-Ngan Chin. A semantic foundation for
TCOZ in unifying theories of programming. In FME, volume 2805 of Lecture
Notes in Computer Science, pages 321–340. Springer, 2003. 11

58 Étienne André et al.

Ros01. A. W. Roscoe. Compiling shared variable programs into CSP. In PROGRESS
Workshop, 2001. 20

San13. Ocan Sankur. Shrinktech: A tool for the robustness analysis of timed automata.
In Natasha Sharygina and Helmut Veith, editors, CAV, volume 8044 of Lecture
Notes in Computer Science, pages 1006–1012. Springer, July 2013. 4

Sch86. Alexander Schrijver. Theory of linear and integer programming. John Wiley
and Sons, 1986. 7

Sch00. Steve Schneider. Concurrent and Real-time Systems. John Wiley and Sons,
2000. 4

SLD+13. Jun Sun, Yang Liu, Jin Song Dong, Yan Liu, Ling Shi, and Étienne André.
Modeling and verifying hierarchical real-time systems using Stateful Timed CSP.
ACM Transactions on Software Engineering and Methodology, 22(1):3.1–3.29,
feb 2013. 4, 5, 6, 11, 13, 14, 17, 19, 20, 21, 25, 26, 28, 34

SLDC09. Jun Sun, Yang Liu, Jin Song Dong, and Chunqing Chen. Integrating specifica-
tion and programs for system modeling and verification. In Wei-Ngan Chin and
Shengchao Qin, editors, TASE, pages 127–135. IEEE Computer Society, 2009.
4

SLDP09. Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. PAT: Towards flexible
verification under fairness. In CAV, volume 5643 of Lecture Notes in Computer
Science, pages 709–714. Springer, 2009. 4

TLR09. Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux. Parametric model-
checking of stopwatch Petri nets. Journal of Universal Computer Science,
15(17):3273–3304, 2009. 3, 26, 29

Tra12. Louis-Marie Traonouez. A parametric counterexample refinement approach for
robust timed specifications. In FIT, volume 87 of Electronic Proceedings in
Theoretical Computer Science, pages 17–33, 2012. 4

YKM02. Tomohiro Yoneda, Tomoya Kitai, and Chris J. Myers. Automatic derivation of
timing constraints by failure analysis. In CAV, volume 2404 of Lecture Notes in
Computer Science, pages 195–208. Springer, 2002. 3

YPD95. Wang Yi, Paul Pettersson, and Mats Daniels. Automatic verification of real-
time communicating systems by constraint-solving. In FORTE, volume 6 of
IFIP Conference Proceedings, pages 243–258. Chapman & Hall, 1995. 51

Parameter Synthesis for Hierarchical Concurrent Real-Time Systems? 59

A Firing Rules for PSTCSP

Given a program program and a valuation V , the valuation obtained by executing program
with V is denoted as program(V). Let active(V, P) be the set of enabled events given P
and V , i.e., the set of events that can be fired at the current state (and which lead to states
with satisfiable constraints). We give below all firing rules for PSTCSP.

(V, Skip, C)
X
 (V, Stop, C↑)

(aki)

(V, e→ P,C)
e
 (V, P,C↑)

(aev)

(V, a{program} → P,C)
a
 (program(V), P, C↑)

(aac)

V � b

(V, if b then {P} else {Q}, C)
τ
 (V, P,C↑)

(co2)

V 6� b

(V, if b then {P} else {Q}, C)
τ
 (V,Q,C↑)

(co3)

(V, P,C)
e
 (V ′, P ′, C′)

(V, P � Q,C)
e
 (V ′, P ′, C′ ∧ idle(Q))

(aex1)

(V,Q,C)
e
 (V ′, Q′, C)

(V, P � Q,C)
e
 (V ′, Q′, C′ ∧ idle(P))

(aex2)

(V, P,C)
a
 (V ′, Q′, C′)

(V, P \E,C)
a
 (V ′, Q′, C′)

(ahi1)

(V, P,C)
a
 (V ′, Q′, C′) , active(V, P,C) ∩ E 6= ∅ , a /∈ E

(V, P \E,C)
a
 (V ′, Q′, C′ ∧ C)

(ahi2)

(V, P,C)
a
 (V ′, Q′, C′), active(V, P,C) ∩ E 6= ∅ , a ∈ E

(V, P \E,C)
τ
 (V ′, Q′, C′ ∧ C)

(ahi3)

(V, P,C)
a
 (V ′, P ′, C′) , X /∈ active(V, P,C)

(V, P ;Q,C)
a
 (V ′, P ′;Q,C′)

(ase1)

(V, P,C)
X
 (V ′, P ′, C′)

(V, P ;Q,C)
τ
 (V,Q,C ∧ C′)

(ase2)

(V, P,C)
a
 (V ′, P ′, C′) , a /∈ E

(V, P JEK Q,C)
a
 (V ′, P ′ JEK Q,C′ ∧ idle(Q))

(apa1)

(V,Q,C)
a
 (V ′, Q′, C′) , a /∈ E

(V, P JEK Q,C)
a
 (V ′, P JEK Q′, C′ ∧ idle(P))

(apa2)

60 Étienne André et al.

(V, P,C)
e
 (V, P ′, C′) , (V,Q,C)

e
 (V,Q′, C′′) , e ∈ E

(V, P JEK Q,C)
e
 (V, P ′ JEK Q′, C′ ∧ C′′)

(apa3)

(V,Q,C)
a
 (V ′, Q′, C′) , P

.
= Q

(V, P,C)
a
 (V ′, Q′, C′)

(ade)

(V, Wait[u]x, C)
τ
 (V, Skip, C↑ ∧ x = u)

(await)

(V, P,C)
τ
 (V ′, P ′, C′)

(V, P timeout[u]x Q,C)
τ
 (V ′, P ′ timeout[u]x Q,C′ ∧ x ≤ u)

(ato1)

(V, P,C)
e
 (V ′, P ′, C′)

(V, P timeout[u]x Q,C)
e
 (V ′, P ′, C′ ∧ x ≤ u)

(ato2)

(V, P timeout[u]x Q,C)
τ
 (V,Q,C↑ ∧ x = u ∧ idle(P))

(ato3)

(V, P,C)
a
 (V ′, P ′, C′)

(V, P interrupt[u]x Q,C)
a
 (V ′, P ′ interrupt[u]x Q,C′ ∧ x ≤ u)

(ait1)

(V, P interrupt[u]x Q,C)
τ
 (V,Q,C↑ ∧ x = u ∧ idle(P))

(ait2)

(V, P,C)
τ
 (V ′, P ′, C′)

(V, P within[u]x, C)
τ
 (V ′, P ′ within[u]x, C′ ∧ x ≤ u)

(awi1)

(V, P,C)
e
 (V ′, P ′, C′)

(V, P within[u]x, C)
e
 (V ′, P ′, C′ ∧ x ≤ u)

(awi2)

(V, P,C)
a
 (V ′, P ′, C′) , a 6= X

(V, P deadline[u]x, C)
a
 (V ′, P ′ deadline[u]x, C′ ∧ x ≤ u)

(adl1)

(V, P,C)
X
 (V ′, P ′, C′)

(V, P deadline[u]x, C)
X
 (V ′, P ′, C′ ∧ x ≤ u)

(adl2)

	Introduction
	Preliminaries
	Syntax and Semantics of PSTCSP
	General Results for PSTCSP
	Parameter Synthesis
	Implementation and Experiments
	Conclusion and Future Work
	Firing Rules for PSTCSP

