
Activity Diagrams Patterns for Modeling
Business Processes (Report version)∗

Étienne André, Christine Choppy, and Gianna Reggio

Abstract Designing and analyzing business processes is the starting point of the de-
velopment of enterprise applications, especially when following the SOA (Service
Oriented Architecture) paradigm. UML activity diagrams are often used to model
business processes. Unfortunately, their rich syntax favors mistakes by designers;
furthermore, their informal semantics prevents the use of automated verification
techniques. In this paper, (i) we propose activity diagram patterns for modeling busi-
ness processes, (ii) we devise a modular mechanism to compose diagram fragments
into a UML activity diagram, and (iii) we propose a semantics for the produced ac-
tivity diagrams, formalized by colored Petri nets. Our approach guides the modeler
task (helping to avoid common mistakes), and allows for automated verification.

1 Introduction

Business processes are collections of related and structured activities or tasks, pro-
ducing a specific service or product. Being able to model and to analyze business
processes is of paramount importance, not only for the design of such processes, but
also in the field of the software development whenever the SOA (Service Oriented

Étienne André
Université Paris 13, Sorbonne Paris Cité, LIPN, F-93430, Villetaneuse, France
e-mail: Etienne.Andre@lipn.univ-paris13.fr

Christine Choppy
Université Paris 13, Sorbonne Paris Cité, LIPN, F-93430, Villetaneuse, France
e-mail: Christine.Choppy@lipn.univ-paris13.fr

Gianna Reggio
DIBRIS, Genova, Italy
e-mail: gianna.reggio@unige.it

∗ This work is partially supported by project #12 “Méthode de modélisation des systèmes dy-
namiques” (CREI, Université Paris 13, Sorbonne Paris Cité).

1

Etienne.Andre@lipn.univ-paris13.fr
Christine.Choppy@lipn.univ-paris13.fr
gianna.reggio@unige.it

Architecture) paradigm [Erl07] is followed. The most common modeling notations
for business processes are the BPMN2 and the UML [UML] activity diagrams. We
consider in this paper the UML since it offers also many other diagrams (classes,
state machine, etc.), providing an integrated way to model all the aspects of a busi-
ness as the used data and the participant entities; also it may be used in all the other
phases of the software development. Furthermore, there is no relevant difference be-
tween the readability of the UML and of the BPMN (see, e.g., [PBA+08, BKO10]).

Although UML diagrams are widely used, they suffer from some drawbacks. In-
deed, since UML specification is documented in natural language, inconsistencies
and ambiguities may arise. First, their rich syntax is quite permissive, and hence
favors common mistakes by designers. Second, their informal semantics in natural
language prevents the use of automated verification techniques, that could help de-
tecting errors as early as the modeling phase. We take as a basis for our work the
latest version (2.4.1) of the UML specification.

Our contribution is twofold. First, we define precise activity diagrams for mod-
eling business processes. These precise activity diagrams are based on patterns, that
can be inductively composed so as to build complex activity diagrams. Our ap-
proach also takes classes into account. We have selected a minimal subset of the
useful UML activity diagram constructs (viz., sequence, fork, join, choice, merge,
loops). This paper does not consider accept and timed event, which is the subject of
ongoing work. Second, we give a semantics to these patterns, by translating them
into Colored Petri Nets (CPNs) [JK09] in a modular way. Petri net is a natural for-
malism as result of the translation: the UML specification explicitly mentions them,
and the informal semantics of activity diagrams is given in terms of token flows.
Related Works. The first issue we address is that of an adequate notation and ap-
proach for business process modeling. [RRS+11, CDR+11] compare different styles
of activity diagrams (precise, “ultra-light”) in experiments. The workflow pattern
initiative [Wor] issued a collection of workflow patterns for business modeling.
These patterns address the modeling of control, data, etc., and are expressed in Petri
nets.

Another issue is to propose a formal associated semantics to UML diagrams us-
ing a formal notation, which is important to allow for automated verification [FELR98].
This has been addressed in quite a variety of works using automata, different kinds
of Petri nets, etc., so we mention only a few. Instantiable Petri nets are the target of
transformation of activity diagrams in [KT10], and this is supported by tool BCC
(Behavioral Consistency Checker); however they do not consider data, whereas
we do. In [DSP11, BM07], the issue is performance evaluation, from activity di-
agrams and others (use case, state diagrams, etc.) to stochastic Petri nets. In [ZL10]
and [ACK12], various syntactic features of UML state machines are translated into
CSP# and colored Petri nets, respectively. Also note that [GRR10] proposes an oper-
ational semantics of the activity diagrams (for UML 2.2). Börger [Bör07] and Cook
et al. [CPM06] present other formalizations of the workflow patters of [Wor] using
formalisms different from Petri nets, viz., Abstract State Machines and Orc, respec-

2 http://www.bpmn.org/

2

http://www.bpmn.org/

tively. In [MGT09], patterns for specifying the system correctness are defined using
UML statecharts, and then translated into timed automata. The main differences
with our approach are that the authors mainly focus on real-time properties, and the
patterns of [MGT09] do not seem to be hierarchical: the “composition” of patterns
in [MGT09] refers to the simultaneous verification of different properties in paral-
lel. In [KH10], a reactive semantics is defined for a subset of UML activities, which
makes it a precise design language for reactive systems. The same authors also de-
fine in [KH09] an automated compositional mechanism for UML activities together
with an interface (a so-called External State Machine), seen as building blocks.
Outline. Section 2 presents the ingredients of our UML-based modeling for busi-
ness processes (static view, activity diagram, etc.), details the activity diagram fea-
tures we consider, and describes how to compose them in a modular way. Then, we
provide a translation of the considered activity diagrams into colored Petri nets in
Section 3 (activity diagram) and Section 4 (static view). We use as a running exam-
ple an electronic commerce system EC. Section 5 concludes, gives some hints on
our implementation, and sketches future directions of research.

2 Business Process Modeling

2.1 Precise Business Process Models

Business processes are collections of related and structured activities or tasks, pro-
ducing a specific service or product. In this section, we consider precise models of
business processes. The word “precise” means here that we define such models in
a sharper way than usual; the word is used in several related works on models (see,
e.g., [RRS+11]). A precise model of a business process consists of (1) the static
view, i.e., a class diagram defining the types of all the entities in the process; (2)
the list of the process participants and of the used data typed using the classes and
the datatypes in the static view; and (3) an activity diagram representing the process
behavior.

The process participants are entities taking part in a process, and can be classified
as: (i) business worker, if they correspond to human beings acting in the process,
(ii) system, if they are software or hardware systems with a role in the process,
and (iii) business object, when they are passive entities used in the activities of the
workers and of the systems. The classes in the static view may be stereotyped by
<<worker>>, <<system>> and <<object>> to explicit which kind of entities they
model. A class with these stereotypes is called an entity class.

The operations of the classes stereotyped by either <<worker>> or <<system>>

represent the atomic activities that they are able to perform in the business process.
These classes may have also some auxiliary operations stereotyped by <<aux>> not
modeling any activity (indeed they are UML queries, i.e., they have no side effects,
and always have a return type).

3

Fig. 1 EC example: static view

The operations of the classes stereotyped by <<object>> represent the atomic
activities that may be performed over them. The constructor operations3 for any
class have the stereotype <<create>>; an operation stereotyped by <<create>> has
the class as return type (and for readability it will be not visualized in the class
diagram), and it is static.

We consider an e-commerce EC as a running example of a precise business pro-
cess. Fig. 1 presents its static view, while Fig. 2 presents its activity diagram and the
list of the participants with the used data.

The EC business process has seven participants, and two of them, ORDER and
PACK, are created during the process execution. Two boolean values, ANS and RES,
are set during the process execution. It is important to note that the listed partici-
pants and data are not specific individuals, but roles that can be instantiated in many
different ways. If a participant/data is marked by <<out>>, then it means that it is
created/defined during the process execution.

3 The UML does not provide any native constructors.

4

The static view should be complemented with methods defining the meaning of
the operations of the datatypes, of the classes stereotyped by <<object>>, and of
any operation stereotyped by <<aux>> or <<create>>. In Fig. 1, the various meth-
ods are reported in notes attached to the corresponding classes. The behavior of the
classes stereotyped by <<worker>> or <<system>> will be defined by state ma-
chines, where all events are calls of their operations not stereotyped by <<aux>>.
In the case of the EC process, these state machines are not shown here. They have
a simple “daisy form”, with a unique state and with a transition leaving and enter-
ing this state for any operation. This corresponds to say that the instances of these
classes may perform anytime any atomic activity represented by an operation.

The following subsection describes how the business process behavior is mod-
eled by a precise activity diagram.

2.2 Precise Activity Diagrams

2.2.1 UML Activity Diagrams

We first briefly recall UML activity diagrams [UML]. They feature in particular an
initial node (e.g., the top node in Fig. 2), and two kinds of final nodes: activity final,
that terminate the activity globally (“final1” and “final2” in Fig. 2), and flow final,
that terminate the local flow [UML, Section 12.3.6, p.340]. More precisely:

“A token reaching an activity final node terminates the activity. [. . .] In par-
ticular, it stops all executing actions in the activity, and destroys all tokens
in object nodes, except in the output activity parameter nodes. [. . .] If it is
not desired to abort all flows in the activity, use flow final instead. Using a
flow final will simply consume the tokens reaching it without aborting other
flows. ”

[UML, Section 12.3.6, p.340]

They also feature choice (e.g., “dec1”), i.e., the ability to follow one path among
different possibilities, depending on guards, and merge (e.g., “Merge1”), i.e., the
converse operation. They also feature fork, i.e., the ability to split the flow into
different subactivities executed in parallel (e.g., the large line below “Merge1”), and
join, i.e., the converse operation (e.g., the large line below “Merge3”).

2.2.2 Activity Diagrams Patterns

General Scheme for Patterns. We now introduce precise activity diagrams. Whereas
UML activity diagrams provide a lot of freedom in the syntax, we give here precise
rules for building activity diagrams in an iterative and modular way. First, from
years of experience in the area of modeling, we believe that some of the syntactic

5

Fig. 2 EC example: activity diagram

features of UML activity diagrams are not often used in practice, or are ambigu-
ous, and are then discarded here. Second, some constructions can reflect ill-formed
diagrams. For example, we make here compulsory that a fork must always be even-
tually followed by a join, except in very particular cases. Hence, following these
patterns can help the designer to avoid common mistakes (see, e.g., [RLR11]).

Providing these precise activity diagrams with a semantics will be the subject of
Section 3. Note that, different from software engineering design patterns [GHJV95],
that can be inserted into freely written code, precise activity diagrams are exclu-
sively made of activity diagram patterns composed with each other.

6

Inductive Rules. We assume the static view and the list of the participants of the
business process are already defined. Now, the set PACT of the precise activity
diagrams is inductively defined below using a set of rules. Each rule defines an
activity diagram pattern. For each activity diagram pattern in PACT , we define a
begin node and an end node. Either the begin or the end node may be undefined, but
not both. When composing the activity diagram fragments, we denote by ⊥ the fact
that a fragment has no end node.

In the following EXP denotes the set of the OCL (Object Constraint Language)
expressions built on the participant names, the operations of the datatypes defined in
the static view, and the operations of the entity classes appearing in the static view
stereotyped by <<aux>>. Such expressions are without side-effects on the process
since the stereotype <<aux>> requires an operation to be a query.

Rules 1–4 define simple patterns, whereas rules 5–8 define complex patterns by
composing fragments built using the patterns. We also compare our patterns with
those of [Wor], when applicable.
Rule 1: Initial. The initial node belongs to PACT , and its begin node is undefined,
while its end node is itself.
Rule 2: Activity final. The activity final node belongs to PACT , and its begin
node is itself, while its end node is undefined.
Rule 3: Flow final. belongs to PACT , and its begin node is itself, while its end
node is undefined.
Rule 4: Action. If X is a participant of the process, Exp, Exp1, . . . , Expn belong
to EXP , and op is an operation of a class stereotyped either by <<worker>>,
<<system>>, <<object>> in turn not stereotyped by <<aux>> or <<create>>,
then X := Exp (4a) , X := Exp.op(Exp1, . . . ,Expn) (4b), and Exp.op(Exp1, . . . ,Expn) (4c) be-
long to PACT , and their begin and end nodes coincide with themselves.
Rule 5: Sequence. This pattern corresponds to pattern 5 (“sequence”) in [Wor]. If

A1

(with a defined end node) and A2 (with a defined begin node) belong to

PACT , then

A1

A2 belongs to PACT , and has the begin node of A1 and the end
node A2, if they exist. Note that A1 and A2 represent here activity diagrams frag-
ments inductively defined using our set of rules. The begin node of A1 (resp. end
node of A2) is not depicted: this means it can either be defined or not. These con-
ventions will be used throughout this section.
Rule 6: Decision/merge. Let n≥ 1, m≥ 0, n+m≥ 2.

If
A1

, . . . ,
An

,
An+1
⊥ , . . . ,

An+m

⊥ belong to PACT , if An+1, . . . , An+m have
no defined end node, and if cond1, . . . , condn, condn+1, . . . , condn+m belong to EXP

7

such that
∨

i=1,...,n+m condi = true, then

A1 An An+1 An+m· · · · · ·
⊥ ⊥

[cond1]

[co
nd

n
] [cond

n+
1]

[condn+m]

belongs to PACT . Its begin node is the decision node, and its end node is the merge
node. This pattern can be seen as a combination and a generalization of patterns 4
(“exclusive choice”) and 5 (“simple merge”) in [Wor]. However, there are several
differences: (1) we make the merge compulsory after a choice; (2) we allow some
activities (n+1 to n+m) not to merge, providing they terminate (which is encoded
by the fact that they have no end node); and (3) our choice is not exclusive (several
guards may be true simultaneously, in which case the choice is nondeterministic).

Rule 7: Loop. If
A1

and A2 belong to PACT , and cond1, cond2 belong to

EXP with cond1∨cond2 = true, then
A1 A2

[cond1]

[cond2]

and

A1

A2

[cond2]

[cond1]

belong to PACT ; their begin node is the merge node, and their end node is the end
node of A2. We name these two rules 7a (“while”) and 7b (“repeat until”) respec-
tively. Rule 7a (resp. 7b) is similar to the while variant (resp. repeat variant) of
pattern 21 (“structured loop”) in [Wor].
Rule 8: Fork/join. Let n≥ 0, m≥ 0, n+m≥ 2.

If
A1

, . . . ,
An

,
An+1
⊥ , . . . ,

An+m

⊥ belong to PACT , if An+1, . . . , An+m have

no defined end node, then

A1 An An+1 An+m· · · · · ·
⊥ ⊥

belongs to PACT . Its
begin node is the fork node, and its end node is the join node if n > 0, otherwise
it is undefined. This pattern can be seen as a combination and a generalization of
patterns 2 (“parallel split”) and 3 (“synchronization”) in [Wor]. However, we make
the join compulsory after a fork; and we allow some activities (n+ 1 to n+m) not
to join, providing they terminate.

8

3 Translation of the Activity Diagram

In the remaining of the paper, we consider the translation into a CPN of the business
process models introduced in Section 2. On the one hand, the translation of the static
view and of the lists of the participants of a business process will result in a set of
declarations of types and of functions over them defining a special type State, whose
values represent the current situation of the process participants and of the process
data during the process execution. On the other hand, the translation of the activity
diagram will result in a CPN. This CPN will use the type declarations and functions
in its inscriptions.

We first recall the formalism of CPNs (Section 3.1), and then introduce the trans-
lation of the activity diagram (Section 3.2). The translation of the static view will be
the subject of Section 4.

3.1 Colored Petri Nets with Global Variables

We briefly recall here colored Petri net (CPNs) [JK09]. CPNs are an extension of
Petri nets with color sets, or types. In CPNs, places, tokens and arcs have a type.
In Fig. 3(a), place p1 has type N, whereas p2 has type N×B. Arcs can be la-
beled with arc expressions modifying the (colored) token (e.g., (i, true) in Fig. 3(a)).
Transitions can have a guard, hence enabling the transition only if the guard is
true (e.g., [i 6= 2]). We use for arc inscriptions and guards the syntax of CPN ML,
an extension of the functional programming language Standard ML, and used by
CPN Tools [JK09].

Definition 1 (Colored Petri Net). A colored Petri net (CPN) [JK09] is a tuple
CPN = (P,T,A,Labels,B,V,C,G,E, I,L) such that:

1. P is a finite set of places,
2. T is a finite set of transitions such that P∩T = /0,
3. A⊆ P×T ∪T ×P is a set of directed arcs,
4. B is a finite set of non empty color sets (types),
5. V is a finite set of typed variables such that ∀v ∈V, Type[v] ∈ B,
6. C : P→ B is a color set function assigning a color set to each place,
7. G : T → Expr(V) is a guard function assigning a guard to each transition such

that Type(G(t)) = B, and Var[G(t)]⊆V ,
8. E : A→ Expr(V) is an arc expression function assigning an arc expression to

each arc such that Type(E(a)) =C(p)MS, where p is the place connected to the
arc a, and MS denotes the multiset, and

9. I : A→ Expr(V) is an initialization function assigning an initial marking to each
place such that Type(I(p)) =C(p)MS.

A marking M of a CPN is a function providing for each place p ∈ P a content that
is of type C(p)MS. The initial marking is denoted M0. Note that a CPN marking
expresses the current state of the CPN.

9

p1 N

[i 6= 2] v := v+ i

p2 N×B

i

(i, true)

(a) Global variables notation

p1 N

[i 6= 2]

p2 N×B

pv N
i

(i, true)

v

v+ i

(b) Corresponding semantics

Fig. 3 Example of a use of global variables

We use here the concept of global variables, a notation that does not add expres-
sive power to CPNs, but renders them more compact. Global variables can be read
in guards and updated in transitions. Some tools (such as CPN Tools) support these
global variables. Otherwise, one can simulate a global variable using a “global”
place, in which a single token (the type of which is the variable type) encodes the
current value of the variable. An example of use is given in Fig. 3(a). The variable v
(of type N) is a global variable updated to the expression v+ i. This CPN construc-
tion is equivalent to the one in Fig. 3(b). The case where a global variable is read in
a guard is similar, with the difference that v is not modified.

3.2 Translation

The translation of the precise activity diagrams belonging to PACT (defined in Sec-
tion 2.2) will be given compositionally following the rules defined there.

3.2.1 Assumptions

We make the following choice: each translated activity diagram fragment must start
and finish with a place, so that the composition of the translations of the subparts is
straightforward: it suffices to connect the places the same way as for the nodes we
defined for the activity diagram patterns.

We define two global variables go: BOOL and s (see Section 4). In particular,
variable go records whether the CPN should still execute, or should be completely
stopped. This go variable is used to encode the activity final pattern (rule 2); if such
a state is entered, then the whole process must immediately stop. Here, we assume
that, for each transition of the CPN, the guard includes a check [go=true] (for sake
of conciseness, this variable will not be depicted in our graphics). This go variable
is initialized with true, and will be set to false when entering the CPN transition
encoding the activity final state (see Fig. 4(c)).

Note that all edges and places have type “UNIT”, i.e., the same type as in
place/transition nets (we omit that type in Fig. 4 for sake of conciseness). Never-

10

theless, our CPN is still colored because of the use of global variables, guards in
transitions, and functions updating the variables in transitions.

3.2.2 Translation of the Rules

We now give in Fig. 4 the translation of the rules from Section 2.2.2. The translation
of each activity diagram pattern will result in a CPN fragment having the shape of
Fig. 4(a). Modular composition is performed using the begin and end nodes, using
the same way as for activity diagram patterns in Section 2.2.2.
Rule 1: Initial. The initial state is encoded into an initial place, containing the only
initial token of the resulting CPN, followed by a transition assigning InitState to the
global variable s (InitState will be detailed in Section 4). Finally, an outgoing place
allows connection with the next component. The scheme is given in Fig. 4(b).
Rule 2: Activity final. An activity final pattern is translated (see Fig. 4(c)) into a
transition updating the global variable go to false. Hence, since each transition has
an implicit guard checking that go=true, the execution of the CPN is immediately
stopped.
Rule 3: Flow final. A flow final pattern is translated (see Fig. 4(d)) into a simple
place; hence local execution is terminated, without any consequence on the rest of
the system.
Rule 4: Action. Recall from Section 2.2 that this rule translates the actions using
three different schemes (i.e., Rules 4a, 4b, and 4c). We give the translation of the 3
rules in Fig. 4(f)–4(h).
Rule 5: Sequence. We give the translation of the sequence in Fig. 4(e). We translate
A1 and A2 inductively, and we directly merge the end node of A1 with the begin
node of A2.
Rule 6: Decision/merge. Here, (only) one of the transitions will fire (depending on
the guards4). If the corresponding activity has an end node (activities 1 to n), then the
process continues afterwards from the outgoing place below; otherwise (activities
n+ 1 to n+m), it is stopped when the activity stops. The translation is given in
Fig. 4(j).
Rule 7: Loop. The translation of the while loop (resp. repeat until loop) is given in
Fig. 4(k) (resp. Fig. 4(l)).
Rule 8: Fork/join. The translation is quite straightforward and is given in Fig. 4(i).
The n+m activities are subject to a fork; then, only the n first activities are merged
later.

A full translation of the activity diagram in Fig. 2 is available in [ACR13].

4 If several guards are true simultaneously, the choice is nondeterministic, according to the CPN
semantics.

11

Tr(A)

(a) CPN fragments shape

initi

s := InitState

(b) Rule 1

go := false

(c) Rule 2 (d) Rule 3

Tr(A1)

Tr(A2)

(e) Rule 5
. .

X := Exp

s := setX
(

s,
TrE(Exp,s))

(f) Rule 4a

X := Exp.op(Exp1, . . . ,Expn)

let (s′,v) = setX
(

s,op
(
TrE(Exp,s),

TrE(Exp1,s), . . . ,TrE(Expn,s)
))

in s := setX(s′,v)

(g) Rule 4b
. .

Exp.op(Exp1, . . . ,Expn)
s := op

(
TrE(Exp,s),

TrE(Exp1,s),
. . . ,TrE(Expn,s)

)
(h) Rule 4c

Fork

join

Tr(A1) Tr(An) Tr(An+1) Tr(An+m)

· · · · · ·

(i) Rule 8: fork/join
. .

cond1 [TrE(cond1,s)] condn [TrE(condn,s)] condn+1 [TrE(condn+1,s)] condn+m [TrE(condn+m,s)]

Tr(A1)

merge1

Tr(An)

mergen

Tr(An+m)Tr(An+1)· · · · · ·

(j) Rule 6: decision merge
. .

cond1 [TrE(cond1),s] cond2 [TrE(cond2),s]

Tr(A1)

merge

Tr(A2)

(k) Rule 7a: while

merge

Tr(A1)

cond1[TrE(cond1,s)] cond2 [TrE(cond2,s)]

Tr(A2)

(l) Rule 7b: repeat until

Fig. 4 Translating precise activity diagrams patterns into colored Petri nets fragments

12

4 Translation of the Static View and of the Participant List

In this section, we translate the static view and the participant list into a set of
CPN ML declarations. In particular, we translate the type (color set) State together
with a set of declarations of auxiliary types and of functions needed to handle them,
used by the CPN defined in Section 3. Recall that the values of State represent the
current situation of the process participants and of the process data during the exe-
cution of the process itself.

We first present the part of the translation generating the definition of State (Sec-
tion 4.1). Then we give the translation of the expressions (Section 4.2). We termi-
nate with the part concerning the definition of the initial state (Section 4.3), the
particular value of State representing the situation at the beginning of the process
execution. We use the EC example to illustrate our approach throughout the section.
The complete model can be found in Appendix 6.2.

In the following E1: T1, . . . , En: Tn are the participants of the business process,
Class1, . . . , Classm are all the entity classes introduced by the static view (i.e., those
stereotyped by <<object>>, <<worker>> or <<system>>), and Datatype1, . . . ,
Datatypeh are all datatypes included in the static view.

4.1 State Definition

As mentioned earlier, the values of type State represent all possible states of the
process participants during the process execution. State is defined by the list of type
and function declarations shown in Fig. 5(a). The first n components of State are
used to record the associations between the names of the participants (E1, . . . , En)
and the CPN ML value identifying them; whereas, given Class a class, then classes:
CompType(Class) is the component of State recording all existing instances (objects)
of the class Class with their current states. Function CompType returns the proper
types for the various components of State. Comp generates all the functions and
type declarations needed to handle the State component corresponding either to a
process participant or to all the instances of a class, whereas Decls generates the
data structures and the relative functions needed to represent a class/dataype.

We give below the definition of State in the case of the EC example.
colset State = record

CLIENT : ClientID * EC : ECommerceID * WH : WarehouseID *
CARRIER : CarrierID * CC : CreditCardID * PP : PaypalID *

ORDER : OrderID * PACK : PackageID * ANS : BOOL *
RES : BOOL * clients : Clients * eCommerces : ECommerces *

warehouses : Warehouses * carriers : Carriers * creditCards : CreditCards *
paypals : Paypals * orders : Orders * packages : Packages;

Function Decls (defined in Fig. 5(b) and 5(c)) transforms a class/datatype present
in the static view into the set of CPN ML type and function declarations needed to

13

Decls(Datatype1) . . . Decls(Datatypeh); Decls(Class1) . . . Decls(Classm)

Comp(E1: T1) . . . Comp(En: Tn); Comp(Class1) . . . Comp(Classm)

colset State = record
E1: CompType(T1) * . . . * En: CompType(Tn)
class1s: CompType(Class1) * . . . * classms: CompType(Classm); ;

(a) State translation

let att1: T1, . . . , attk: Tk be the attributes of Class
colset ClassID = int;
if Class is stereotyped by <<object>> then
colset ClassState = record att1: TrType(T1) * . . . * attk: TrType(Tk);
otherwise
colset ClassControl = with s1 | . . . | sh;
colset ClassState = record att1: TrType(T1) * . . . * attk: TrType(Tk) * control: ClassControl;
where s1, . . . , sh are the states of the state machine associated with Class

(b) Definition of Decls(Class)

let att1: T1, . . . , attk: Tk be the attributes of Datatype
colset DatatypeVal = record att1: TrType(T1) * . . . * attk: TrType(Tk);
for any op(T1, . . . , Tn): T operation of Datatype
op: TrType(T1) * . . . * TrType(Tn)→ TrType(T)
these operations must be defined by looking at the associated methods in the static view

(c) Definition of Decls(Datatype)

fun setE: State × TrType(T)→ State
(d) Definition of Comp(E: T)

colset Classes = list product ClassID * ClassState;

upClass: Classes * ClassID * ClassState→ Classes
getClass: Classes * ClassID→ ClassState
for any op(T1, . . . , Tn) operation of Class
op: State * ClassID * TrType(T1) * . . . * TrType(Tn)→ State
for any op(T1, . . . , Tn): T operation of Class not marked by <<aux>>
op: State * ClassID * TrType(T1) * . . . * TrType(Tn)→ (State * TrType(T))

for any op(T1, . . . , Tn): T operation of Class marked by <<aux>>
op: State * ClassID * TrType(T1) * . . . * TrType(Tn)→ TrType(T)

(e) Definition of Comp(Class)

Fig. 5 Translation of the static view

represent its values and to handle them. The values of a datatype Datatype are repre-
sented by the type DatatypeVal, i.e., a record having a component for each attribute
of Datatype. A class Class determines a set of objects having an identity, typed by
ClassID, and a local state typed by ClassState. The local state is a record having a
component for each attribute of Class and, in the case of active objects and extra

14

component corresponding to the control state, typed by ClassControl, and defined by
the state machine associated with Class.

In the EC example, the WarehouseState is defined as follows:
colset WarehouseState = record control: WarehouseControl;

As all identifiers, the WarehouseID is an integer: colset WarehouseID = int;
And the WarehouseControl is an enumerated type with (in this case) only one

value: WarehouseControl = with Warehouse0;
Function Comp (defined in Fig. 5(d) and 5(e)) transforms a process participant

declaration (resp. a class) in the static view into a set of the type and function decla-
rations needed to define and handle component State recording the participant state
(resp. the states) of all class instances. The set of the states of the instances/objects
of a class is realized by a list of pairs, made of an object identity and an object state.

For example, type Warehouses is defined as a list of pairs of WarehouseID and
WarehouseState: colset Warehouses = list product WarehouseID * WarehouseState.

The function corresponding to an operation op of a class in the static view is
defined by looking either at the method associated with op in the static view, in
case of business object classes and of <<aux>> operation of workers and system
classes, whereas for the other operations of the workers and system classes they are
defined using the state machines associated with that class. By looking at the state
machine transitions, it will be possible to know how these operation calls modify the
attribute values and the control state. In particular, our mechanism defines functions
set to set a value inside a record (e.g., “State.set CLIENT s id” sets field CLIENT to
id in state s), as well as functions to get a value from the record, and to update it.
The definitions of these set, get and upd functions are omitted here; their definition
for the EC example can be found in [ACR13].

Finally, the TrType function translates a UML type into its corresponding CPN ML
type. This function is defined by cases below.

• TrType(string) = STRING
• TrType(boolean) = BOOL
• TrType(integer) = int
• TrType(Class) = ClassID, where Class is the name of a UML class appearing in

the static view
• TrType(Datatype) = DatatypeVal, where Datatype is the name of a UML datatype

appearing in the static view

4.2 Expressions

We give here the translation of the expressions of EXP into CPN ML expressions,
since they will appear in the activity diagrams as conditions on the arcs leaving the
merge nodes, as well as in the action nodes. We define below by cases the translation
function TrE(Exp,s), that associates a CPN ML with an OCL expression Exp, given
the current state s.

15

• TrE(X,s) = #X(s), if X is a participant of the process, (#X is the CPN ML opera-
tion selecting a record type component), e.g. CLIENT is translated to #CLIENT(s);

• TrE(C,s) =C, if C is a primitive data type constant;
• TrE(op(Exp1, . . . ,Expn),s) = op′(TrE(Exp1,s), . . . ,TrE(Expn,s)), if op is an op-

eration of a primitive type, op′ will be either op itself or it will be defined case
by case in case of name mismatch between the operations on the UML primitive
types and the corresponding ones of CPN ML;

• TrE(op(Exp1, . . . ,Expn),s) = op(TrE(Exp1,s), . . . ,TrE(Expn,s)), if op is an oper-
ation of a datatype defined in the static view;

• TrE(Exp.op(Exp1, . . . ,Expn),s)= op(s,TrE(Exp,s),TrE(Exp1,s), . . . ,TrE(Expn,s)),
if op is an operation of a class defined in the static view of kind query.

For example, the translation of the guard [RES = true] in Fig. 2 using function
TrE results in the CPN ML expression [#RES(s) = true]. And the OCL expression
CARRIER.deliver(PACK) is translated to deliver(s,#CARRIER(s),#PACK(s)).

4.3 Initial Process Execution State

In order to translate a business process into CPNs, and specifically define the initial
execution state of the process itself, we also need a specific list of individual par-
ticipants. Recall that the names in the participant list part of the process model are
roles, not specific individuals.

If n is the number of participants and data not marked by <<out>>, we call a
business process instantiation a list of n ground OCL expressions defined using the
data type defined in the static view, and the constructors of the classes in the static
view itself (operations stereotyped by <<create>>).

Given the business process instantiation (i.e., a list of ground expressions G1,
. . . , Gn), the function Initialize returns the CPN ML expression defining the initial
state, where the participants not marked by <<out>> are initialized with the values
determined by the process instantiation. The other ones are initialized with some
standard default values depending on their type, and the components corresponding
to the objects of the various classes just contain the states of the objects appearing
in the process instantiation. Hence, we have:

val InitState = Initialize(C1, . . . , Cn);
Initialize is defined using TrE (details can be found in Appendix).
The standard default values are: 0 for int, false for BOOL, 0 for ClassID corre-

sponding to the null object (since the object identities will be strictly positive inte-
gers), and nil the empty list for the list types.
val emptyState = {
E1 = def1, . . . , En= defn, class1s = nil, . . . , classms = nil};
val InitState = let

val (s,V1) = TrE(G1,emptyState)
val s1 = State.set E1 s V1

16

. . .
val (sr1 , Vr1) = TrE(Gr,sr−1)
val sr = State.set Er sr1 Vr1

in sr end;

5 Conclusion and Future Work

In this work, we define precise business models, where the activity diagrams are
inductively defined using a set of patterns combined in a modular way. Hence, we
characterize a set of commonly used behaviors in activity diagrams. Moreover, our
patterns provide the designer with guidelines, thus avoiding common modeling er-
rors. Our second contribution is to provide the activity diagrams built using these
patterns with a formal semantics using colored Petri nets, hence allowing the use of
automated verification techniques.
Implementation. Following our algorithm, we implemented (manually) the EC ex-
ample into the CPN Tools model checker [JK09]. This results in a CPN containing
24 places, 25 transitions and about 500 lines of CPN ML code; the detailed CPN
description can be seen in Fig. 8, and the CPN Tools model is available online5.
(One can see that, contrarily to what we stated in Section 3, a few transitions have
type not UNIT but BOOL. This is a trick due to the fact that CPN Tools does not
allow reading global variables in guards; hence, we first read the variables in the
previous place, and then the guard checks this value.) Such an implementation al-
lows for automated verification techniques; among the properties are for example
the fact that the various final nodes may be reached in any case, and hence that the
process is well-formed. Automatizing the translation process from a precise activity
diagram to a CPN using model-driven methods and technologies does not raise any
particular theoretical problem, and is the subject of ongoing work.
Future Works. Among directions for future research is the comparison of our se-
mantics given in terms of CPNs where the process execution state is modeled by
colored tokens, with existing (partial) semantics, such as [KH10] and [GRR10] (that
has been a source of inspiration for our work). Furthermore, integrating accept and
timed events to our approach is an interesting direction of research. Finally, we aim
at finding the properties relevant for the business process, and providing guidelines
to prove them.

Also note that the resulting CPN (including the functions) may be simplified in
some cases. First, some places and transitions added by the translation may be un-
necessary. This is the case, e.g., of a decision/merge pattern with only one activity
on the left side, and one on the right side (n = m = 1). In that case, the only ac-
tivity synchronizing in the merge is the left one; hence, the transition “merge1” in
Fig. 4(j), as well as the place below, are unnecessary. Second, some functions could

5 http://lipn.univ-paris13.fr/˜andre/activity-diagrams-patterns/

17

http://lipn.univ-paris13.fr/~andre/activity-diagrams-patterns/

be simplified for similar reasons. These simplifications, that are beyond the scope of
this paper, could help to speed up the automated verification of the resulting CPN.
Acknowledgment. We wish to thank Michael Westergaard for his kind help when
using CPN Tools, and anonymous reviewers for their helpful comments.

References

ACK12. Étienne André, Christine Choppy, and Kais Klai. Formalizing non-concurrent UML
state machines using colored Petri nets. ACM SIGSOFT Software Engineering Notes,
37(4):1–8, 2012. 2

ACR13. Étienne André, Christine Choppy, and Gianna Reggio. Activity diagrams patterns
for modeling business processes (report version). Available at http://lipn.fr/
˜andre/adp/, 2013. 11, 15

BKO10. Dominik Birkmeier, Sebastian Kloeckner, and Sven Overhage. An empirical compari-
son of the usability of BPMN and UML activity diagrams for business users. In ECIS
2010, 2010. 2

BM07. Simona Bernardi and José Merseguer. Performance evaluation of UML design with
stochastic well-formed nets. Journal of Systems and Software, 80(11):1843–1865,
2007. 2

Bör07. Egon Börger. Modeling workflow patterns from first principles. In ER, volume 4801
of LNCS, pages 1–20. Springer, 2007. 2

CDR+11. Francesco Cerbo, Gabriella Dodero, Gianna Reggio, Filippo Ricca, and Giuseppe Scan-
niello. Precise vs. ultra-light activity diagrams – An experimental assessment in the
context of business process modelling. In Product-Focused Software Process Improve-
ment, volume 6759 of LNCS, pages 291–305. Springer, 2011. 2

CPM06. William R. Cook, Sourabh Patwardhan, and Jayadev Misra. Workflow patterns in Orc.
In COORDINATION, volume 4038 of LNCS, pages 82–96. Springer, 2006. 2

DSP11. Salvatore Distefano, Marco Scarpa, and Antonio Puliafito. From UML to Petri nets:
The PCM-based methodology. IEEE Transactions on Software Engineering, 37(1):65–
79, 2011. 2

Erl07. Thomas Erl. SOA Principles of Service Design. The Prentice Hall Service-Oriented
Computing Series from Thomas Erl, 2007. 2

FELR98. Robert B. France, Andy Evans, Kevin Lano, and Bernhard Rumpe. Developing the
UML as a formal modelling notation. In Computer Standards and Interfaces: Special
Issues on Formal Development Techniques, pages 297–307. Springer-Verlag, 1998. 2

GHJV95. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
Elements of reusable object-oriented software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995. 6

GRR10. Hans Grönniger, Dirk Reiss, and Bernhard Rumpe. Towards a semantics of activity
diagrams with semantic variation points. In MODELS, volume 6394 of LNCS, pages
331–345. Springer, 2010. 2, 17

JK09. Kurt Jensen and Lars Michael Kristensen. Coloured Petri Nets – Modelling and Vali-
dation of Concurrent Systems. Springer, 2009. 2, 9, 17

KH09. Frank Alexander Kraemer and Peter Herrmann. Automated encapsulation of UML
activities for incremental development and verification. In Andy Schürr and Bran Selic,
editors, MoDELS, volume 5795 of LNCS, pages 571–585. Springer, 2009. 3

KH10. Frank Alexander Kraemer and Peter Herrmann. Reactive semantics for distributed
UML activities. In FMOODS/FORTE, volume 6117 of LNCS, pages 17–31. Springer,
2010. 3, 17

18

http://lipn.fr/~andre/adp/
http://lipn.fr/~andre/adp/

KT10. Fabrice Kordon and Yann Thierry-Mieg. Experiences in model driven verification of
behavior with UML. In Monterey Workshop, volume 6028 of LNCS, pages 181–200.
Springer, 2010. 2

MGT09. Ahmed Mekki, Mohamed Ghazel, and Armand Toguyeni. Validating time-constrained
systems using UML statecharts patterns and timed automata observers. In VECoS,
pages 112–124. British Computer Society, 2009. 3

PBA+08. Daniela Cascini Peixoto, Vitor Alcântara Batista, Ana Paula Atayde, Eduardo Borges
Pereira, Rodolfo Ferreira Resende, and Clarindo Isaı́a Pádua. A comparison of BPMN
and UML 2.0 activity diagrams. In Simposio Brasileiro de Qualidade de Software,
2008. Available at http://homepages.dcc.ufmg.br/˜cascini/. 2

RLR11. Gianna Reggio, Maurizio Leotta, and Filippo Ricca. Precise is better than light: A doc-
ument analysis study about quality of business process models. In First International
Workshop on Empirical Requirements Engineering (EmpiRE), pages 61–68, 2011. 6

RRS+11. Gianna Reggio, Filippo Ricca, Giuseppe Scanniello, Francesco Cerbo, and Gabriella
Dodero. A precise style for business process modelling: Results from two controlled
experiments. In Model Driven Engineering Languages and Systems, volume 6981 of
LNCS, pages 138–152. Springer, 2011. 2, 3

UML. OMG unified language superstructure specification(formal). version 2.4.1, 2011-08-06.
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/. 2, 5

Wor. Workflow Patterns Initiative. Workflow patterns home page. http://www.
workflowpatterns.com. 2, 7, 8

ZL10. Shao Jie Zhang and Yang Liu. An automatic approach to model checking UML state
machines. In SSIRI (Companion), pages 1–6. IEEE Computer Society, 2010. 2

19

http://homepages.dcc.ufmg.br/~cascini/
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://www.workflowpatterns.com
http://www.workflowpatterns.com

6 Appendix

6.1 Full Translation of the Static View

We give here the full translation of the precise model of the business process EC,
introduced in Fig. 1 and 2, instantiated as follows.
CLIENT→ mkClient(false,mkName(”X”))

(a client named X using the credit card to pay)
EC→ mkECommerce() (it has no registered clients)
WH→ mkWarehouse()
CARRIER→ mkCarrier()
CC→ mkCreditCard()
PP→ mkPaypal()
PACK, ORDER, ANS, and RES are not considered by the process instantiation, since
they are marked by <<out>>, that means that they will be created during the process
execution.

6.2 Translation of the Static View and the Participant List

Here, we present the result of the translation of the static view and of the participant
lists of the precise model of the EC business process introduced in Section 2, that
amounts to the definition of the data structure State together with the definitions of
all needed data structures and of all the functions acting over it. We use here the
CPN ML syntax.

We often add the signature of the various functions in italics. Indeed, although
they are not part of the CPN ML language, they improve readability.

Due to the use of lists, we recall classical notations for list. The empty list is
denoted by nil, whereas the concatenation of an element e at the beginning of a list l
is denoted by e :: l.

State
colset State = record

CLIENT : ClientID * EC : ECommerceID *
WH : WarehouseID * CARRIER : CarrierID *
CC : CreditCardID * PP : PaypalID *

ORDER : OrderID * PACK : PackageID *
ANS : BOOL * RES : BOOL *

clients : Clients * eCommerces : ECommerces *
warehouses : Warehouses * carriers : Carriers *
creditCards : CreditCards * paypals : Paypals *

orders : Orders * packages : Packages; *

Clients

20

colset Clients = list product ClientID * ClientState
upClient: Clients * ClientID * ClientState→ Clients
This function updates the state of a client in an element of type Clients.
fun upClient(nil,ci,cs) = (ci,cs)::nil
| upClient((ci’,cs’)::cls,ci,cs) =

if ci’=ci then
(ci,cs)::cls

else
(ci’,cs’)::upClient(cls,ci,cs);

getClient: Clients * ClientID→ ClientState
This function gets the state of a client from an element of type Clients; it is assumed
that there is a state associated with the passed ClientID.
fun getClient((ci’,cs’)::cls,ci) =
if ci’=ci then cs’ else getClient(cls,ci);

ECommerces
colset ECommerces =
list product ECommerceID * ECommerceState
upECommerce:
ECommerces * ECommerceID * ECommerceState→

ECommerces
fun upECommerce(nil,ei,es) = (ei,es)::nil
| upECommerce((ei’,es’)::ecs,ei,es) =

if ei’=ei then
(ei,es)::ecs

else
(ei’,es’)::upECommerce(ecs,ei,es);

getECommerce:
ECommerces * ECommerceID→ ECommerceState

fun getECommerce((ei’,es’)::ecs,ei) =
if ei’=ei then es’ else getECommerce(ecs,ei);

Packages
colset Packages =
list product PackageID * PackageState
upPackage:
Packages * PackageID * PackageState→ Packages
fun upPackage(nil,pi,ps) = (pi,ps)::nil
| upPackage((pi’,ps’)::pks,pi,ps) =

if pi’=pi then
(pi,ps)::pks

else
(pi’,ps’)::upPackage(pks,pi,ps);

21

getPackage: Packages * PackageID→ PackageState
fun getPackage((pi’,ps’)::pks,pi) =
if pi’=pi then ps’ else getPackage(pks,pi);

Paypals
colset Paypals =
list product PaypalID * PaypalState
upPaypal:
Paypals * PaypalID * PaypalState→ Paypals
fun upPaypal(nil,pi,ps) = (pi,ps)::nil
| upPaypal((pi’,ps’)::pps,pi,ps) =

if pi’=pi then
(pi,ps)::pps

else
(pi’,ps’)::upPaypal(pps,pi,ps);

getPaypal: Paypals * PaypalID→ PaypalState
fun getPaypal((pi’,ps’)::pps,pi) =
if pi’=pi then ps’ else getPaypal(pps,pi);

Warehouses
colset Warehouses =
list product WarehouseID * WarehouseState
upWarehouse:
Warehouses * WarehouseID * WarehouseState→

Warehouses
fun upWarehouse(nil,wi,ws) = (wi,ws)::nil
| upWarehouse((wi’,ws’)::whs,wi,ws) =

if wi’=wi then
(wi,ws)::whs

else
(wi’,ws’)::upWarehouse(whs,wi,ws);

getWarehouse:
Warehouses * WarehouseID→ WarehouseState

fun getWarehouse((wi’,ws’)::whs,wi) =
if wi’=wi then ws’ else getWarehouse(whs,wi);

Carriers
colset Carriers =
list product CarrierID * CarrierState
upCarrier: Carriers * CarrierID * CarrierState→ Carriers
fun upCarrier(nil,ci,cs) = (ci,cs)::nil
| upCarrier((ci’,cs’)::cas,ci,cs) =

if ci’=ci then
(ci,cs)::cas

22

else
(ci’,cs’)::upCarrier(cas,ci,cs);

getCarrier: Carriers * CarrierID→ CarrierState
fun getWarehouse((ci’,cs’)::cas,ci) =
if ci’=ci then cs’ else getWarehouse(cas,ci);

CreditCards
colset CreditCards =
list product CreditCardID * CreditCardState
upCreditCard:
CreditCards * CreditCardID * CreditCardState→ CreditCards
fun upCreditCard(nil,ci,cs) = (ci,cs)::nil
| upCreditCard((ci’,cs’)::ccs,ci,cs) =

if ci’=ci then
(ci,cs)::ccs

else
(ci’,cs’)::upCreditCard(ccs,ci,cs);

getCreditCard: CreditCards * CreditCardID→ CreditCardState
fun getCreditCard((ci’,cs’)::ccs,ci) =
if ci’=ci then cs’ else getCreditCard(ccs,ci);

Orders
colset Orders =
list product OrderID * OrderState
upOrder: Orders * OrderID * OrderState→ Orders
fun upOrder(nil,oi,os) = (oi,os)::nil
| upOrder((oi’,os’)::ors,oi,os) =

if oi’=oi then
(oi,os)::ors

else
(oi’,os’)::upOrder(ors,oi,os);

getOrder: Orders * OrderID→ OrderState
fun getOrder((oi’,os’)::ors,oi) =
if oi’=oi then os’ else getOrder(ors,oi);

The empty state is a state where the various components are set with the default
value of their types. That is for example false for booleans, 0 for int, 0 for class ID
(the identities of the existing objects will be integer greater than 0), nil for lists, etc.
val emptyState = {

23

CLIENT = 0 EC = 0
WH = 0 CARRIER = 0
CC = 0 PP = 0

ORDER = 0 PACK = 0
ANS = false RES = false

clients = nil eCommerces = nil
warehouses = nil carriers = nil
creditCards = nil paypals = nil

orders = nil packages = nil
};

val InitState = let
val (s1,ppi) = mkPaypal(emptyState)
val (s2,cci) = mkCreditCard(State.set PP s1 ppi)
val (s3,ci) = mkCarrier(State.set CC s2 cci)
val (s4,wi) = mkWarehouse(State.set CARRIER s3 ci)
val (s5,ei) = mkECommerce(State.set WH s4 wi)
val (s6,cli) =

mkClient(State.set EC s5 ei ,false,mkName(”X”))
in State.set CLIENT s6 cli end;

In the following we report all the definitions of the types with the relative func-
tions used in the definition of State.

Name
colset NameVal = record cont: STRING;
mkName: STRING→ NameVal - - constructor
fun mkName(str) = {cont=str};

Order
colset OrderID = int;
colset OrderState =
record orderer: NameVal * archived: BOOL;

mkOrder: State * NameVal→ (State * OrderID)
- - constructor
fun mkOrder(s,n) =
(State.set Orders s

upOrder(#orders(s),1,{orderer=n,archived=false},1);
Since we have only a unique order, we assume that its identity is 1. In the general

case, we have to add to the state an extra component to get the first unused identity
(recall that instances identities are numbers).

orderer: State * OrderID→ NameVal
fun orderer(s,oi) = #orderer(getOrder(#orders(s),oi))

Recall from the CPN ML syntax that #orderer is the selector operation of records,
returning the component name orderer.

archive: State * OrderID→ State

24

fun archive(s,oi) =
let val n = #orderer(s,oi) in
State.set Orders s

upOrder(#orders(s),oi,{orderer=n,archived=true}) end

Client
colset ClientID = int;
colset ClientState = record
usingPaypal: BOOL * name: NameVal * control: ClientControl;
colset ClientControl = with Client0;

mkClient: State * BOOL * NameVal→
(State * ClientID) - - constructor

fun mkClient(s,payp,n) =
(State.set Clients s,

upClient(#clients(s),1,
{usingPaypal=pp,name=n,control=Client0}),1)

sendOrder: State * ClientID * ECommerceID→
(State * OrderID)

fun sendOrder(s,ci,ei) = mkOrder(s,name(s,ci))

name: State * ClientID→ NameVal
fun name(s,ci) = #name(getClient(#clients(s,ci))

usingPaypal: State * ClientID→ BOOL
fun usingPaypal(s,ci) =

#usingPaypal(getClient(#clients(s,ci))

answers: State * ClientID→ (State * BOOL)
fun answers(s,ci) = (s,true)

Here, we assume that this client answers yes in any case.

ECommerce

colset ECommerceID = int;
colset Names = list NameVal;
colset ECommerceState =
record cList: Names * control: ECommerceControl;
colset ECommerceControl = with ECommerce0;

mkECommerce: State→
(State * ECommerceID) - - constructor

fun mkECommerce(s) =
(State.set ECommerces s,

25

upECommerce(#eCommerces(s),
{clients= nil,control= ECommerce0},1 ,1)

checkRegistered: State * ECommerceID * NameVal→
(State * BOOL)

fun checkRegistered(s,ei,n) = (s,mem(cList(s,ei),n))
Note that mem(l,e) is a standard function from CPN ML that checks whether

element e belongs to list l.

cList: State * ECommerceID→ Names
fun cList(s,ei) = #cList(getClient(#clients(s,ei))

proposeRegistration: State * ECommerceID * ClientID→
State

The definition of this operation depends on the state machine associated with the
ECommerce class; here, we assume that it has the form of a perfect daisy.
fun proposeRegistration(s,ei,ci) = s

register: State * ECommerceID* NameVal→ State
fun register(s,ei,n) =
let val oldEs = getECommerce(#eCommerces(s),ei) in

State.set ECommerces s
upECommerce(#eCommerces(s),
{cList= append(#cList(oldEs),n),

control= #control(oldEs)},ei) end
Again, the definition of this operation depends on the state machine associated

with the ECommerce class; here, we assume that it has the form of a perfect daisy.

archiveOrder: State * ECommerceID * OrderID→ State
fun archiveOrder(s,ei,oi) =
let val n = orderer(s,oi) in

State.set Orders s
upOrder(#orders(s),oi,
{orderer=n,archived=true}) end;

Again, the definition of this operation depends on the state machine associated
with the ECommerce class; here we assume that it has the form of a perfect daisy;
however, to comply with the post condition, the state of the order is changed.

Warehouse

colset WarehouseID = int;
colset WarehouseState = record control: WarehouseControl;
WarehouseControl = with Warehouse0;

26

mkWarehouse: State→ (State * WarehouseID)
- - constructor

fun mkWarehouse(s) =
(State.set Warehouses s

upWarehouse(#warehouses(s),
{control= Warehouse0},1 ,1)

prepare: State * WarehouseID * OrderID→
(State * PackageID)

Again, the definition of this operation depends on the state machine associated
with the Warehouse class.
fun prepare(s,wi,oi) = mkPackage(s)

Carrier

colset CarrierID = int;
colset CarrierState = record control: CarrierControl;
colset CarrierControl = with Carrier0 ;

mkCarrier: State→ (State * CarrierID) - - constructor
fun mkCarrier(s) =
(State.set Carriers s

upCarrier(#carriers(s),{control= Carrier0},1),1)

deliver: State * CarrierID * PackageID→ State
fun deliver(s,ci,pi) = s

The definition of this operation depends on the state machine associated with the
Carrier class.

confirmDelivered:
State * CarrierID * PackageID * ECommerceID→ State
fun confirmDelivered(s,ci,pi) = s

The definition of this operation depends on the state machine associated with the
Carrier class.

CreditCard

colset CreditCardID = int;
colset CreditCardState = record control: CreditCardControl;
colset CreditCardControl = with CreditCard0;
mkCreditCard: State→ (State * CreditCardID)

- - constructor
fun mkCreditCard(s) =
(State.set CreditCards s

upCreditCard(#creditCards(s),
{control= CreditCard0},1),1)

27

pay: State * CreditCardID * OrderID→ State
fun pay(s,ci,oi) = s

The definition of this operation depends on the state machine associated with the
CreditCard class.

Paypal

colset PaypalID = int;
colset PaypalState = record control: PaypalControl;
colset PaypalControl = with Paypal0;

mkPaypal: State→ (State * PaypalID) - - constructor
fun mkPaypal(s) =
(State.set Paypals s

upPaypal(#paypals(s),{control= Paypal0},1,1)

pay: State * PaypalID * OrderID→ State
fun pay(s,ppi,oi) = s

The definition of this operation depends on the state machine associated with the
Paypal class.

Package

colset PackageID = int;
colset PackageState = record control: PackageControl;
colset PackageControl = with Package0;

mkPackage: State→ (State * PackageID) - - constructor
fun mkPackage(s) =
(State.set Packages s

upPackage(#packages(s),{control=Package0},1,1)

6.3 Full Translation of the Activity Diagram

The CPN resulting from the translation of the activity diagram modeling the behav-
ior of the business process EC is shown in Fig. 6 and 7.

We give in Fig. 8 the whole CPN model as in CPN Tools.

28

Fig. 6 Resulting colored Petri net (part 1)

29

Fig. 7 Resulting colored Petri net (part 2)

30

Fig. 8 Resulting colored Petri net (exported from CPN Tools)

31

	Activity Diagrams Patterns for Modeling Business Processes (Report version)
	Étienne André, Christine Choppy, and Gianna Reggio
	Introduction
	Business Process Modeling
	Precise Business Process Models
	Precise Activity Diagrams

	Translation of the Activity Diagram
	Colored Petri Nets with Global Variables
	Translation

	Translation of the Static View and of the Participant List
	State Definition
	Expressions
	Initial Process Execution State

	Conclusion and Future Work
	References
	Appendix
	Full Translation of the Static View
	Translation of the Static View and the Participant List
	Full Translation of the Activity Diagram

