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Context and Related Work

The Good Parameters Problem

Context: Verification of Timed Systems

Good parameters problem
I Synthesize a set of values of the timing parameters guaranteeing that

the system behaves well (e.g., avoids any bad state)

Classical approaches
I Computation of all the reachable states, and intersection with the set

of bad states [Alur et al., 1995]
I Approach based on CEGAR (Counter-Example Guided Abstraction

Refinement [Clarke et al., 2000, Frehse et al., 2008])

New approach: method of behavioral cartography
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A Motivating Example

An Example: Flip-Flop Circuit (1/2)

Schematics [Clarisó and Cortadella, 2007]

D

CK

Q

TSetup THold

TLO THI

TCK→Q

I 4 elements: G1, G2, G3, G4 with internal signals g1 to g4

I 2 input signals (D and CK ), 1 output signal (Q)

Timing parameters
I Traversal delays of the gates by the electric current

F Parametric interval; example for G1: [δ−1 , δ
+
1 ]

I Durations of low (TLO) and high (THI ) levels of CK

I Stabilization time of D: TSetup, THold
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A Motivating Example

An Example: Flip-Flop Circuit (2/2)

We suppose given a valuation π0 of the parameters (called point)
THI = 24 TLO = 15 TSetup = 10 THold = 17

δ−1 = 7 δ+
1 = 7 δ−2 = 5 δ+

2 = 6

δ−3 = 8 δ+
3 = 10 δ−4 = 3 δ+

4 = 7

I This point guarantees a good behavior:
F Q↑ occurs before CK↓

We are looking for a set of points (containing π0) for which the
system behaves well
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A Motivating Example

General Problems
We consider a system modeled by a parametric timed automaton.

The good parameters problem:

I “Given a bounded parameter domain V0, find a set of points of good
behavior in V0 (ideally the largest one)”

V0

This problem reduces to the inverse problem:
I “Given a reference point π0, find other points around π0 of same

behavior”

·π0
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Étienne ANDRÉ (LSV) Behavioral Cartography of PTAs 28th August 2010 6 / 45



The Modeling Framework of Parametric Timed Automata

Outline

1 The Modeling Framework of Parametric Timed Automata

2 The Inverse Method
The General Idea
Application to the Example
Discussion

3 A Cartography Method
The Behavioral Cartography Algorithm
Application to the Example

4 Extension to Probabilistic Systems

5 Implementation and Case Studies

6 Final Remarks
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The Modeling Framework of Parametric Timed Automata

Parametric

Timed Automaton

(PTA)

Finite state automaton (sets of locations)

and actions)

I A set X of clocks (i.e., real-valued variables evolving linearly at the
same rate)

I A set P of M parameters (i.e., unknown constants), used in guards and
invariants

Features

I Location invariant: property to be verified by the clocks to stay at a
location

I Transition guard: property to be verified by the clocks to enable a
transition

I Clock reset: clocks can be set to 0 at each transition
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The Modeling Framework of Parametric Timed Automata

Parametric Timed Automaton (PTA)

Finite state automaton (sets of locations and actions) augmented with

I A set X of clocks (i.e., real-valued variables evolving linearly at the
same rate)

I A set P of M parameters (i.e., unknown constants), used in guards and
invariants

Features

I Location invariant: property to be verified by the clocks and the
parameters to stay at a location

I Transition guard: property to be verified by the clocks and the
parameters to enable a transition

I Clock reset: clocks can be set to 0 at each transition

1x ≤ p13 1x ≤ p34

x ≥ p22
a

x := 0
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The Modeling Framework of Parametric Timed Automata

States and Traces

Given a PTA A and a point π, we denote by A[π] the
(non-parametric) timed automaton where all parameters are
instantiated by π

(Parametric) state of a PTA: couple (q,C ), where

I q is a location,
I C is a constraint (conjunction of inequalities) over the parameters

Trace over a PTA: finite alternating sequence of locations and actions

D↑ g↓1 CK↑ g↓3 Q↑ D↓ CK↓
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Étienne ANDRÉ (LSV) Behavioral Cartography of PTAs 28th August 2010 9 / 45



The Modeling Framework of Parametric Timed Automata

States and Traces

Given a PTA A and a point π, we denote by A[π] the
(non-parametric) timed automaton where all parameters are
instantiated by π

(Parametric) state of a PTA: couple (q,C ), where

I q is a location,
I C is a constraint (conjunction of inequalities) over the parameters

Trace over a PTA: finite alternating sequence of locations and actions

D↑ g↓1 CK↑ g↓3 Q↑ D↓ CK↓
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The Modeling Framework of Parametric Timed Automata

Good and Bad Traces w.r.t. a Given Property

A trace is said to be a good trace if it verifies a given property
I Example of good trace for the flip-flop (Q↑ occurs before CK↓)

D↑ g↓1 CK↑ g↓3 Q↑ D↓ CK↓

I Example of bad trace for the flip-flop

D↑ g↓1 CK↑ g↓3 D↓ CK↓ Q↑
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The Inverse Method The General Idea

The Inverse Problem (1/2)

Inverse Method

PTA A

Reference point π0

Constraint K0 on
the parameters
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The Inverse Method The General Idea

The Inverse Problem (2/2)

Input
I A PTA A
I A reference valuation π0 of all the parameters of A

F Exemplifying a good behavior
(all traces of A[π0] correspond to good behaviors)

Output: tile K0
I Convex constraint on the parameters such that

F π0 |= K0

F For all point π |= K0, A[π] and A[π0] have the same trace sets

·π0
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The Inverse Method The General Idea

The Inverse Method: General Idea [André et al., 2009a]

Start with K0 = True

REPEAT

1 Compute the set S of reachable parametric states under K0

2 Refine K0 by removing a π0-incompatible state from S
I Select a π0-incompatible state (q,C ) within S (i.e., π0 6|= C )
I Select a π0-incompatible inequality J within C (i.e., π0 6|= J)
I Add ¬J to K0

UNTIL no more π0-incompatible state in S
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The Inverse Method Application to the Example

Application to the Flip-Flop Circuit (1/2)

Input: π0

THI = 24 TLO = 15 TSetup = 10 THold = 17

δ−1 = 7 δ+
1 = 7 δ−2 = 5 δ+

2 = 6

δ−3 = 8 δ+
3 = 10 δ−4 = 3 δ+

4 = 7

Output: K0
TSetup >δ

+
1 ∧ δ+

3 + δ+
4 ≥THold

∧ THold >δ
+
3 ∧ δ+

3 + δ+
4 <THI

∧ TSetup ≤TLO ∧ δ−3 + δ−4 ≤THold

∧ δ−1 > 0

I Corresponding trace set

D↑ G↓1 CK↑ G↓3 D↓
Q↑

Q↑

D↓

CK↓

CK↓
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The Inverse Method Application to the Example

Application to the Flip-Flop Circuit (2/2)
π0 :
δ−1 = 7 δ+

1 = 7 THI = 24

δ−2 = 5 δ+
2 = 6 TLO = 15

δ−3 = 8 δ+
3 = 10 TSetup = 10

δ−4 = 3 δ+
4 = 7 THold = 17

K0 = True

TSetup ≤TLO
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Étienne ANDRÉ (LSV) Behavioral Cartography of PTAs 28th August 2010 16 / 45



The Inverse Method Application to the Example

Application to the Flip-Flop Circuit (2/2)
π0 :
δ−1 = 7 δ+

1 = 7 THI = 24

δ−2 = 5 δ+
2 = 6 TLO = 15

δ−3 = 8 δ+
3 = 10 TSetup = 10

δ−4 = 3 δ+
4 = 7 THold = 17

K0 =
TSetup >δ

+
1

D↑

TSetup ≤TLO

TSetup ≤TLO

g↓1

TSetup ≤TLO

∧ δ−1 ≤TSetup

CK↑

TSetup ≤TLO

∧TSetup ≤ δ+
1
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Étienne ANDRÉ (LSV) Behavioral Cartography of PTAs 28th August 2010 16 / 45



The Inverse Method Application to the Example

Application to the Flip-Flop Circuit (2/2)
π0 :
δ−1 = 7 δ+

1 = 7 THI = 24

δ−2 = 5 δ+
2 = 6 TLO = 15

δ−3 = 8 δ+
3 = 10 TSetup = 10

δ−4 = 3 δ+
4 = 7 THold = 17

K0 =
TSetup >δ

+
1

D↑

TSetup ≤TLO

∧TSetup >δ
+
1

TSetup ≤TLO

∧TSetup >δ
+
1

g↓1

TSetup ≤TLO

∧TSetup >δ
+
1
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The Inverse Method Application to the Example

Application to the Flip-Flop Circuit (2/2)
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+
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+
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D↑

TSetup ≤TLO

∧TSetup >δ
+
1

∧ THold >δ
+
3

∧ . . .

TSetup ≤TLO

∧TSetup >δ
+
1

∧ THold >δ
+
3

∧ . . .

g↓1

TSetup ≤TLO

∧TSetup >δ
+
1

∧ THold >δ
+
3

∧ . . .
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+
1
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+
3

∧ . . .

g↓3

TSetup ≤TLO

∧TSetup >δ
+
1

∧ THold >δ
+
3

∧ . . .
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The Inverse Method Discussion

Advantages and Drawbacks of the Inverse Method

Advantages
I Useful to optimize timing bounds of systems
I Terminates often in practice (unlike a brute reachability analysis, e.g.,

using HyTech)
I Allows to handle dozens of parameters

Drawbacks
I The generated constraint K0 is not maximal: there are points π /∈ K0

which give the same trace sets as π0

I The criterion of equality of trace sets may be too restrictive: for a
given property φ, there may be different trace sets satisfying φ
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A Cartography Method
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A Cartography Method The Behavioral Cartography Algorithm

Beyond the Inverse Method

Goal: Find the maximal set of points corresponding to a good
behavior

Method: Iterate the inverse method for all the integer points of a
given rectangle V0

Output: set of tiles for all the integer points of V0

I  behavioral cartography of the parameter space
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A Cartography Method The Behavioral Cartography Algorithm

The Behavioral Cartography Algorithm

Cartography
Algorithm

PTA A

Rectangle V0

Cover

1 repeat
2 select an integer point π ∈ V0;
3 if π 6∈ Cover then
4 Cover ← Cover ∪ IM(A, π);

5 until Cover contains all the integer points of the rectangle;
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A Cartography Method The Behavioral Cartography Algorithm

Partition into Good and Bad Tiles

A tile is said to be a good tile if all its corresponding traces are good
traces

According to the nature of the trace sets, we can partition the tiles
into good and bad ones
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A Cartography Method Application to the Example

Application to our Flip-Flop Example

We consider only parameters δ+
3 and δ+

4
I The other parameters are instantiated

Goal: Perform the behavioral cartography of the flip-flop circuit
according to δ+

3 and δ+
4

I Find the values for δ+
3 and δ+

4 such that the flip-flop has a good
behavior
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A Cartography Method Application to the Example

Behavioral Cartography of the Flip-Flop (δ+
3 and δ+

4 )
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Étienne ANDRÉ (LSV) Behavioral Cartography of PTAs 28th August 2010 23 / 45



A Cartography Method Application to the Example

Behavioral Cartography of the Flip-Flop (δ+
3 and δ+

4 )

1 2 3 4

δ+
3

δ+
4

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30
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A Cartography Method Application to the Example

Example of good and bad tiles

Good tile 3

q0 q1 q2 q3

q4

q5

q7

q8

q9

q11

q13

q14

q15

q17

q19

D↑ G
↓
1 CK↑

D↓

G
↓
3

G
↓
3

D↓

Q↑

Q↑

Q↑

D↓

CK↓

CK↓

CK↓

Bad tile 7

q0 q1 q2 q3 q4

q5

q6

q7

q8

q9

q10

q11

q12

q13

q14

q15

q16

q17

q18

q19

D↑ G
↓
1 CK↑

D↓

G
↓
3

G
↓
3

CK↓

D↓

Q↑

CK↓

Q↑

CK↓

Q↑

D↓

Q↑

CK↓

Q↑

CK↓

CK↓
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A Cartography Method Application to the Example

Behavioral Cartography of the Flip-flop: Remarks

Remarks on the cartography

I For this example, all the real-valued part of the parametric space within
and outside V0 is covered

The set of good tiles (in blue) corresponds to the maximal set of
good values for δ+

3 and δ+
4

I δ+
3 + δ+

4 ≥ 24 ∧ δ+
3 ≥ 8 ∧ δ+

4 ≥ 3
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Extension to Probabilistic Systems Presentation

Parametric

Probabilistic Timed Automaton

(PPTA)

Parametric Timed Automaton
I Set of locations

, set of actions, set of parameters (unknown constants)
[André et al., 2009b]

I Set of clocks (real-valued variables increasing at the same linear rate)
F Features: Location invariant

, transition guard, clock reset

Augmented with probabilities [Kwiatkowska et al., 2002]
I The sum of the probabilities leaving a given location through a given

action is equal to 1

TRANSMIT

x ≤ 808

INIT

true

DONE

true

COLLIDE

x = 0

WAIT1

x ≤ 52

WAIT2

x ≤ 104
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Extension to Probabilistic Systems Presentation

Parametric Probabilistic Timed Automaton (PPTA)

Parametric Timed Automaton
I Set of locations, set of actions, set of parameters (unknown constants)

[André et al., 2009b]
I Set of clocks (real-valued variables increasing at the same linear rate)

F Features: Location invariant, transition guard, clock reset
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I The sum of the probabilities leaving a given location through a given

action is equal to 1

TRANSMIT
x ≤ λ

INIT
true

DONE
true

COLLIDE
x = 0

WAIT1
x ≤ slot

WAIT2
x ≤ 2× slot

send
x := 0

x = λ
end

cd
x := 0

x = slot
send
x := 0

x = slot
busy
x := 0

x = 2× slot
send
x := 0

x = 2× slot
busy
x := 0
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1
2

wait
1
2
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Extension to Probabilistic Systems Presentation

Semantics

Semantics for timed automata
I Time elapsing in a location, and
I Discrete actions: instantaneous transition from a location to another

one

Semantics for probabilistic timed automata
I Time elapsing in a location, and
I Discrete actions: instantaneous transition from a location to a

distribution of locations

Probabilistic traces
I Finite alternating sequence of locations and actions with probabilities

INIT TRANSMIT COLLIDE WAIT1 TRANSMIT . . .send

1

cd

1

wait
1
2

send

1
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Extension to Probabilistic Systems Presentation

Minimum and Maximum Probabilities of Reaching a State

A scheduler s associates to every state one output distribution
I Denoted by As

Given a scheduler, one can define the probability of reaching a
location

Minimum and maximum probabilities of reaching a given location
I Minimum and maximum for all possible schedulers

Derandomized form A∗ of a PPTA A: replace distributions by
non-determinism: A∗ becomes a PTA

I Given some π, we have:

Traces(A∗[π]) =
⋃

s∈Sched

Traces(As [π])
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Extension to Probabilistic Systems Presentation

The Inverse Problem for PPTAs

Inputs
I A PPTA A
I A reference valuation π0 of A

Output: tile K0
I Convex constraint on the parameters such that

F π0 |= K0

F For all π |= K0, the sets of probabilistic traces of A[π] and A[π0] are
equal

·π0

As a consequence, the minimum and maximum probabilities for
reachability properties are the same in A[π] and A[π0]
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Extension to Probabilistic Systems Presentation

Extension of the Inverse Method to Probabilistic Systems

1 Construct a derandomized (non-probabilistic) version A∗ of A
2 Compute a constraint K0 by applying the inverse method to A∗

and π0

Then the minimum (resp. maximum) probability of reaching a given
location of A is the same for all π ∈ K0.
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Extension to Probabilistic Systems Presentation

Application to The Root Contention Protocol

·π0

delay

rc slow min

00 10 20 30 40 50 60 70 80 90 100
80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

Root contention protocol of the IEEE
1394 (“FireWire”) High Performance
Serial Bus [Hune et al., 2002]

Input: IEEE reference valuation

rc slow min = 159ns
delay = 30ns

Output:

K0 : 2delay < 76
∧ 2delay + 85 < rc slow min

Prop3: The minimum probability that
a leader is elected after three rounds
or less is equal to 0.75

I For all π |= K0, Prop3 is
satisfied
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Extension to Probabilistic Systems Presentation

Extension of the Cartography to Probabilistic Systems

1 Construct a derandomized (non-probabilistic) version A∗ of A
2 Apply the cartography algorithm to A∗ and V0

Then the minimum (resp. maximum) probability of reaching a given
location of A is uniform within each tile of the cartography.
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Extension to Probabilistic Systems Example

The Root Contention Protocol: Cartography (1/2)

1

2

3

4

5

6
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delay

rc slow min

00 10 20 30 40 50 60 70 80 90 100
80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

We consider the following V0 :
rc slow min ∈ [140; 200], and
delay ∈ [1; 50]

Remarks

I Tiles 1 and 6 are infinite towards
one dimension

I The cartography does not cover the
whole real-valued space within V0

(holes in the lower right corner

of V0)
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Extension to Probabilistic Systems Example

The Root Contention Protocol: Cartography (2/2)
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Prop3: “The minimum probability

that a leader is elected after three

rounds or less is equal to p”

I Tile 1: p = 0.75
I Tiles 2, 3, 6: p = 0.625
I Other tiles: : p = 0.5

I Good tile if p ≥ 0.75

Prop5: “The minimum probability

that a leader is elected after five

rounds or less is equal to p”

I Tile 1: p = 0.94
I Tiles 2 and 3: p = 0.79
I Tile 6: p = 0.66
I Other tiles: : p = 0.5

I Good tile if p ≥ 0.75
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Extension to Probabilistic Systems Example
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Extension to Probabilistic Systems Discussion

Advantages of the Probabilistic Cartography

Quantitative refinement of the good parameters problem
I Instead of a partition with a binary criterion (good / bad), we have a

partition according to various probabilities

The cartography is independent from the probabilistic property
I Only the probability associated to each tile depends on the property
I No need to compute a cartography for each property
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Implementation and Case Studies

Implementation

Tool Imitator II [André, 2010]

I Imitator: “Inverse Method for Inferring Time AbstracT BehaviOR”
I 8000 lines of code
I 6 man-months of work
I Program written in OCaml
I Makes use of the PPL library

Imitator II is available on its Web page

I http://www.lsv.ens-cachan.fr/~andre/IMITATOR2
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Implementation and Case Studies

Case Studies

Implementation in Imitator II

I outputs a list of tiles with their corresponding trace set under a
graphical form

I outputs the cartography under a graphical form (for 2 parameter
dimensions)

Computation times of various case studies
I Experiments conducted on an Intel Core2 Duo 2.4 GHz with 2 Gb

Example PTAs loc./PTA |X | |P| |V0| tiles states trans. Time
SR-latch 3 [3, 8] 3 3 1331 6 5 4 0.3
Flip-flop 5 [4, 16] 5 2 644 8 15 14 3

Latch circuit 7 [2, 5] 8 4 73062 5 21 20 96.3
And–Or 3 [4, 8] 4 6 75600 4 64 72 118

CSMA/CD 3 [3, 8] 3 3 2000 140 349 545 269
SPSMALL 10 [3, 8] 10 2 3149 259 60 61 1194

RCP 5 [6, 11] 6 3 186050 19 5688 9312 7018
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Final Remarks

Outline
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6 Final Remarks
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Final Remarks

Summary (1/2)

Inverse Method: Algorithm IM
I Modeling of a system with parametric timed automata
I Starting with a valuation π0 of the system, we generate a constraint K0

with the same trace set as π0

Behavioral cartography: Algorithm BC
I Solves the good parameters problem: synthesizes the largest set of

points within a rectangle V0 corresponding to a given good behavior
I Under certain conditions, covers the whole real-valued parametric space
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Final Remarks

Summary (2/2)

Extension to probabilistic systems

I Synthesizes a set of tiles, with uniform min/max reachability
probabilities within each tile

I Useful to compute probabilities (e.g., using Prism) for systems with
large constants (notion of rescaling)

I Avoid the repeated computation of probabilities for many different
values of the parameters
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Final Remarks

Future Work

Extend the behavioral cartography to hybrid automata
I Allow to consider different clock rates

Consider a weaker property than equality of trace sets
I Reference trace with partial orders
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The Inverse Method: Algorithm

Algorithm 1: IM(A, π0)

input : A PTA A of initial state s0

input : Reference point π0 of the parameters
output: Constraint K0 on the parameters

1 i ← 0 ; K0 ← True ; S ← {s0}
2 while True do
3 while there are π0-incompatible states in S do
4 Select a π0-incompatible state (q,C ) of S (i.e., s.t. π0 6|= C ) ;
5 Select a π0-incompatible J in C (i.e., s.t. π 6|= J) ;
6 K0 ← K0 ∧ ¬J ;

7 S ←
⋃i

j=0 Post
j
A(K0)({s0}) ;

8 if PostA(K0)(S) = ∅ then return K0 ←
⋂

(q,C)∈S(∃X : C )

9 i ← i + 1 ;

10 S ← S ∪ PostA(K0)(S) ; // S =
⋃i

j=0 Post
j
A(K0)({s0})
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