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1 Context and objectives

In real-life applications, probabilities are often used as a building block that allows
abstracting from physical constraints or unknown environments. While parameters
are used in order to reason in a formal way on unknown (or purposefully under-
specified) aspects of a system, probabilities allow for abstracting some aspects in
order to “simplify” the system under study: these aspects are approximated using
probability distributions, often based on partial information obtained through em-
pirical analysis. In a way, one could say that parameters target aspects of the system
that need to be studied while probabilities target aspects of the system that are in-
consequential or too complex to model in a formal way. By their complementary
nature, probabilistic and parametric modelling/analysis can thus be combined in
several ways. In Task 5, we focus on discrete probabilistic models with parameters
that can either range on the discrete aspects of the system or on the probabilities
themselves.

In the following, we therefore present our main contributions along these two
axes. Worth to notice, a postdoctoral student (Paulin Fournier) has been hired to
work on this task, and has been involved in several of the contributions presented
hereafter. The main publications associated to those contributions are attached at
the end of the document.

2 Probabilistic Models with Discrete Parameters

Our first contributions target the field of probabilistic models with discrete param-
eters. In a first line of work [ADL17, ADL19], we have extended the Event-B mod-
elling formalism, a modelling based on refinement which notably allows to describe
parametric aspects of a system, to the probabilistic setting. In a second line of
work [DEB17], we have developed a new method based on Statistical Model Check-
ing in order to parametrize existing probabilistic models coming from other scien-
tific fields. This method has in particular been successfully applied to the model of
a jellyfish organism (article under review at the moment).



2.1 Probabilistic Event-B

Our first contribution has been to extend a modelling formalism called Event-B to
the probabilistic setting. Event-B [Abr10] is a proof-based formal method used for
discrete systems modelling. It is equipped with Rodin [ABH" 10], an open toolset for
modelling and proving systems. This toolset can easily be extended, which makes of
Event-B a good candidate for introducing probabilistic reasoning in a proof-based
modelling formalism. The development process in Event-B is based on refinement:
systems are typically developed progressively using an ordered sequence of mod-
els, where each model contains more details than its predecessor. Refinement al-
lows a step-by-step description of the behaviour of systems, providing an efficient
way to give a detailed description of their behaviour. Notably, events in Event-B
can be parameterized using discrete parameters. A few attempts had been previ-
ously made in order to incorporate probabilistic aspects in Event-B: In [MHAO05],
Abrial et al. have summarised the difficulties of embedding probabilities into Event-
B. This paper suggests that probabilities need to be introduced as a refinement of
non-determinism. In Event-B, non-determinism occurs in several places such as
the choice between enabled events in a given state, the choice of the parameter
values in a given event, and the choice of the value given to a variable through
some non-deterministic assignments. To the best of our knowledge, the existing
works on extending Event-B with probabilities have mostly focused on refining non-
deterministic assignments into probabilistic assignments. Other sources of non-
determinism have been left untouched. In [HHO07], Hallerstede et al. propose to
focus on a qualitative aspect of probability. They refine non-deterministic assign-
ments into qualitative probabilistic assignments where the actual probability values
are not specified, and adapt the Event-B semantics and proof obligations to this new
setting. In [Yil10], the same authors study the refinement of qualitative probabilis-
tic Event-B models and propose a tool support inside Rodin. Other works [TTLO09,
TTL15, TTL10] have extended this approach by refining non-deterministic assign-
ments into quantitative probabilistic assignments where, unlike in [HHO07], the ac-
tual probability values are specified. This new proposition is then exploited in order
to assess several system properties such as reliability and responsiveness.

In this setting, we have pursued these works by proposing a probabilistic exten-
sion of Event-B that allows to introduce probabilities in other places than proba-
bilistic assignments. In particular, we have allowed to replace every source of non-
determinism in Event-B (assignments, choice between events and parameter val-
ues) with probabilistic choices, as well as to produce mixed models that combine
non-determinism in some places and probabilities in others. We have also studied
the role of refinement and probabilistic refinement in this new setting and proposed
operations for automatically transforming any (part of a) non-deterministic model
with a probabilistic one. This line of work has led to several publications, in an in-
ternational conference (JADL17]) and in an international journal ([ADL19]).

2.2 Parameter synthesis using SMC

In a different setting, we have taken advantage of existing collaborations with col-
leagues from other scientific fields to propose a new method for parameterizing for-
mal models of natural systems using Statistical Model Checking.

The modelling of the biological carbon pump (BCP) in the global ocean is still
at its infancy because its biological component, which is known to be complex, is



extremely simplified. In such a context, models that require many unknown and
non-linear parameters, allowing to scale from physiological features to ecosystems,
appear as great tools to account for this complexity. Indeed, modelling the BCP must
integrate parameters to fit both physiological and ecological behaviours that are to-
gether very difficult to determine. In particular, such a difficulty occurs for mod-
elling the jellyfish Pelagia noctiluca. This gelatinous zooplanktonic species have
high abundance in the Mediterranean Sea which could significantly contribute to
the BCP via the production of detritus or faecal pellets that impact vertical fluxes
of biogenic and particulate organic matter (POM). However, in spite of their im-
portant abundance and biomass, this planktonic compound remains vaguely rep-
resented in biogeochemical models because of global uncertainties about its eco-
physiology. To overcome this issue, we proposed for the first time the use of the
Statistical Model Checking Engine (SMCE) approach. Already standard in engineer-
ing, this probability-based computational framework considers sets of parameters
as a whole and suggests a combinatorial search to decipher parameters that fit alto-
gether distinct experimental data. Here, the SMCE was applied simultaneously on
both exhaustive laboratory-culturing experiments of P. noctiluca and in situ cruise
observations. Contrary to other parameter inference techniques, the SMCE, built
on generic gelatinous ecophysiological constraints, seeks for sets of parameters that
fit both local and global knowledge while considering uncertainties. While relying
on intensive computing resources, SMCE allows an accurate estimation of ecophys-
iological rates of P. noctiluca as a function of temperature and prey concentrations,
and under varying parameter inferences. In particular, the proposed model cor-
rectly reproduced jellyfish growth and degrowth in laboratory and environmental
condition thanks to five fundamental physiological processes: filtration, respira-
tion, reproduction, excretion and egestion. Moreover, besides accurate simulations,
SMCE allowed to reason on multi-scale knowledge by showing necessary uncertain-
ties on parameters to combine both laboratory and in situ conditions, which is of
great help to underline missing knowledge regarding physiological processes. In
the broader BCP context, this modelling framework was completed with new ob-
servations of remineralization rates and sinking speeds of particulate organic car-
bon (POC) produced by P. noctiluca after digestion. Those POC aggregates have
high sinking speed (384 — 1329m.d™!) and low remineralization rates (0.034d ).
Such rates, coupled with jellyfish abundances in the northwestern Mediterranean
Sea,allowed to estimate carbon fluxes between the jellyfish and its preys as well as
its contribution to carbon export.

3 Probabilistic Models with Probabilistic Parameters

In another setting, we have also contributed to the field of probabilistic paramet-
ric models with parameters ranging on transition probabilities. On the one hand,
we have proposed a new modelling formalism called parametric Interval Markov
Chains [Dell5], that extends Interval Markov Chains by allowing the endpoint of the
intervals representing transition probabilities to be parametric. In this context, we
have proposed methods for deciding the consistency of such models as well as for
synthesising the set of parameter values ensuring such properties.

On the other hand, we have developed new formal verification techniques
adapted to probabilistic systems with parameters ranging on the probabilities. This
new method, called parametric Statistical Model Checking, is an extension of Sta-



tistical Model Checking to the parametric context, allowing to produce functions of
the parameters that represent the (parametric) probability of satisfying given prop-
erties.

3.1 Parametric Interval Markov Chains

Discrete time Markov chains (MCs for short) are a standard probabilistic modelling
formalism that has been extensively used in the literature to reason about
software [WT94] and real-life systems [HDR10]. However, when modelling real-life
systems, the exact value of transition probabilities may not be known precisely. Sev-
eral formalisms abstracting MCs have therefore been developed. Parametric Markov
chains [AHV93b] (pMCs for short) extend MCs by allowing parameters to appear
in transition probabilities. In this formalism, parameters are variables and transi-
tion probabilities may be expressed as polynomials or rational functions over these
variables. A given pMC represents a potentially infinite set of MCs, obtained by
replacing each parameter by a given value. pMCs are particularly useful to rep-
resent systems where dependencies between transition probabilities are required.
Indeed, a given parameter may appear in several distinct transition probabilities,
which requires that the same value is given to all its occurrences. Interval Markov
chains [JL91] (IMCs for short) extend MCs by allowing precise transition probabili-
ties to be replaced by intervals, but cannot represent dependencies between distinct
transitions. IMCs have mainly been studied with three distinct semantics interpreta-
tions. Under the once-and-for-allsemantics, a given IMC represents a potentially in-
finite number of MCs where transition probabilities are chosen inside the specified
intervals while keeping the same underlying graph structure. The interval-Markov-
decision-process semantics (IMDP for short), such as presented in [CSH08, SVA06],
does not require MCs to preserve the underlying graph structure of the original IMC
but instead allows a finite “unfolding” of the original graph structure: new probabil-
ity values inside the intervals can be chosen each time a state is visited. Finally, the
at-every-step semantics, which was the original semantics given to IMCs in [JL91],
does not preserve the underlying graph structure too while allowing to “aggregate”
and “split” states of the original IMC in the manner of probabilistic simulation.

Model-checking algorithms and tools have been developed in the context of
pMCs [D]JJ*15, HHWZ10, KNP11] and IMCs with the once-and-for-all and the IMDP
semantics [CK15, BLW13]. State of the art tools [D]J"15] for pMC verification com-
pute a rational function on the parameters that characterises the probability of sat-
isfying a given property, and then use external tools such as SMT solving [DJJ"15]
for computing the satisfying parameter values. For these methods to be viable in
practice, the allowed number of parameters is quite limited. On the other hand, the
model-checking procedure for IMCs presented in [BLW13] is adapted from machine
learning and builds successive refinements of the original IMCs that optimise the
probability of satisfying the given property. This algorithm converges, but not nec-
essarily to a global optimum. It is worth noticing that existing model checking pro-
cedures for pMCs and IMCs strongly rely on their underlying graph structure (. e.,
respect the once-and-for-all semantics). However, in [CSHO08] the authors perform
model checking of w-PCTL formulas on IMCs w.r.t. the IMDP semantics and they
show that model checking of LTL formulas can be solved for the IMDP semantics
by reduction to the model checking problem of w-PCTL on IMCs with the IMDP se-
mantics. For all that, to the best of our knowledge, no solutions for model-checking
IMCs with the at-every-step semantics have been proposed yet.



In a first line of work [Del15, DLP16], we have introduced a new formalism called
Parametric interval Markov chains (pIMCs for short), that generalise both IMCs and
pMCs by allowing parameters to appear in the endpoints of the intervals specify-
ing transition probabilities, and studied basic properties such as consistency and
reachability.

In a second line of work [BDL*17, BDF*18], we study the difference between
pIMCs and other Markov Chain abstractions models and investigate three semantics
for IMCs: once-and-for-all, interval-Markov-decision-process, and at-every-step. In
particular, we prove that all three semantics agree on the maximal/minimal reach-
ability probabilities of a given IMC. We then investigate solutions to several param-
eter synthesis problems in the context of pIMCs - consistency, qualitative reacha-
bility and quantitative reachability — that rely on constraint encodings. Finally, we
propose a prototype implementation of our constraint encodings with promising
results.

3.2 Parametric SMC

As made clear in the previous sections, modelling and abstracting are widely ac-
cepted as crucial steps in the understanding and study of real-life systems. In many
cases, it is necessary to incorporate probabilities in the models to cope with uncer-
tainty, to abstract complex behaviour, or to introduce randomness. Markov chains
and Markov decision processes, in particular, have been widely studied.

Though exact methods are known for such models they usually require solving
huge equation systems, and therefore have scalability issues with the biggest mod-
els. A way to avoid this complexity is to consider approximation techniques through
simulation. In particular, Monte Carlo simulation techniques allow to infer the real
behaviour of the system via independent simulations up to a computable precision.

The values given to probabilistic transitions can have a huge impact on the be-
haviour of the system. In the early stages of development, it may therefore be useful
to have an insight on how the values of transition probabilities affect the system in
order to be able to set the best value in terms of convergence speed for example. To
this purpose, parametric Markov chains have been introduced in [AHV93a]. They
allow to replace the probability values given to transitions by parameter variables,
and therefore to be able to give guarantees on the system for all possible values of
the parameters.

The aim of this line of work is to apply Monte Carlo simulation to parametric
Markov chains in order to approximate the probability of the considered property
as a polynomial function of the parameters. In addition, we also derive a confidence
interval on the obtained probabilities as a polynomial function of the parameters.
Aside from using parameterized models, which comes in particular with better flexi-
bility in the modelling, robustness of the results, and usability at the earliest stages of
conception, the expected benefits of our new approach are largely those of such sim-
ulation techniques for non-parameterized Markov chains: better scalability through
areduced memory footprint, a complexity that is largely independent of the model
complexity (be it in terms of size of the state-space, or of features used as long as
they are executable). More specific to our approach, since we derive polynomial
function approximations, where exact methods lead to rational functions, these re-
sults should be easier to post-process. Finally the complexity of our approach is
largely independent of the number of parameters.

This technique has been applied to a real-life case study in order to demonstrate



its usefulness and scalability. This has led to a publication in an international con-
ference [BAD*19].
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Abstract Event-B is a proof-based formal method used for
discrete systems modelling. Several works have previously
focused on the extension of Event-B for the description of
probabilistic systems. In this paper, we propose an exten-
sion of Event-B that allows designing fully probabilistic
systems as well as systems containing both probabilistic and
non-deterministic choices. Compared to existing approaches
which only focus on probabilistic assignments, our approach
allows expressing probabilistic choices in all places where
non-deterministic choices originally appear in a standard
Event-B model: in the choice between enabled events, event
parameter values and in probabilistic assignments. Further-
more, we introduce novel and adapted proof obligations
for the consistency of such systems and introduce two key
aspects to incremental design: probabilisation of existing
events and refinement through the addition of new proba-
bilistic events. In particular, we provide proof obligations for
the almost-certain convergence of a set of new events, which
is arequired property in order to prove standard refinement in
this context. Finally, we propose a fully detailed case study,
which we use throughout the paper to illustrate our new con-
structions.
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1 Introduction

As systems become more and more complex, with ran-
domised algorithms [30], probabilistic protocols [3] or failing
components, it is necessary to add new modelling features in
order to take into account complex system properties such as
reliability [39], responsiveness [ 14,38], continuous evolution
and energy consumption. One of these features is probabilis-
tic reasoning to introduce uncertainty in a model or to mimic
randomised behaviour. Probabilistic modelling formalisms
have therefore been developed in the past, mainly extending
automata-based formalisms [32,34]. Abstraction [16,26],
refinement [25] and model-checking algorithms [8,11] have
been successfully studied in this context. However, the intro-
duction of probabilistic reasoning in proof-based modelling
formalisms has been, to the best of our knowledge, quite lim-
ited[5,9,17,18,21,23,24,33]. Translations from proof-based
models are always possible. However, the use of automata-
based verification in this context is inconvenient due to the
state space explosion in the translation.

Event-B [1] is a proof-based formal method used for dis-
crete systems modelling. It is equipped with Rodin [2], an
open toolset for modelling and proving systems. This toolset
can easily be extended, which makes Event-B a good candi-
date for introducing probabilistic reasoning in a proof-based
modelling formalism. The development process in Event-B
is based on refinement: systems are typically developed pro-
gressively using an ordered sequence of models, where each
model contains more details than its predecessor. Refinement
allows a step-by-step description of the behaviour of systems,
providing an efficient way to give a detailed description of
their behaviour.

So far, several research works have focused on the exten-
sion of Event-B to allow the expression of probabilistic
information in Event-B models. In [29], Abrial et al. have

@ Springer
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Fig. 1 How to introduce probabilities within Event-B?

summarised the difficulties in embedding probabilities into
Event-B. This paper suggests that probabilities need to be
introduced as a refinement of non-determinism. In Event-B,
non-determinism occurs in several places such as the choice
between enabled events in a given state, the choice of the
parameter values in a given event, and the choice of the value
given to a variable through some non-deterministic assign-
ments. To the best of our knowledge, the existing works on
extending Event-B with probabilities have mostly focused
on refining non-deterministic assignments into probabilis-
tic assignments. Other sources of non-determinism have
been left untouched. In [19], Hallerstede et al. proposed to
focus on a qualitative aspect of probability. They refined
non-deterministic assignments into qualitative probabilis-
tic assignments where the actual probability values are not
specified, and adapted the Event-B semantics and proof
obligations to this new setting. In [40], the same authors
studied the refinement of qualitative probabilistic Event-B
models and proposed a tool support inside Rodin. Other
works [35-37] have extended this approach by refining
non-deterministic assignments into guantitative probabilis-
tic assignments where, unlike in [19], the actual probability
values are specified. This new proposition is then exploited
in order to assess several system properties such as reliability
and responsiveness.

Unfortunately, other sources of non-determinism than
assignments have been left untouched, although the authors
argue that probabilistic choice between events or parameter

@ Springer

values can be achieved by transformations of the models that
embed these choices inside probabilistic assignments. While
this is unarguably true, such transformations are not trivial
and greatly impede the understanding of Event-B models.
Moreover, these transformations would need to be included
in the refinement chain when designers need it, which would
certainly be counterintuitive to engineers.

In this paper, we extend these works by proposing a prob-
abilistic extension of Event-B and presenting some ways of
introducing probabilistic reasoning within Event-B. As the
design process within Event-B is based on refinement, we
propose to provide a standard description of a system by a set
of models related by refinement. According to this modelling
process, probabilities can be introduced in several manners
that are illustrated in Fig. 1.

In this figure, the vertical axis represents the introduction
of more details in the model, while the horizontal axis rep-
resents the introduction of probabilistic information. Several
types of models stand out:

— Models on the left side of the picture are standard Event-
B models that only contain non-deterministic choices but
no probabilistic information;

— Models on the right side of the picture are fully probabilis-
tic Event-B models where all choices are probabilistic;

— Models in the centre of the picture are mixed Event-B
models, where both non-deterministic and probabilistic
choices are present.
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Depending on the system that is being developed, the
development process could always stay on the left side (when
the system does not have any probabilistic aspect) and there-
fore end in the bottom left of the picture, or the development
process could move to the right side and either end in the
bottom right when the system is fully probabilistic or in the
middle when the system contains both probabilistic and non-
deterministic aspects.

In any case, there are many ways both to add stan-
dard (non-deterministic) details in the model and to add
probabilistic information. Figure 1 provides three generic
development processes (green, red and blue), which we detail
below.

Assuming the model under development is fully proba-
bilistic, one could consider starting with an abstract non-
deterministic version of the model and then progressively
refining it in a standard way until a satisfying level of details
is achieved. Once enough details have been introduced, all
non-deterministic choices can be refined into probabilistic
choices in one shot (this last step is called probabilisation),
as depicted in blue in Fig. 1.

Obviously, one could also consider starting with the
probabilisation step, therefore obtaining an abstract fully
probabilistic model. From this model, details can then be
introduced through probabilistic refinement, as depicted in
red in Fig. 1. While the fully probabilistic counterpart of the
standard Event-B refinement still eludes us at this point, we,
nevertheless, propose some restricted refinement steps for
fully probabilistic systems through context refinement and
the introduction of new probabilistic events.

Finally, the designer could decide to interleave the intro-
duction of new details in the model with the introduction of
probabilistic information. In this context, intermediate mod-
els are mixed models and one has to consider the standard
refinement of mixed models, the partial probabilisation oper-
ation (that only turns some of the non-deterministic choices
into probabilistic choices), the introduction of probabilis-
tic events in a standard (non-deterministic) model and the
introduction of standard (non-deterministic) events in a prob-
abilistic or mixed model. That last development process is
depicted in green in Fig. 1.

In this paper, we therefore provide the scientific founda-
tions in order to allow all the design possibilities presented
above in the Event-B framework. We therefore propose some
new syntactic elements for writing probabilistic and mixed
Event-B models in the Event-B framework. The consistency
of such models is then expressed, as in standard Event-B, in
terms of proof obligations. In order to prove the correctness
of our approach, we show that the operational semantics of
such models can be expressed in terms of (potentially infinite-
state) Markov chains—for fully probabilistic models—and
(potentially infinite-state) Markov decision processes—for

mixed Event-B models—therefore resembling the LTS oper-
ational semantics of standard Event-B models.

As explained above, we propose several operations for
introducing details and probabilistic aspects in standard-
/mixed/probabilistic Event-B models. In particular, we focus
on the introduction of new probabilistic events in a given
model. In the standard Event-B setting, convergence is a
required property for proving a refinement step as soon
as new events are introduced in the model. The counter-
part property in the probabilistic setting is almost-certain
convergence, which has already been studied in [21,28] in
the context of probabilistic programs and the standard B
method, and in [19,22] in the context of non-deterministic
Event-B models with only probabilistic assignments. While
the authors of [21,28] propose hypotheses under which
probabilistic while loops almost-certainly converge, these
hypotheses cannot be directly applied to our setting as they
would require a translation from the probabilistic Event-B
setting to the standard probabilistic B setting which is not
trivial. In addition, some new conditions would need to be
exhibited in the probabilistic Event-B setting that ensure
that the hypotheses on the standard probabilistic B setting
are met. In the paper, we instead choose to exhibit condi-
tions at the probabilistic Event-B level and show that these
conditions ensure almost-certain convergence of the opera-
tional semantics of the model. On the other hand, [19,22]
focused on almost-certain convergence at the probabilistic
Event-B level for probabilistic Event-B models where prob-
abilities only appear inside probabilistic assignments, but
cannot appear in the choice between enabled events or in
the choice of parameter values. However, we show that the
proof obligations developed in this context are not suffi-
cient for our models. We therefore propose new sufficient
conditions, expressed in terms of proof obligations, for the
almost-certain convergence of a set of fully probabilistic
events. While the conditions we exhibit are more con-
strained than those from [19] concerning events and param-
eters, they are also less restrictive concerning probabilistic
assignments.

Finally, some of the results presented in this paper are
being implemented in a prototype plugin for Rodin, which
we briefly present in the conclusion. Note that this paper is an
extension of [4], where we have first introduced a fully prob-
abilistic extension of Event-B. Compared to [4], which only
focused on fully probabilistic Event-B, this paper provides
a study of mixed Event-B models, where non-deterministic
choices and probabilistic choices can be present, and explains
how probabilistic information can be introduced during the
development process in Event-B through probabilisation of
standard events and introduction of new probabilistic events
in all kind of Event-B models (standard, mixed, probabilis-
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tic). This paper also provides new discussions, figures and
examples illustrating in better details contributions from [4].

Outline The paper is structured as follows. Section 2 presents
the scientific background of this paper in terms of transition
systems and Event-B, and Sect. 3 introduces our running
case study: a simple peer-to-peer protocol. In Sect. 4, we
introduce the syntax of fully probabilistic models and then
investigate the consistency and operational semantics of such
models. Section 5 then provides a similar study in the context
of mixed Event-B models. The introduction of probabilistic
detailed information in standard/mixed/probabilistic Event-
B models is explained in Sects. 6 and 7. Finally, Sect. 8
presents our extension to the Rodin platform and concludes
the paper.

2 Background

In this section, we introduce notations for (probabilistic)
transition systems as well as basic elements of the Event-
B method that will be used throughout the paper.

2.1 Transition systems

In the following, let Dist(S) denote the set of distributions
over a given set S, i.e. the set of functions § : § — [0, 1]
such that ) ¢ 8(s) = 1.

Labelled transition system [8] A labelled transition system
(LTS for short) is a tuple M=(S, Acts, —, so, AP, L) where
S is a set of states, Acts is a set of actions, — C § x Acts
x S is a transition relation, sy C S is the initial state, AP is
a set of atomic propositions, and L : § — 247 is a labelling
function.

Probabilistic labelled transition system [8] A probabilistic
labelled transition system (PLTS for short) is a tuple M=(S,
Acts, P, sg, AP, L) where S is a set of states, Acts is a set
of actions, so € S is the initial state, AP is a set of atomic
propositions, L: S — AP is a labelling function, and P: S
x Acts x § — [0, 1] is the transition probability function.
If for each state s € S we have ) /g jcacrs P(5,a,5") =1,
then the PLTS is a discrete-time Markov chain (DTMC for
short).

Markov decision process [8] A Markov decision process
(MDP for short) is a tuple M=(S, Acts, P, lini;, AP, L)
where S is a countable set of states, Acts is a set of actions,
P € S x Acts x Dist(S) is the transition probability func-
tion, l;,;; € Dist(S) is the initial distribution, A P is a set of
atomic propositions, and L : § — 247 is a labelling function.
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An action « is enabled in state s if and only if there exists a
distribution § € Dist(S) such that (s, «, §) € P.

2.2 Event-B

Event-B [1] is a formal method used for the development of
complex discrete systems. Systems are described in Event-B
by means of models. For the sake of simplicity, we assume in
the rest of the paper that an Event-B model is expressed by a
tuple M=(2,1(v),V(),Evts,Init) where v= {v; ...v,} is a set
of variables, |(v) is an invariant, V() is an (optional) variant
used for proving the convergence of the model, Evis is a
set of events, and Inite Evts is the initialisation event. The
invariant | () is a conjunction of predicates over the variables
of the system specifying properties that must always hold.

o~

e =
any 7 where
G; (r,0)
then
S (t,0)
end

Events An event has the following structure (see Figure on
the side), where €; is the name of the event, 7 = {t; ...t,} rep-
resents the (optional) set of parameters of the event, G;(7,)
is the (optional) guard of the event and S;(7,v) is the action
of the event. An event is enabled in a given valuation of the
variables (also called a configuration) if and only if there
exists a parameter valuation such that its guard G;(7,0) is
satisfied in this context. The action S;(f,v) of an event may
contain several assignments that are executed in parallel. An
assignment can be expressed in one of the following forms:

— Deterministic assignment: x:= E(7, 9) means that the
expression E(z,7) is assigned to the variable X.

— Predicate (non-deterministic) assignment:
X :| Q(#,v,%,X’) means that the variable X is assigned a new
value X’ such that the predicate Q(7,v,X,X’) is satisfied.

— Enumerated (non-deterministic) assignment:
x :€ {E{(,0) ...E,(f,0)} means that the variable X is
assigned a new value taken from the set
{E1(z,0) ...EL(f,0)}.

Before—after predicate and semantics The formal semantics
of an assignment is described by means of a before—after
predicate (BA) Q(7,0,x,X’). This BA describes the relation-
ship between the values of the variable before (X) and after
(X+) the execution of an assignment. Before—after predicates
are as follows:

— the BA of a deterministic assignment is X'= E(z,?),
— the BA of a predicate assignment is Q(7,7,X,X’), and
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— the BA of an enumerated assignment is X'€{E;(z,v)
..Ea(z,0)}.

Recall that the action S (7,v) of a given event € ; may con-
tain several assignments that are executed in parallel. Assume
that vy ... v; are the variables assigned in S;(f,v) — vari-
ablesV;y ...V, are thus not modified —and let Q(7,v,v{,V'1)
...Q(7,v,v;,V';) be their corresponding BA. Then, the BA
S;(t,v,v’) of the event action S (z,v) is:

’ S;(7,0,0) = Q(7,0,v1,V'1) A ... AQEEDVV) A (Vig1=Vigr) Ao (Vi=Vy)

Proof obligations The consistency of a standard Event-B
model is characterised by means of proof obligations (POs)
which must be discharged. Discharging all the necessary POs
allows to prove that the model is sound with respect to some
behavioural semantics. Formal definitions of standard Event-
B POs are given in [1]. In the following, we only recall the
most important of them: (event/INV) for invariant preser-
vation, which states that the invariant still holds after the
execution of each event in the Event-B model M. Given an
event e; with guard G;(f,v) and action S;(7,v), this PO is
expressed as follows:

[ @) A Gili.0) A Si(0.0) F 1(D) (event/INV)]

Operational semantics As established in [10], the semantics
of an Event-B model M=(v,l(v),V(v),Evts,Init) is expressed
in terms of a labelled transition system (LTS) M=(S, Acts,
T, so, AP, L) where § is a set of states, each state in S being
uniquely identified by its label; Acts is the set of actions
(event names); s € S is the initial state obtained by executing
the Init event; A P is the set of atomic propositions: a set of
predicates that correspond to the valuations of v and satisfy
the invariant 1(0); L: S — AP is a labelling function that
provides the valuations of the variables v in a given state; and
T C S x Acts x § is the transition relation corresponding
to the actions of the events of M.

2.3 Refinement in Event-B

In Event-B, the process of modelling systems is based on
the theory of refinement. Many research works have focused
in the development of the theory of refinement [6,7,28]: it
appears from the literature that refinement is used in two
related concepts in computer science. The first one considers
refinement as a top-down program development method-
ology when the system is firstly described by an abstract
specification and progressively refined by other ones. Each
abstract specification will be more detailed, and new details
can be introduced during refinement. The second concept

concerns the preservation of correctness between abstract
and refined specifications.

Event-B refinement supports both concepts: it is a mech-
anism for introducing details about the static and dynamic
properties of a model while preserving correctness. For
the static part, refinement in Event-B allows a detailed
description of the state space by the introduction of new vari-
ables (i.e. data/context refinement [15,20]). Concerning the
dynamic aspects, refinement in Event-B also allows a more
detailed description of the execution of the system by adding
new events processing the new introduced variables or by
giving more details on the events of an abstract model. For
more details on the theory of refinement in Event-B, we refer
the reader to the action systems formalism [6] which has
inspired the development of Event-B.

In Event-B, under a number of conditions expressed as
proof obligations, a concrete model N=(w, J(v,w),Evts,,
Init.) may refine an abstract model M=(v,l(v),V(v),Evts, Init).
In this case, w is a set of variables containing some (pre-
served) variables of the abstract model and some new
variables introduced by refinement, J(v,w) is an invariant
that must provide a relation between the (removed) abstract
variables (v) and the new concrete variables (w), Evts, is the
set of concrete events that contains both the refined events
(Evts, N Evis,) and the new events introduced by refine-
ment (Evts, \ Evts,), and Init, is the concrete initialisation
event.

Events Each abstract event from the set Evts, can be refined
by one or more concrete events. Moreover, several events
from the abstract set Evts, can be refined a single one. The
first case is called splitting, while the second one is called
merging.

ec=
e = refines €1
a4 any it where
any  where G_ (i )
G (7,0) Tho
with
then ey~
S, (i.7) Wi_c(t,u,v,v’,w,w’)
en[a ’ then
S_c(u,w)
end

In this paper, we do not treat the cases of event split-
ting and merging, and we only consider the refinement of an
abstract event €, by only one concrete event €, as follows.
We remark that the event €. may contain one more compo-
nent Wi.(¢,i,0,0",w,w’) which denotes a witness. A witness
links the abstract parameters 7 and the abstract variables v’
to concrete parameters i and concrete variables w’.

As the Event-B refinement process allows a more detailed
description of the execution of the system, it is necessary to
introduce new events (Evts.\Evts,) which characterise the
evolution of the new added variables during refinement.
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Proof obligations In Event-B refinement, the behaviour of
the concrete model must be compatible with the behaviour
of the abstract one. This constraint is verified and maintained
by some proofs obligations dedicated to refinement. All the
refinement POs are presented in [1]. In the following, we
recall only the most important ones.

For the refinement of an abstract event €, by a concrete
event €., the two following POs must be satisfied:

1. Guard strengthening The guard of e, is as least as
strong as the guard of e,:

1(8) A J(@3,0) A Ge(it,w) A Wi (F,it,,0",0,0°)
l_
G.(r,0)

(grd/STRENGTH)

2. Simulation The action of e, simulates the action of e,:

1) A J(@,0) A Ge(it,0) A Selit,w,w)
(act/SIM)

F S.(t,0,0")

The last ensures that when a concrete event is executed, what
it does is not contradictory with what the abstract event does.

When introducing new events during refinement, it is then
necessary to show that their introduction cannot prevent the
system from behaving as specified in the abstract model.
In particular, it is necessary to show that such new events
are “convergent”, in the sense that they cannot keep control
indefinitely: at some point the system has to stop executing
new events in order to follow the behaviour specified in its
abstract model.

In order to prove that a set of events is convergent in Event-
B, we have to introduce a natural number expression V(v),
called a variant, and show that all convergent events strictly
decrease the value of this variant. As a consequence, when
the variant hits zero, it is guaranteed that no convergent event
can be performed. That leads to two POs to be discharged:

1. Numeric variant Under the guard G;(z,v) of each con-
vergent event €;, the variant V(v) is greater or equal to
0.

| 1(5) A Gi(7,0) - V(5)eNAT (eventivar/NAT) |

2. Convergence The action S;(¢,0) of each convergent
event €; must always decrease the variant V(v).

() A Gi(7,8) F V7. Si(f,5,0)= V() <V(d)
VAR)

(event/-
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3 Running example: simple peer-to-peer protocol

We now introduce our running example, based on a simpli-
fied scenario of a peer-to-peer protocol, based on BitTorrent
[12]. The description of the complete case study can be found
in [31]. The model considers a set of N clients trying to down-
load a file that has been partitioned into K blocks. Initially,
no block has been downloaded by any client. The protocol
ends when all the clients have successfully downloaded all
the blocks.

Initial protocol model The model P2P; given in Fig. 2
presents an abstract Event-B specification of the protocol.
It represents a general abstraction of the behaviour of the
protocol with no details included. At this level, the state
of the protocol is described by means of one variable DB.
This variable contains a matrix which indicates for each
client ce1..N and each block be1..K whether the client
has already downloaded the block (DB(c— b)=finished) or
not (DB(c+—bc=empty). Initially, no block has been down-
loaded by any client.

At this level of abstraction, we only consider one event
(AlIDL) describing in one statement the whole execution
of the protocol. magicDB is a parameter chosen in such
a way that for all client ¢ € 1..N and block b € 1..K,
we have magicDB(c1+—b1)=finished. The substitution
DB := magicDB corresponds to the (somehow magical)
download of all the blocks by all the clients in one shot.
Notice that in reality, the download of all the blocks of the
file by all the clients is not done in one shot. It is instead made
gradually by successive attempts. Introducing these attempts
is the purpose of the first refinement, which we present here-
after.

Step-by-step download We now present a first refinement
of the protocol. For this purpose, we enlarge the set of
variables and events. The resulting model is presented in
Fig. 3. We introduce a new variable DBin that contains
a matrix which represents the state of download of each
block at each iteration of the model. For each client and
each block, the corresponding state could be finished—
indicating that the client has successfully downloaded the
block; incoming—indicating that the client is currently try-
ing to download the block; or empty—indicating that the
download of the block has not yet started. Initially, as in the
abstract model, no block has been downloaded by any client,
therefore DBin:= ( 1..N x 1..K) x {empty}. Furthermore,
we impose that each client C is not currently trying to down-
load more than one block C, as indicated in the invariant in
Fig. 3.

To model the download process in a step-by-step manner,
we introduce two new events: Start1DL and Finish1DL.
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MODEL

P2P,

VARIABLES

DB

INVARIANTS

DBe 1..N x 1..K — {empty,finished}
EVENTS

AlIDL =

any magicDB where
DB=(1..N x 1..K) x {empty} A
magicDB € 1..N x 1..K — {empty,finished} A
magicDB=(1..N x 1..K) x {finished}

then

W~ DB:=magicDB
Init = end
begin
DB:=(1..N x 1..K) x
(1.N x 1..K) x {empty} END
end
Fig. 2 Initial Event-B model of the simple P2P protocol
MODEL DLFinished =
P2P, refines AlIDL
REFINES when
P2P; DB=(1..N x 1..K) x {empty} A
DBin=(1..N x 1..K) x {finished}
VARIABLES then
DB DB:=DBin
DBin end
INVARIANTS Start1DL =

DBin € 1..N x 1..K — {empty,incoming,finished} A
Vec. (cel.N=
card({b | b € 1..K A DBin(c—b)=incoming}) < 1)

VARIANT
2 x NxK

EVENTS

Init =

begin

DB:=(1..N x 1..K) x {empty} ||
DBin:=(1..N x 1..K) x {empty}
end

— 2 x card({c—b [n€1..N A b € 1..K A DBin(c—b) = finished})
— card({c—b [n€1..N A b € 1..K A DBin(c—b) = incoming})

any c, b where

cel.NAbe 1. KA

DBin(c—b)=empty A

card({k | k € 1..K A DBin(c—k)=incoming})=0
then

DBin(c—b):=incoming

end

Finish1DL =

any c, b where
cel.NAbe1l.KA
DBin(c—b)=incoming

then
DBin(c—b):=finished

end

END

Fig. 3 First refinement of the simple P2P protocol: step-by-step download

In the event Start1DL, a client ¢ and a block b are cho-
sen in a non-deterministic manner in such a way that the
download of the block b by client ¢ has not yet started; fur-
thermore, the considered client C is not currently trying to
download another block K; then, the client starts to download
the block (DBin(c— b):=incoming). The event Finish1DL
models that a client ¢ terminates the downloading of a block
b in a similar manner. The events Start1DL and Finish1DL
are activated until we cannot find any pair (C,b) such that
DBin(c— b)=empty.

The event DLFinished refines the event AIIDL. It is
now enabled when DBin= ( 1..N x 1..K) x {finished}, i.e.
when all the clients have successfully downloaded all the
blocks. Then, it just substitutes the value of DBin to DB to
realise the abstract attempted substitution from AlIDL.

As we introduce two new events, we have to show their
convergence by introducing the variant given in Fig. 3. Each

time Start1DL and Finish1DL are activated, their actions
increase the numbers of incoming or finished in DBin; there-
fore, the variant clearly decreases.

Figure 4 gives an extract of the operational semantics
of this first refinement in terms of transition system, with
N=2 and K=2. In this figure, a small dot in the matrix indi-
cates that the block has not been downloaded yet, while an
empty (resp. filled) bullet represents that the block is incom-
ing (respectively, successfully downloaded). For readability
purposes, transitions in this TS have been annotated with
the corresponding parameter values. The indicated v corre-
sponds to the value of the variant in the corresponding state.
As expected, the value of v decreases each time a new event
is performed.

Remark that, at this point, any download attempt is ulti-
mately successful. The purpose of the next refinement step is
therefore to introduce failures in the block download process.
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P2P,

Start1DL(2,2) ,

Start1DL(1,2) l
v=7

I
tart1DL(2,1)

Finish1DL(1,
Start1DL(2,2) l

.
1

! .

DB = DB,
1

| .

.

l StartiDL(1,1) N
S Rl LN
Finish1DL(21

|

o -

)

o

AlIDL

J 1
Finish1DL(2,1) .
yp=3 ——rX = 9~ W TTTmTTTT----- v=4
(. ) (o .) Finish1DL(1,
DB = DB;, = Pocmooimomoo o :
L _ */) ios—| o=
F\nlsh1DL(1 1) : ° l
v=2 N
************* v=3
(- ) ( ) Start1DL(2,
DB = ,DB;, = N e .
L 1 . oo
Start1DL 2) 1 DB = ( )-DBW( ) :
v=1 | . e 0
B ke H=7)
DB, =
J
Finish1DL(2,2)
=)
DB = ( ) DB, = ( )
J
DLFinished
Fig. 4 Extract of the transition system of the first refinement of the simple P2P protocol, with N=2 and K=2
Introducing failures In this refinement P2P3, we want to FailureDL =
take into consideration some possible failures during the any ¢, b where
download process. More precisely, two possible failures can ccl-NAbET KA
ownload process. Mo e.p.ec se y, opf)ss e failu e§ f:a DBin(csb)=incoming
occur when a download is incoming: a failure can be critical then
(in this case, the download must be aborted) or not (in this DBin(c—b):€{empty,incoming}
case, the download continues). We therefore simply add to end

the previous Event-B model a new event FailureDL, given
in Fig. 5. Its action non-deterministically chooses a value
from {empty, incoming}: empty is chosen when the failure
aborts the download, and incoming is chosen otherwise. This
new event has the same guard as the event FinishDB. As a
consequence, both events are enabled at the same time and
the choice between them is non-deterministic, which mod-
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Fig. 5 New event introduced in the second refinement step

els the uncontrolled occurrence of failures. An extract of the
operational semantics of this new model is provided in Fig. 6.

As we have introduced a new event, we need to prove
its convergence. Unfortunately, due to the non-deterministic
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Fig. 6 Extract of the transition system of the second refinement of the simple P2P protocol, with N=2 and K=2

nature of the assignment in the event FailureDL, it is impos-
sible to provide a variant that decreases regardless of its
outcome. The refinement between this new model and the
previous one is therefore not correct.

We will address the same problem in the probabilistic set-
ting and prove that, in this case, the probabilistic version of
FailureDL almost-certainly converges. As a consequence,
unlike here, the refinement is correct in the probabilistic set-
ting.

4 Fully probabilistic Event-B

We recall that our goal is to introduce probabilistic reasoning
within Event-B. In this section, we present the basic elements
of syntax and semantics for fully probabilistic Event-B mod-
els. We begin by presenting the sources of non-determinism
in Event-B and explaining how they can be replaced by prob-
abilistic choices in the context of fully probabilistic models.
We then present the syntax of such fully probabilistic Event-
B models. In order to ensure the consistency these models,
we present the set of new POs specific to the introduced ele-
ments and how standard POs can be adapted in this context.
Finally, in order to prove the correctness of our approach,
we propose operational semantics of such models in terms
of Markov chains.

4.1 Introducing probabilistic choices
In Event-B, non-determinism can appear in three places: the

choice of the enabled event to be executed, the choice of
the parameter value to be taken and the choice of the value

to be assigned to a given variable in a non-deterministic
assignment. To obtain a fully probabilistic Event-B model,
we propose to replace all these non-deterministic choices
with probabilistic ones. In the following, we go through these
three sources of non-determinism and explain how to turn
them into probabilistic choices.

Choice of the enabled event In standard Event-B, when sev-
eral events are enabled in a given configuration, the event
to be executed is chosen non-deterministically. In order to
resolve this non-deterministic choice, we propose to equip
each probabilistic event with a weight. In configurations
where several probabilistic events are enabled, the proba-
bility of choosing one of them will therefore be computed as
the ratio of its weight against the total value of the weights
of all enabled events in this state. Using weights instead of
actual probability values is convenient as the set of enabled
events evolves with the configuration of the system. Using
probability values instead would require to normalise them
in all configurations. Moreover, for the sake of expressivity,
we propose to express the weight W;(v) of a probabilistic
event €; as an expression over the variables v of the fully
probabilistic Event-B model. The probability of executing a
given event can therefore evolve as the system progresses. A
probabilistic event is therefore allowed to be executed only
if i) its guards is fulfilled and /i) its weight is strictly positive.

Choice of the parameter values In standard Event-B, events
can be equipped with parameters. In each configuration
where this is possible, a valuation of the parameters is chosen
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such that the guard G;(z,v) of the event is satisfied. When
there are several such parameter valuations, one of them
is selected non-deterministically. We therefore propose to
replace this non-deterministic choice by a uniform choice
over all parameter valuations ensuring that the guard of the
event is satisfied. The uniform distribution is a default choice,
but our results can be extended to any other discrete distri-
bution.

Non-deterministic assignments Recall that non-
deterministic assignments in Event-B are expressed in two
forms: predicate non-deterministic assignments and enumer-
ated non-deterministic assignments.
We propose to replace predicate non-deterministic assign-
ments by predicate probabilistic assignments written
X:®Q,(7,0,X)

Instead of choosing non-deterministically among the val-
ues of X’ such that the predicate Q,(7,7,X’) is true as in
standard predicate non-deterministic assignments, we pro-
pose to choose this new value using an uniform distribution.
For simplicity reasons, we enforce that this uniform distri-
bution must be discrete and therefore that the set of values
X’ such that Q,(7,v,X") is true must always be finite. As
above, the uniform distribution we propose by default could
be replaced by any other discrete distribution.

We propose to replace enumerated non-deterministic
assignments by enumerated probabilistic assignments writ-
ten

x=Ei(f,0) @ p1 & ... ® E,(f,0) @ py,

In this structure, the variable X is assigned the expression
E; with probability p;. In order to define a correct probability
distribution, each p; must be strictly positive and smaller or
equal to 1, and they must sum up to 1. Although rational
numbers are not natively handled in Event-B, we assume that
the context of the model allows the use of rational numbers. In
practice, that can be done by defining a “Rational” theory in
Rodin using the theory plugin providing capabilities to define
and use mathematical extensions to the Event-B language and
the proving infrastructure [13].

Remark that standard deterministic assignments are
retained, but can also be considered as enumerated proba-
bilistic assignments where m=1.

~

e =
weight W; (v)
any 7 where
G (7,0)
then

SP;(z,v)
end
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Refining all non-deterministic choices into probabilistic
choices has side effects on the syntax of events and models.
In probabilistic Event-B, we therefore propose to use the
syntax above for a probabilistic event €; where W; (v) is the
weight of the event, G;(z,v) is the guard of the event, and
SP;(f,v) is a probabilistic action, i.e. an action consisting
only of deterministic and probabilistic assignments which are
executed in parallel. Remark that the before—after predicate
SP;(7,0,0") of such a probabilistic event will be identical to
the BA of its standard (non-deterministic) counterpart.

For simplicity reasons we impose, as in standard Event-B,
that the initialisation event must be deterministic. The results
we present in the rest of the paper can, nevertheless, easily
be extended to probabilistic initialisation events.

Definition 1 (Fully probabilistic Event-B model) A fully
probabilistic Event-B model is a tuple M=(v,l(v),PEvts,
Init) where v={vy ... V,} is a set of variables, I(v) is the
invariant, PEVts is a set of probabilistic events, and Init is
the initialisation event.

Running example A probabilistic version of the P2P model
from Sect. 3 is given in Fig. 7. This model has the same
variables, the same invariants and the same events as the
Event-B model from Figs. 3 and 5.

The events of the model P2P p are annotated with specific
weights. The risk of download failures decreases with the
number of successful downloads: each time a block is suc-
cessfully downloaded, the weight of Finish1DL increases,
whereas the weight of FailureDL decreases. The weight of
Start1DL models that the probability of starting a new down-
load decreases with the number of blocks being currently
downloaded.

In case of failure, we fix the probability of aborting the
download to 40%. This probability is introduced in the event
FailureDL by using an enumerated probabilistic assignment
instead of a non-deterministic one: the variable DBin(c+—b)
is assigned the value empty with a probability 14—0 (the down-
load aborts) and the value incoming with a probability 1—60
(the download continues).

4.2 Consistency

As in standard Event-B, the consistency of a fully probabilis-
tic Event-B model is defined by means of proof obligations
(POs). In this section, we therefore introduce new POs spe-
cific to fully probabilistic Event-B and explain how we adapt
standard Event-B POs in order to prove the consistency of
fully probabilistic Event-B models.

4.2.1 Specific POs for fully probabilistic Event-B

We start by presenting new POs specific to fully probabilistic
Event-B.
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MODEL Start1DL =
P2Pp weight
NxK
VARIABLES — card({c—b [ne1.N A b € 1..K A DBin(c—b)=incoming})
DB any c, b where
DBin cel.NAbe1l.KA
DBin(c—b)=empty A
INVARIANTS card({k | k € 1..K A DBin(ck)=incoming})=0
DBe 1.N x 1..K — {empty.finished} A then
DBin € 1..N x 1..K — {empty,incoming,finished} A DBin(c—b):=incoming
Vc. (cel.N end
= card({b | b € 1..K A DBin(c—b)=incoming}) < 1)
Finish1DL =
VARIANT weight
2 x NxK card({c—b [n€1.N A b € 1..K A DBin(c—b)=finished}) +1
— 2 x card({c—b [n€1..N A b € 1..K A DBin(crb) = finished}) any c, b where
— card({c—b [ne1..N A b € 1..K A DBin(c—b) = incoming}) cel.NAbe1l.KA
DBin(c—b)=incoming
EVENTS then
DBin(c—b):=finished
Init = end
begin
DB:=(1..N x 1..K) x {empty} || FailureDL =
DBin:=(1..N x 1..K) x {empty} weight
end NxK
— card({c—b [n€1..N A b € 1..K A DBin(c—b)=finished})
DLFinished = any ¢, b where
weight NxK cel.NAbe1.KA
when DBin(c—b)=incoming
DB=(1..N x 1..K) x {empty} A then
DBin=(1..N x 1..K) x {finished} DBin(c—b):=empty @4/10 & incoming @6/10
then end
DB:=DBin
end END
Fig. 7 Probabilistic version of the simple P2P protocol
Numeric weight For simplicity reasons, we impose that the ’ Fpr+..+p,=1 (event/assign/pWD2) ‘

expression W; () representing the weight of a given proba-
bilistic event must evaluate to natural numbers.

| 1(0) A Gi(7,D) = Wi(D) € NAT

(event/ WGHT/NAT) \

Parameter values finiteness In order to be able to use a dis-
crete uniform distribution over the set of parameter valuations
ensuring that the guard of a probabilistic event is satisfied,
we impose that this set must be finite.

| 1(D) - finite ({7 | Gy(7.9))) (eventiparam/pw) |

Enumerated probabilistic assignments well-definedness and
feasibility In all enumerated probabilistic assignments, it is
necessary to ensure that the discrete probability values pj
...pn define a correct probability distribution. Formally, this
leads to two POs:

1. Probability values p; in enumerated probabilistic assign-
ments are strictly positive and smaller or equal to 1.

FO<p <1 (event/assign/pWD1)

2. The sum of the probability values p; ...p, in enumerated
probabilistic assignments must be equal to 1.

Feasibility of enumerated probabilistic assignments is
trivial: as soon as at least one expression E;(7,0) is present
and well defined, it always returns a value.

Predicate probabilistic assignment well-definedness and fea-
sibility In order to define a discrete uniform distribution
over the set of values of a variable X making the predi-
cate Qy(7,0,X") of the corresponding assignment satisfied,
we impose that this set must be finite.

(D) A G;(7,0) A W;(0)>0 F finite({X’ | Q\(7,7,X)})
(event/assign/pWD3)

Feasibility of predicate probabilistic assignments is ensured
by the standard feasibility PO [1] inherited from Event-B. It
ensures that the set {X’ | Q,(¢,7,X’)} is not empty.

4.2.2 Modifications to standard POs

In standard Event-B, if we want to prove that an event is
enabled, we need to prove that its guard is satisfied. How-
ever, in fully probabilistic Event-B, we additionally need to
prove that its weight is strictly positive. We therefore modify
standard and optional Event-B POs as follows.

@ Springer
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Invariant preservation The invariant must be preserved by
all enabled probabilistic events.

1(3) A Gi(7,0) A Wi(@) > 0 A SP;(7,5,0°) F 1(¥)
(event/pINV)

Deadlock freedom In all acceptable configurations, there
must exist at least one enabled probabilistic event.

1(0) F (G1(£,0) AW (0) > 0) V-V (G, (,0) A Wg(D) >0)
(model/pDLF)

For the sake of understanding, we hereby insist on the
separation between the guard of an event, which reflects the
classical notion of enabledness, and the fact that its weight
must be strictly positive. Obviously, one could also automat-
ically rewrite the guard of all probabilistic events in order
to include the condition on its weight. This solution would
allow conserving most of the standard Event-B consistency
POs without modifications in the probabilistic setting.

4.2.3 Running example

Consider the fully probabilistic Event-B model P2P p given
in Fig. 7: all the weight expressions are natural numbers
(event/WGHT/NAT) and, for each event, the number of accept-
able parameter valuations is finite (event/param/pWD). For the
probabilistic enumerated assignment on the event FailureDL,
each given probability is a rational p such that 0 < p < 1
(event/assign/pWD1) and their sum is clearly equal to 1 (even-
t/assign/pWD2). The invariant is always preserved by each
probabilistic version of the events (event/pINV). The model
P2P p is therefore consistent.

4.3 Semantics

As explained in Sect. 2.2, the operational semantics of
standard Event-B models is expressed in terms of labelled
transition systems. In the following, we extend this work
by presenting the operational semantics of fully probabilis-
tic Event-B models in terms of discrete-time Markov chains
(DTMCs).

Remark that our goal, unlike in [35,37], is not to translate
our models into DTMCs and use standard model-checking
techniques to verify them. Instead, we aim at reasoning
directly on fully probabilistic Event-B models and benefiting
from the symbolic proof mechanism that is the signature of
the Event-B approach. The following DTMC semantics are,
nevertheless, introduced as a demonstration of the correct-
ness of our approach and results.
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4.3.1 Notations

Let M=(v, I(v), PEvts, Init) be a fully probabilistic Event-B
model and o be a valuation of its variables. Given a vari-
able x € v, we write [o]x for the value of x in o. Given
an expression E(v) over variables in v, we write [0 ]E(v)
(or [6]E when clear from the context) for the evaluation of
E () in the context of o. Given an expression E(f, ) over
variables and parameters, we write [0, 0] E (z, v) for the eval-
uation of E(f, ¥) under parameter valuation 6 and variable
valuation o.

Given a probabilistic event e; with a set of parame-
ters 7 and a valuation o of the variables, we write Tx' for
the set of parameter valuations 6 such that the guard of
e; evaluates to true in the context of o and 6. Formally,
Ty = {8 | [0,0]1G;(t, v) = true}. Recall that parameter
valuations are chosen uniformly on this set. We write PTff
for the uniform distribution on the set 7y’ .

Given a valuation o of the variables and a probabilistic
event e;, we say that e; is enabled in o iff (a) the weight of
e; evaluates to a strictly positive value in ¢ and (b) either ¢;
has no parameter and its guard evaluates to true in o or there
exists at least one parameter valuation 6 such that the guard
of e; evaluates to true in the context of ¢ and 0, i.e. Ty' # .

Let ¢; be a probabilistic event in PEvts and let x be a
variable modified by ¢;. Recall that x can be modified only by
one assignment within the action of ¢;. If x is modified by an
enumerated probabilistic assignment (x := E{(7, 1)@, &
<@ En(t,0)@, (m > 1)), then we write &, (x) for the
set of all expressions that can be assigned to the variable x
by this assignment.

Eeo; (X) = {E1(1,0), ..., En(f, )}

The probability of choosing an expression E; among all
others expressions is written Py (E;) = p;.

Given a probabilistic event ¢;, we write Var(e;) for the
set of variables in v that are modified by the action of ¢;, i.e.
the variables that appear on the left side of an assignment
in SP;(f, ). Recall that a variable x € Var(e;) must be on
the left side of either a predicate probabilistic assignment
or an enumerated probabilistic assignment. Let ¢; € PEvts
be a probabilistic event, x € Var(e;) be a variable, o, o’
two valuations of the variables v and 6 a valuation of the
parameter values associated to the event e; such that e; is
enabled in the context of o and 6 and leads the system to o”.

If x is modified by an enumerated probabilistic assignment
of ¢;, then we write &, (x)|g,9 for the set of expressions in
&,; (x) such that their evaluation in the context of o and
returns the value of x in the valuation o”.

Formally,

e (D)5 = {E € E,(x) | [0, 0(E(, D)) = [0”]x}
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If ¢; is not equipped with parameters, then this subset is
written &, (x)|g,.

If x is modified by a predicate probabilistic assignment
(x : ®0,(t,v,x")), then we write ng(,(x) for the set of
values x’ that make the predicate Qy (¢, v, x”) true when eval-
uated in o and 6.

ngcr(x) = {xl | [o, Q]Qx(f’ 1_),x/) = true}

If ¢; is not equipped with parameters, then this subset is
written Vg (x).

Let ¢; be a probabilistic event and let x be a variable in
Var(e;), given an original valuation o of the variables, a
valuation 6 of the parameters of e¢; and a target valuation
o’ of the variables, we write P’ (x, o) for the probability
that x is assigned the new value [0']x when executing e;
from the valuation o and with parameter valuation 6. If ¢; is
not equipped with parameters, this is written Py’ (x, 0’). In
the following, we always use the more general notation and
assume that it is replaced with the specific one when there
are no parameters. Formally, this probability is given by:

1. if x is modified by an enumerated probabilistic assign-
ment, then:

Ply(x,0") = Z

Ee€y @I

P{(E)

2. if x is modified by a predicate probabilistic assignment,
then:

1
card(VSf(7 (x))

if[o’]x e nga (x) and O otherwise.

e
P(f’tg (x9 OJ) =

4.3.2 DTMC operational semantics

Informally, the operational semantics of a fully probabilis-
tic Event-B model M=(v, I(v), PEvts, Init) is a probabilistic
LTS [M] = (S,Acts, P,so, AP, L) where the states,
labels, actions, atomic propositions and initial state are simi-
larly obtained as for the standard LTS semantics of Event-B.
The only difference with the standard LTS semantics is that
the transitions are equipped with probabilities, which we
explain below. In the following, we identify the states with
the valuations of the variables defined in their labels.
Intuitively, the transition probabilities are obtained as fol-
lows: Let ¢; € PEvts be a probabilistic event, x € v be a
variable and s, s” be two states of [M]] such that (s, ¢;, s)
is a transition in the standard LTS semantics, i.e. where ¢; is
enabled in s and there exists a parameter valuation 6 € T,
if any, such that the action of e¢; may take the system from s
to s’. The probability assigned to transition (s, e;, s”) is then

equal to the product of (1) the probability that the event e;
is chosen from the set of enabled events in state s, (2) the
probability of choosing each parameter valuation 6, and (3)
the overall probability that each modified variable is assigned
the value given in s” under parameter valuation 6.

Definition 2 (Fully probabilistic Event-B  operational
semantics) The operational semantics of a fully probabilistic
Event-B model M=(v, I(v), PEvts, Init) is a PLTS [M] =
(S, Acts, P,sg, AP, L) where S, Acts, s9, AP, and L are
defined as in the standard LTS semantics of Event-B models
(see Sect. 2.2),and P : S x Acts x S — [0, 1] is the transi-
tion probability function such that for a given state s, for all
ei,s’ € Acts x S, we have P (s, e;,s’) = 0if ¢; ¢ Acts(s)
or Ix € X\{Var(e;)} st [s]x # [s']x and otherwise

_
P(s,ej,s') = Wi
Ze, eActs(s) [S1W; (V)
9))
x Z(PT;',-(Q)X ]_[ Py (x. "))
eevaiW xeVar(e;)
3)

In the following proposition, we show that the semantics
of a fully probabilistic Event-B model as defined above is
indeed a DTMC.

Proposition 1 The operational semantics of a fully prob-
abilistic Event-B model M satisfying the POs given in
Sect. 4.2.1 is a DTMC.

Proof We must prove that for each state s in [[M]], the sum
of probabilities of the outgoing transitions from s is equal
to one. Let M be a fully probabilistic Event-B model, v =
(x1, x2, ..., x,) the set of variables of M and s € § a state
of [M]]. We assume that each variable x; in v takes its value
from a set X;.

Recall that the probability of a transition (s, ¢;, s”) is 0
if e; ¢ Acts(s) or Ix € v\{Var(e;))} | [s]x # [s']x and
otherwise:

[s]W; (V)
e ehcts(s)[S1W (V)

x> (Ppei (6) x [

QeTfi xeVar(e;)

P(s,ei,s') =

P;'é (x,5")

In order to prove that, for all s € S, P(s, ., .) is a proba-
bility distribution on Acts(s) x S, we must therefore show
that (1) P(s, e;, s’) € [0, 1] for all (s, ¢;, s”), and (2) for all
$ €8, 2 pienats(s) 2os'es P8, €8 = 1.

First, we observe that (1) is a direct consequence of POs
(event/WGHT/NAT), (event/param/pWD), (event/assign/pWD1),
(event/assign/pWD2) and (event/assign/pWD3). Indeed,
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~ [s1W; (D)
(event/WGHT/NAT) ensures that 0 < S s ST, @) =
1’

— (event/param/pWD) ensures that 0 < P« (0) < 1 for all
6 € Ty and that ), eréi Prei(0) =1, and

— (event/assign/pWD1), (event/assign/pWD2) and (event/as-
sign/pWD3) ensure that 0 < [] Pff@ (x,s) <1
forall 6 e Ty".

xeVar(e;)

Moreover, (2) is derived as follows:
By definition,

> PGeis)
s'eS,e;eActs(s)
_ Z [s]W;(v)
eicActs(s) s’eS Ze/GACtS(S)[S]W/ @)

x Z(PT:,-(G)X [ Poh@&.sh)

GETfi xeVar(e;)

Since only P »(x, s") depends on s’, this becomes

Z P(s, e, s)

s'eS,e;eActs(s)

_ [51W; (®)

S chots DIV D)
X Z (PTfi ®) x Z 1_[ Pf”é(x,s/))
0eTy s'eS xeVar(e;)
LetS; = {s’ € §|Vx € v\Var(e).[s]x = [s']x}. Remark

that P;"@ (x,s")y =0forall s’ ¢ S;. As a consequence,

Z P(s, e, s)

s’€S,e;eActs(s)

S [s1W; (D)
ZejeActs(s) [S]Wj (1_1)

e;eActs(s)
Y (e x Y T )
0Ty’ s'eSy xeVar(e;)

(A)

We now reduce the expression (A). For all x € Var(e;),

/ e; . .

we recall that P p(x,s) = ZEE&’_ @, P (E) if x is
modified by an enumerated probabilistic assignment and

e; ’ . 1 . . . .
Pilg(x,s") = —card(v;’fs(x)) if x is modified by a predicate

probabilistic assignment. As a consequence, Pf iy (x,s") does
not really depend on s’ but only depends on the value of x in
s": vl = [s']x € X. Given x € v and v, = [s']x € X, we
therefore write 3" (v}) = P (x, s') if x € Var(e;).
Forv = {x1, ..., xn}, Wehave 51 = {5 vy, €
X;ifx; € Var(e,) and le_ = [s]x; otherwise}. Assuming
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that Var(e;) = {x1,...,
rewrite (A) as follows:

@@= [ r"awy

s’eS| xieVar(e;)

DD oD ol 1§ RS

v;] X, U;ZGXZ vl EXk =

2 >

/ ’ 7
v eX L% eXn Vi eXk

xix} with k& < n, we can therefore

(F3 ) - BP0 ) - ™ @)

PR R CORD I e CARE

/ /
vy [2.¢] UXZEXQ

[T X &%)

xieVar(e;) v;’_ eX;

D E

U-:‘k eXy

By (event/assign/pWD1), (event/assign/pWD2) and (even-
Yassign/pWD3), we have 3, X Fy 9 “(vy,) = 1forally; €

Var(e;), therefore (A) = Hx,eVar(c,)[Zv ox, )]
=1
As a consequence,

Z P(s, e, s) =

s'eS,e;eActs(s)

Z [s]Wi(v)
Zej eActs(s)[s] Wj (v)

e; eAcCts(s)

x Y (Prei(6))

0Ty’

Moreover, by construction, we have ) peri
Therefore,

Z P(s,e;,s)

s'€S,e; eActs(s)

Py (0) = 1.

Z [s]Wi(v)
e €Acts(s) ij ects(s [TV ()
=1

As a conclusion, P(s, .,.) is indeed a probability distri-
bution on Acts(s) x S for all s € S and therefore [M]] is a
DTMC. O

4.3.3 Running example

Figure 8 presents the first steps of the detailed construction
of the DTMC corresponding to the fully probabilistic Event-
B model given in Fig. 7, with the number of clients N and
the numbers of blocks K fixed to 2. We only present this
detailed construction to illustrate the operational semantics
of our model as defined above. This DTMC will not be used
within the design process in probabilistic Event-B.

We now explain how some of the probability values in
the DTMC from Fig. 8 are computed. We only focus on
interesting (and complex) examples and leave out the rest of
the computation to the reader. From the state referenced (s1)
on Fig. 8, three events are enabled:
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P2Pp

i

o Jone( ]

1|Start1DL l

Sle

Fig. 8 Extract of the detailed construction of the DTMC of the simple P2P protocol, with N=2 and K=2

— FailureDL with a weight value of 4. The probablllty of
choosing this event is therefore 3 +§ T 2,

— Start1DL with a weight value of 3 The probablhty of
choosing this event is therefore ;15— +3 0= 8,

— Finish1DL with a weight value of 1. The probablhty of

choosing this event is therefore ;—=— +3 = 8

When choosing the event Finish1DL, only one valuation
for the parameters is possible with a probability of 1. The
corresponding action is deterministic and therefore executed
with probability 1. The global probability of leaving the state
(s1) using the event Finish1DL is therefore % x1x1= %

When choosing the event Start1DL, two possible valua-
tions for the parameters are possible, with a probability % for
each of them. The action corresponding to event Start1DL
is deterministic, and the parameter valuation (2, 1) allows
to reach state (sz). As a consequence, the global probabil-
i%ty of1 1reaching3 (s2) from (sy) using the event Start1DL is
I X3xl=

8 16"

When choosing the event FailureDL, only one valuation
for the parameters is possible. The corresponding action is
probabilistic, leading to two different states (with probabili-
ties % of going back to (s1) and 1—60 of going to another state).
As a consequence, the global probability of looping on (sq)
using the event FailureDL is % x 1 x % = 75-

From the state referenced as (sz) on Fig. 8, we only focus
on one interesting transition. Among the two events that can
be enabled, we consider the event FailureDL: the probabil-
ity of choosing this event is ‘5—1. Two possible valuations for
the parameters are then possible, with a probability of % for
each of them. Then, for each parameter valuation, the corre-
sponding action is probabilistic, leading to different states.
What makes this transition interesting is that for different
parameter valuations, some actions lead to the same state:

- tile global probability of returning to (s1) is % X % X % =
= 4 4 4
— the global probability of reaching (s3) is 5 X 5 X 15 = 75,
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1|Start1DL

1|FailureDL(1,2)

3% |FailureDL

2 |Start1DL

1

. O ! .
| DB =

. O | .
1

3= |FailureDL

)()?S

& [Finish1DL

2 |start1D

1o |Finish1DL 12 |FailureDL

Fig. 9 Extract of the DTMC of the simple P2P protocol, with N=2 and K=2

— the global probability of looping on (s3) is % X (% X % +
———

2,D
X 1%) = %, where (2, 1) and (1, 2) are the parameter

-

(1,2)
valuations leading to these probabilistic choices.

After reduction, we obtain the DTMC given Fig. 9.

5 Mixed Event-B

After presenting fully probabilistic Event-B models, we now
move to the context of mixed Event-B models, i.e. Event-B
models containing both probabilistic and non-deterministic
events. The syntax and operational semantics we propose
combine those introduced in state of the art models [35—
37] and in Sect. 4 by allowing probabilistic choice to be
expressed in all places where non-determinism exists, instead
of limiting its existence to probabilistic assignments, but also
retaining non-determinism wherever needed.

5.1 Description
Mixed Event-B models can be obtained through several

means. While they can be produced as standalone models
for describing systems containing both non-deterministic and
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probabilistic behaviours, they can also be produced as inter-
mediate models during the step-by-step refinement process.
In this last setting, a mixed Event-B model can be obtained
by adding probabilistic events within a standard Event-B
model, by adding standard events within a fully probabilis-
tic Event-B model, or by refining some standard events into
probabilistic events in a standard Event-B model.

Regardless of how they are produced, mixed Event-B
models are models that contain both standard (non-determi-
nistic) events and probabilistic events. We distinguish two
classes of mixed Event-B models and study them separately
in the rest of this section: (i) partially mixed Event-B models
and (ii) fully mixed Event-B models. The former are models
where the standard and probabilistic events do not interact:
their guards are necessarily disjoint. In partially mixed Event-
B models, standard events cannot be enabled in the same
valuations where probabilistic events are enabled, and vice-
versa. On the other hand, fully mixed Event-B models allow
probabilistic and non-deterministic events to be enabled in
the same configurations (variable valuations).

5.2 Syntax

Since mixed Event-B models contain both standard and prob-
abilistic events, they combine the standard Event-B syntax
and the probabilistic syntax introduced in Sect. 4. Therefore,
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events in a mixed Event-B model have one of the forms pre-
sented below.

PN e; =
e = . _
any 7 where weight W, (1)
Gi (7,0) any 7 where
then or |GihD)
S.(7.7) then
enld ’ SP;(z,v)
end

For simplicity reasons we impose, as in standard and
probabilistic Event-B, that the initialisation event must be
deterministic.

Definition 3 (Mixed Event-B model) A mixed Event-B

modelis atuple M=(v, 1(v), MEVts, Init) where v={v; ... v,}

is a set of variables, |(v) is the invariant, MEVts is a set con-
taining both standard and probabilistic events, and Init is the
initialisation event.

5.3 Consistency

As in standard Event-B, the consistency of a mixed Event-
B model is defined by means of proof obligations (POs).
In this section, we discuss specific POs for mixed Event-B
models. In particular, we introduce new POs specific to such
models and discuss how regular POs for standard and fully
probabilistic Event-B can be adapted to this setting.

5.3.1 Case of partially mixed Event-B models

We first consider partially mixed Event-B models. Recall
that, in such models, the guards of non-deterministic and
probabilistic events are necessarily disjoint. As a conse-
quence, no non-deterministic events can be enabled in config-
urations (variable valuations) where probabilistic events are
enabled, and vice-versa. In such models, it is therefore pos-
sible to partition the set of configurations into configurations
where non-deterministic events are enabled and configura-
tions where probabilistic events are enabled. Depending on
which type of configuration is considered, we will there-
fore apply standard POs specific to non-deterministic events
or POs dedicated to probabilistic events as introduced in
Sect. 4.2.

Let M=(v, I(v), MEvts, Init) be a partially mixed Event-
B model. MEvts = {e| ...e; ...e, } is the set of events of
M, which we partition into {€; ...€; }, the subset of standard
events, and {€;41 ...€, }, the subset of probabilistic events.

In order to ensure that a mixed Event-B model is partially
mixed, we propose the two following POs.

1. Enabledness of standard events: This PO states that
in configurations where at least one standard event is
enabled, no probabilistic event is enabled. It is written as
follows:

(@) A Gi(7,9) V-V Gi(7,8) - = (Gi1(7.0) A W11 (0)>0)
Vv (Gp(E,0) A W, (0)>0)) (mixedEB/csrt1)

2. Enabledness of probabilistic events: This PO states that
in configurations where at least one probabilistic event
is enabled, no non-deterministic event is enabled. It is
written as follows:

I(ﬁ) A ((Gi-i-l(f’ﬁ) A Wi+1(1_))>0) VeV (Gn(t_il_)) A
W, () F =(G(7,0) v --- Vv G;(z,0)) (mixedEB/csrt2)

As expected, a mixed Event-B model that satisfies these
two POs is partially mixed: the set of configurations where
standard events are enabled is disjoint from the set of con-
figurations where probabilistic events are enabled.

The consistency of such a model is then ensured by apply-
ing standard POs [1] for non-deterministic events and the
dedicated POs for probabilistic events that are introduced in
Sect. 4.2.

5.3.2 Case of fully mixed Event-B models

We now move to the more general context of fully mixed
Event-B models. Recall that, in this context, probabilistic and
non-deterministic events can be enabled in the same config-
urations. Luckily, most consistency POs as introduced in [1]
and in Sect. 4.2 remain valid in this new setting: they can
be used for their specific purpose in the same configuration.
The only PO that requires modification due to the interac-
tion between probabilistic and non-deterministic events is
the deadlock freedom. While this PO is optional in Event-B,
it is often used. We therefore present the required modifica-
tions hereafter.

Deadlock freedom In standard Event-B, this PO consists in
proving that, in all acceptable configurations, there is always
at least one enabled event. In standard Event-B, we recall
that an event is enabled only if its guard is fulfilled. In proba-
bilistic Event-B, an event is enabled if in addition to its guard
being fulfilled, its weight is strictly positive. In the case of
Fully mixed Event-B models, this PO will therefore ensure
that, in a given configuration where both standard and proba-
bilistic events are enabled, there is at least one standard event
whose guard is fulfilled or a probabilistic event whose guard
is fulfilled and whose weight is strictly positive.
We therefore rewrite it as follows :

(v) = (Gi(t,0) V-V Gu(t,0) Vv (Guii(t,0) A
Wi 1(0) > 0) V- - v (G (7,0) A Wy(0) > 0))  (mod-
el/mDLF)

@ Springer



1970

M. A. Aouadhi et al.

5.4 Operational semantics

As presented, respectively, in Sects. 2.2 and 4.3, the opera-
tional semantics of standard Event-B models is expressed
in terms of labelled transition systems, while the opera-
tional semantics of fully probabilistic Event-B models is
expressed in terms of discrete-time Markov chains. In the
following, we extend these constructions by presenting the
operational semantics of mixed Event-B models in terms of
Markov decision processes. As in Sect. 4.3, our goal is not to
translate mixed models into MDPs and use standard model-
checking techniques to verify them. Again, MDP semantics
are only introduced as a demonstration of the correctness of
our approach.

MDP operational semantics Informally, the semantics of a
mixed Event-B model M=(v, 1(v), MEvts, Init) is expressed
by means of an MDP [M]|=(S, Acts, P, linit, AP, L) where
the states, labels and atomic propositions are obtained as for
standard and probabilistic semantics of Event-B. For the ini-
tial distribution /;,,;;, we recall that we only consider mixed
Event-B models with deterministic initialisation event. As
a consequence we have one initial state so obtained after
the execution of the initialisation event and then we have
linit(so) = 1. The major difference between the semantics
we introduced hereafter and both standard and probabilistic
semantics concerns actions and transitions. We recall that in
the LTS semantics of a standard Event-B model, the tran-
sitions are not equipped with probabilities and the choice
between transitions enabled in a given state is done in a non-
deterministic manner. In the DTMC semantics of a fully
probabilistic Event-B model, the transitions are equipped
with probabilities and the choice between transitions enabled
in a given state is done in a probabilistic manner. In what
follows, we explain how we construct transitions for both
partially and fully mixed Event-B models. We then provide

the formal definition of the operational semantics of mixed
Event-B models. Again, we start by considering partially
mixed Event-B models and only then move to the more gen-
eral setting of fully mixed Event-B models.

Partially mixed Event-B models Recall that, in the case of
partially mixed Event-B models, the guards of probabilistic
and non-deterministic events are disjoint. As a consequence,
states in the operational semantics of such models will be
divided into states where standard events can be performed
and states where probabilistic events can be performed. In
order to obtain a well-defined MDP semantics, we will thus
introduce two types of probabilistic transitions. In the case
of standard events, the corresponding transitions will con-
sist in probabilistic transitions that assign a probability 1
to the target states. We will therefore conserve the non-
deterministic choice between standard events in the resulting
MDP as a non-deterministic choice between the correspond-
ing probabilistic transitions. On the other hand, in the case
of probabilistic events, the corresponding transitions will be
computed as in the case of the fully probabilistic Event-B set-
ting, i.e. resulting in a single probabilistic transition where
the probability distribution encompasses the probabilistic
choices introduced in all enabled probabilistic events. Since
standard MDP notations require that transitions are equipped
with an action name, we introduce a new action name Prob
that will represent the execution of a probabilistic transition
in states where one is enabled. We emphasise the fact that
this new action name only appears in the MDP semantics
but does not correspond to a merging of the probabilistic
events.

Example 1 Consider the very simple Event-B model and the
corresponding MDP operational semantics given in Fig. 10.
Obviously, it is a partially mixed Event-B model.

MODEL
example1
VARIABLES
X
INVARIANTS
x € NAT
EVENTS
Init =x:=0end
el = when x = 0 then x := 1 end
e2 = when x = 0 then x :€ {2,3} end
€3 = weight 1 when x = 2 then x := 4 end
e4 = weight 2 when x = 2 then
X := 4@3/4 © 5@1/4 end

I 1

END

Fig. 10 Partially mixed Event-B model and MDP semantics for Example 1
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— From the initial state (x = 0) only two non-deterministic
events are enabled: e1 and e2 which, respectively, lead
to (x = 1) (with e1) and (x = 2) or (x = 3) (with e2),
which corresponds to the non-deterministic choice in the
action of e2.

— From the state (x = 2), two probabilistic events are
enabled: e3 and e4 with respective weights 1 and 2 and
corresponding probabilities % and % e3leadsto (x =4)
with probability 1, whereas e4 leads to (x = 4) with
a probability of % and to (x = 5) with a probability of
}‘, which corresponds to the probabilistic choice in the
action of 4.

As a consequence, there are 3 probabilistic transitions
from state (x = 0), corresponding to all the non-deterministic
choices present in this configuration. The choice between
these transitions is non-deterministic. On the contrary, there
will only be one probabilistic transition from state (x = 2),
encompassing all the probabilistic choices present in this con-
figuration. The corresponding probability distribution is as
follows.

— State (x = 4) is reached with a probability of (% x 1)+

—_—
e3
23,5
(3 x3)=73%
—_——
e4

. . .1 2 1 1
— State (x = 5) is reached with a probability of 5 x 7 = z.

We remark that probabilistic event names do not appear in
the MDP semantics presented above. Indeed, the new action
name Prob is used in order to represent the single proba-
bilistic transition encoding the behaviour of all probabilistic
events at once. Since the probability distribution attached to
this transition is on the states of the MDP, probabilistic event
names are lost. It would be easy to extend our definition and
notations in order to include probabilistic event names, e.g.
by defining a probability distribution on pairs made of event

MODEL
example2
VARIABLES
X
INVARIANTS
x € NAT
EVENTS
Init =x:=0end
e1 = when x = 0 then x := 1 end
€2 = when x = 0 then x :€ {2,3} end
€3 = weight 1 when x = 0 then x := 4 end
e4 = weight 2 when x = 0 then
X 1= 4@3/4 ¢ 3@1/4 end

END

Fig. 11 Fully mixed Event-B model and MDP semantics for Example 2

names and states, but we do not do it here as probabilistic
event names are not used in the rest of this section.

Fully mixed Event-B models In the context of fully mixed
Event-B models, probabilistic events may be enabled in
the same configurations as standard events. As a conse-
quence, states in the corresponding MDP semantics will
allow transitions either corresponding to standard events or
corresponding to probabilistic events. We propose to treat
them in a similar manner as in the case of partially mixed
Event-B models. Instead of having either a non-deterministic
choice between the probabilistic transitions corresponding to
standard events or a single probabilistic transitions encoding
the behaviour of all probabilistic events, we propose to have
a non-deterministic choice between all potential transitions,
i.e. all probabilistic transitions corresponding to standard
events and the single probabilistic transition encoding the
behaviour of all probabilistic events. As in the case of par-
tially mixed Event-B models, we introduce a new action
name Prob for the probabilistic transition corresponding to
probabilistic events. Remark we have deliberately chosen to
resolve the non-deterministic choice between events before
resolving the probabilistic choice. The same order is applied
in the case of MDPs as well as in all existing approaches intro-
ducing probabilistic substitutions in Event-B [19,21,37].

Example 2 'We propose a slightly modified version of Exam-
ple 1. Consider the Event-B model and its corresponding
MDP operational semantics given in Fig. 11. Obviously, it
is a fully mixed Event-B model. The only differences w.r.t.
the model from Example 1 are that (1) all events are enabled
from the initial state (x = 0), and (2) the probabilistic action
of event e4 leads to states (x = 4) and (x = 3) instead of
(x =4) and (x = 5) (but the probabilities are untouched).
As a consequence, there are now 4 probabilistic tran-
sitions from state (x = 0), 3 of them corresponding the
non-deterministic choices from events €1 and €2, and one
that encompasses all the probabilistic choices from events
€3 and e4. The choice between these 4 transitions is non-
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deterministic. The computation of the actual probability
distributions is similar to the one presented in Example 1,
but remark that state (x = 3) can now be reached through
two distinct transitions: with probability 1 using one of the
transitions labelled with €2, and with probability % using the
transition labelled with Prob.

We now propose a formal definition for the MDP seman-
tics of a mixed Event-B model (regardless of whether it is
partially or fully mixed).

Definition 4 (MDP semantics for mixed Event-B models)
The operational semantics of a mixed Event-B model
M=(v, I(v), MEvts, Init) is an MDP [M] = (S, Acts, T,
linit, AP, L) where the states S, the initial state /;;;;, the
atomic propositions AP and labels L are defined as in the
standard and fully probabilistic operational semantics of
Event-B. As explained above, the action names Acts are the
names of standard events, to which we add the new action
name Prob. Formally, Acts = Acts,; U { Prob}. Finally, T
C S x Acts x Dist(S) is the transition relation such that
(s, e, 8) € T iff either

— e € Acts,,; and there exists s’ € S such that (s, e, s') is a
transition in the standard (non-deterministic) version of
M, and §(s"") = 1if s” = s" and 0 otherwise, or

— e = Proband §(s") = ZekeActsp P(s, e, s”), with P
defined as in Definition 2.

We remark that probabilistic event names do not appear in
the above MDP semantics, as we only represent the overall
transition probabilities. Nevertheless, it is easy to include
these event names in the transition relation by extending it
from a distribution on states to a distribution on pairs made of
event names and states (as is done in Sect. 4.3). However, we
choose to leave it out for now as it is an unnecessary feature
for our purpose here.

In the following proposition, we show that, as expected,
the operational semantics of a mixed Event-B model as
defined above is indeed an MDP.

Proposition 2 The operational semantics of a mixed Event-
B model M satisfying the POs given in Sect. 5.3 is an MDP.

Proof-sketch Similarly to Proposition 1, the aim here is to
prove that the transition function defined in Definition 4 leads
to valid probability distributions. We must therefore prove
that for all s € S and (s, ¢,8) € T, (1) 8(s") € [0, 1] for all
s'eSand (2) Y i g8(s) = 1.

— If e € Acts,y, this clearly follows from the definition of
S.

— Otherwise, we have e = Prob and therefore §(s') =
ZekeActsp P(s, ex, s"), with P defined as in Definition 2.
As a consequence,
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s'eS s’eS exeActs),

By Proposition 1, we know that (1) ZekeActs,, P(s, e, s)
> 0, and @) Yyes Yocans, PO ers) =
Yovesds) = 1, which also implies that
ZekeActsp P(s, e, s <1. O

1, so

6 Introducing probabilities by refinement

Our main goal is to enable modelling probabilistic behaviours
within Event-B. As explained earlier (and illustrated in
Fig. 1), this can be done in several ways while preserving
the refinement-based approach inherent to Event-B. In this
section, we present how to turn a standard (group of) event(s)
into a probabilistic (group of) event(s). In the next section we
explain how probabilistic information can be introduced ear-
lier in the design process by introducing new probabilistic
events through refinement.

The probabilisation process is a refinement-like process
that consists in transforming a set of non-deterministic events
in a given model into probabilistic events, while keeping the
rest of the model untouched. Depending on the type of model
from which these events are taken, the result of this operation
could be a (fully or partially) mixed or a fully probabilistic
Event-B model. This process could typically be used as a
last step of the refinement chain, allowing to transform a
fully detailed standard Event-B model into a fully proba-
bilistic one. The resulting model has the same elements as
the original one: we do not allow the introduction of new
variables, constants or new events; each event keeps its ele-
ments; we do not add new parameters, reinforce the guards
or add new assignments to the events. The only difference
between the two models is the introduction of event weights
and assignment probabilities for the considered set of events.

In order to probabilise a set of standard events, all the
events in this set must satisfy some conditions, formalised
by means of probabilisation feasibility POs:

1. Parameter probabilisation. For each concerned stan-
dard event, the set of values taken by the parameters such
that the guard of the event is fulfilled must be finite.

(event/param/proba)

| 1(5) - finite ({7 | G(7,)})

2. Event probabilisation. Depending on the type of assign-
ment, several POs can be applied:

(a) Enumerated Assignment probabilisation. For each
enumerated assignment X :€ {E;(z,0),. .., E;(¢,0),.. .,
E, (z,0)} which appears in the concerned events of
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the standard Event-B model, the set of expressions
assigned to the corresponding variable must be finite.

- finite ({E; (,0),. . .,E: (7,0),. . .,En(7,0)})
sign/proba)

(event/as-

(a) Predicate Assignment probabilisation. For each predi-
cate non-deterministic assignment X :| Q,(7,v,X’) which
appears in the concerned events of the standard Event-B
model, the set of values X’ such that Q,(z,0,X’) is true
must be finite.

’ F finite ({X’ | Q,(7,7,X)}) (event/assign/proba)‘

‘When all the above conditions are fulfilled, the considered
set of events can be probabilised. Then, the probabilisation
process consists in:

1. Producing a new probabilistic/mixed Event-B model
which probabilises the original model.

As the variables and the invariants are not impacted by
the probabilisation, they are automatically included in the
generated Event-B model,;

2. Probabilising each event of the given set, i.e.

(a) Copying each event of the original model into the
new probabilistic/mixed Event-B model;

(b) Annotating each event with a weight expression
W(v);

(c) Replacing each enumerated assignment by an enu-
merated probabilistic assignment in the form:

]x —Ei(7,0)@p1 ®...® E([,0)@p; @ ... ® E,(7,0)@p,

where the designer will have to precise the desired probability
values P1,..., Piy ---Pn-

(d) Replacing each predicate non-deterministic assignment
by the corresponding predicate probabilistic assignment:

x®Q,(7,0,X)

As default (proposed) values, event weights are set to 1
and the parameters of probabilistic assignments are uniform

(pi=1i=1l.un).

Running example The non-deterministic Event-B model
P2P3 corresponding to the second level of the refinement
on the case study presented in Sect. 3 can be probabilised.
For illustration purposes, we apply a partial probabilisation
on the selected events Finish1DL and FailureDL.

During this process, we need to input weights for both
events. We propose expressions that imply that the number
of failures decreases with the number of successful down-
loads. When probabilising the event FailureDL, we need
to input probability values for the transformation of the
non-deterministic choice DBin(c+—b):€ {empty,incoming}
to a probabilistic choice DBin(c—b):= empty @4/10 &
incoming @6/10.

Finally, we obtain a fully mixed event-B model P2P,,
illustrated in Fig. 12 where the events DLFinished and
Start1DL are still non-deterministic whereas Finish1DL and
FailureDL are probabilistic.

When applying probabilisation on all the events of the
non-deterministic Event-B model given in Fig. 5, we obtain
the fully probabilistic Event-B model given in Fig. 7, in
Sect. 4.1.

7 Introducing new probabilistic events by
refinement

As previously explained, probabilistic information can be
introduced in the design process by introducing new proba-
bilistic events through (probabilistic) refinement. Obviously,
this process could be applied to standard, mixed or even
fully probabilistic models, therefore leading to mixed or fully
probabilistic models.

One principal aspect of refinement in Event-B is the addi-
tion within a refinement step of new variables and new events
acting on those variables. In this section, we explain how
to introduce new probabilistic events in a given (abstract)
model. Regardless of the type of model (non-deterministic,
mixed or fully probabilistic), it is necessary to show that the
introduction of these new events cannot prevent the system
from behaving as specified in the abstract model. Recall that
this is usually done by proving that the set of new events
introduced in the refinement step converges, i.e. that events
from this set cannot keep control indefinitely. As a conse-
quence, at some point, the system must stop the execution of
new events in order to execute the behaviour proposed in the
abstract model.

We therefore propose a solution in order to prove that a
given set of probabilistic events almost-certainly converges.
As a first step, we only consider fully probabilistic Event-B
models and propose a set of sufficient conditions, expressed
as POs, that allow proving that a set of probabilistic events is
almost-certainly convergent. We then explain how these POs
can be extended to the more general setting.
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MODEL
P2P )
PROBABILISES
P2P;

VARIABLES
DB
DBin
INVARIANTS
DBeE 1..N x 1..K — {empty,finished} A
DBin € 1..N x 1..K — {empty,incoming,finished} A

Ve. (cetl.N

= card({b | b € 1..K A DBin(c—b)=incoming}) < 1)
VARIANT

2 x NxK

— 2 x card({c—b [n€1..N A b € 1..K A DBin(crb) = finished})
— card({c—b [n€1..N A b € 1..K A DBin(c—b) = incoming})
EVENTS

Init =

begin

DB:=(1..N x 1..K) x {empty} ||

DBin:=(1..N x 1..K) x {empty}

end

DLFinished =

when

DB=(1..N x 1..K) x {empty} A
DBin=(1..N x 1..K) x {finished}
then

DB:=DBin

end

Start1DL =
any ¢, b where
cel.NAbe1T.KA
DBin(c—b)=empty A
card({k | k € 1..K A DBin(c—k)=incoming})=0
then
DBin(c—b):=incoming
end

Finish1DL =
weight
card({c—b [n€1..N A b € 1..K A DBin(c—b)=finished}) +1
any c, b where
cel.NAbe1.KA
DBin(c—b)=incoming
then
DBin(c—b):=finished
end

FailureDL =
weight
NxK
— card({c—b [n€1.N A b € 1..K A DBin(c—b)=finished})
any c, b where
cel.NAbe1l.KA
DBin(c—b)=incoming
then
DBin(c—b):=empty @4/10 & incoming @6/10
end

END

Fig. 12 A fully mixed Event-B version of the simple P2P protocol

Finally, we briefly consider the dual process: introducing
standard (non-deterministic) events inside a probabilistic (or
mixed) Event-B model.

7.1 Introducing new events in a fully probabilistic
Event-B model

In standard Event-B refinement, it is required to show that
a given set of events always converges. On the contrary,
in probabilistic Event-B, it is only required to prove that
a given set of probabilistic events almost-certainly con-
verges. In other words, we are interested in showing that,
in all states of the system where convergent probabilistic
events can be executed, the probability of eventually tak-
ing a non-convergent event or reaching a deadlock is 1
(the probability of infinitely executing convergent events
is 0).

This property has already been investigated in [19] and
[22], in the context of events having probabilistic actions
but where non-determinism is still present between events.
In this context, Hallerstede and Hoang propose in [19] suf-
ficient conditions for a set of events to almost-certainly
converge. These conditions can be summarised as follows:
As in standard Event-B, one needs to exhibit a natural num-
ber expression V(v) called a variant. Unlike in the standard
setting, only one resulting valuation of the execution of each
convergent event needs to decrease this variant. Indeed, in this
case, the probability of decreasing the variant is strictly pos-
itive. Unfortunately, using such a permissive condition is not

@ Springer

sufficient in our context: there might also be a strictly positive
probability of increasing the variant. Therefore, Hallerstede
and Hoang require the introduction of another natural num-
ber expression U(v) which must maximise the variant V(o)
and never increase. The proposition from [19] is refined in
[22], where Hoang requires in addition that the probabil-
ities considered in probabilistic assignments are bounded
away from 0. This is ensured by requiring that the set of
values that can be returned by a probabilistic assignment is
finite.

7.1.1 Adaptation to probabilistic events

We now show how to adapt the results proposed in [19] and
[22] to new probabilistic events introduced in a fully proba-
bilistic Event-B model. Since there are no non-deterministic
choices between enabled events, it is not anymore necessary
to require that all enabled events in a given configuration
may decrease the variant. We therefore start by relaxing the
condition proposed in [19]: we only require that, in all con-
figurations where a convergent event is enabled, there is at
least one convergent event for which at least one resulting
valuation decreases the variant.

1. Almost-certain convergence In all configurations where
at least one convergent event is enabled, there must exist
at least one valuation v’ obtained after the execution of
one of these enabled events which decreases the variant.



Introducing probabilistic reasoning within Event-B

1975

1(©) A ((Gi(#,0) A Wi (0) > 0)Vv...V(Gi(,0) A W,(0) > 0)) F
3v. Gi(t,0) A W;(v)>0A SP;(7,9,0') A V(@')<V(D)) V-

(model/pVar)
v (3. Gu(t,0) A W, (2)>0A SP,(7,0,0°) A V(2')<V(0))

Asin [19], we also require that convergent events can only
be enabled when the variant is positive and that the variant
is bounded above. In order to simplify the reasoning, we
propose to use a constant bound U, as in [22].

2. Numeric variant Convergent events can only be enabled
when the variant is greater or equal to O.

’ 1(v) A Gi(,0) A W;(0)>0 F V(0)eNAT (event/var/pNAT)

3. Bounded variant Convergent events can only be enabled
when the variant is less or equal to U.

] 1(3) A Gi(7,5) A Wi(5)>0 - V(5)<U  (event/pBOUND)

Finally, the finiteness of the set of values that can be
returned by a probabilistic assignment is already ensured by
the syntax for enumerated probabilistic assignments and by
PO (event/assign/pWD3) for predicate probabilistic assign-
ments and their non-emptiness is ensured by the standard
feasibility POs.

7.1.2 Inadequacy of adapted POs

Unfortunately, as we deal with potentially infinite-state sys-
tems, POs 1-3 presented above are not anymore sufficient
for proving that the probability of eventually executing a
non-convergent event or reaching a deadlock is 1. Indeed,
although the probability of decreasing the variant is always
strictly positive because of PO (model/pVar) and although the
number of values that can be returned by a given probabilistic
assignment is always finite, the combination of event weights
and parameter choice can make this value infinitely small in
some cases. In this case, it is well known that almost-certain
reachability/convergence is not ensured. This problem is a
direct consequence of the unboundedness of the weights of
convergent events as well as of the number of acceptable
parameter values, which, by getting arbitrarily big, cause the
probability of decreasing the variant to get arbitrarily small.
Two examples illustrating this fact are given below.

Example 3 (Necessity of bounding event weights) In this
example, we show by means of an example of a probabilistic
Event-B model the necessity of bounding the weights of new
probabilistic events in order to ensure almost-certain conver-
gence.

Consider the probabilistic Event-B model M1 and the cor-
responding DTMC semantics given in Fig. 13. This model
has two variables: X and y and three events evt1, evt2 and
evt3, two of which (evt1 and evt2) are convergent. The vari-
ant of this model is X, and the bound on the variant is clearly
u=2.

In states where x = 1, only convergent events evt1 and
evt2 are enabled and the local probability of choosing evt1
is ; while the local probability of choosing evt2 is 2= In
states where x = 2, only evt1 can be chosen with probability
1. In states where x = 0, the only enabled event is the (non-
convergent) event evt3.

Clearly, the model M1 satisfies proof obligations (mod-
el/pVar), (event/var/pNAT) and (event/pBOUND). However, as
we show below, the probability of eventually taking a non-
convergent event is strictly smaller than 1 from all states
where x > 0 because the probability of decreasing the vari-
ant, although strictly positive in all states, gets infinitely small
from states where x = 1 as y increases.

Without loss of generality, we compute the probability of
eventually taking evt3 from the initial state where x = 1 and
y = 2. The reasoning starting from other states is similar.
This probability is equal to the sum of

(1) the probability of directly taking evt1 from (1, 2),

(2) the probability of reaching (1, 4) and taking evt1 from
(1,4),

(3) the probability of reaching (1, 8) and taking evt1 from
(1,8)

@ ...

1=50
6 6, and in general, the probablllty of
reaching state (1, 2) with i > 2 and taking evt1 from this
state is strictly smaller than 3 +1

As a consequence, the probability of eventually taking
evt3 from the initial state is strictly smaller than

Clearly, (1) is equal to é, (2) is equal to l
3 1

NI*—

1
"Ly

Therefore, M1 does not almost-certainly converge.

The behaviour we expose here is a direct consequence
of the unboundedness of the weights of convergent events,
which, by getting arbitrarily big, cause the probability of
decreasing the variant to get arbitrarily small.
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MODEL
M1

VARIABLES
X

y

INVARIANTS
x€ INT A
ye INT

VARIANT
X

EVENTS

Init =

begin

x:=1 | y:=2
end

evtlt =
convergent

weight 1

when 0<x<2 then
x:=x—1 || y:=2xy

end

evt2 =
convergent
weight y—1
when 0 <x <1
then

X:=x+1
end

evt3 =

weight 1

when x=0

then

x:=—1| y:=—1
end

Fig. 13 Probabilistic Event-B model and DTMC semantics illustrating the necessity of bounding event weights to ensure almost-certain conver-

gence

MODEL
M2

VARIABLES
X

y

INVARIANTS
x€ INT A
yeE INT

VARIANT
X

EVENTS

Init =
begin
x:=1

[ y:=1
end

evtl =

convergent

weight 1

any t where
t e {1.. 27} A 0<x<1

then

x:B((t=1 A X' —x+t=0) or

(2<t<2Y A X'—x—1=0))

[| y:=y+1

end

evi2 =
convergent
weight 1
when x=2
then

X:=x—1
end

evt3 =
weight 1
when x=0
then
x:=—1| y:=—1
end

Fig. 14 Probabilistic Event-B model and DTMC semantics illustrating the necessity of bounding event parameter values to ensure almost-certain

convergence

Example 4 (Necessity of bounding event parameter values)
We now use a similar example to show the necessity of
bounding the number of admissible parameter values in new
probabilistic events in order to prove their almost-certain
convergence. The probabilistic Event-B model M2 and its
corresponding DTMC semantics, given in Fig. 14 are simi-

lar to the ones presented in Fig. 13.
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In this case also, we observe that the probability of even-
tually executing non-convergent event evt3 from the initial
state is strictly smaller than 3/4. The main difference is that,
in M2, only the choice of parameter values is responsible
for infinitely decreasing the probabilities of decreasing the
variant.
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7.1.3 Additional proof obligations

We therefore adapt classical results from infinite-state DTMC
to our setting and propose sufficient conditions in terms of
proof obligations to prove the almost-certain convergence of
the set of new introduced events. Informally, the following
POs ensure that the probability of decreasing the variant can-
not get infinitely small by requiring that both the weights of
convergent events and the number of potential values given
to parameters in convergent events are bounded.

4. Bounded weight The weight of all convergent events
must be bounded above by a constant upper bound BW.

’ (V) A Gi(z,0) = W;(v) < BW (event/wght/BOUND)

5. Bounded parameters The number of potential values for
parameters in convergent events must be bounded above
by a constant upper bound BP.

’ I(v) + card({r | G;(,v)}) < BP (event/param/BOUND)

We now formally prove that the conditions presented
above are sufficient for guaranteeing the almost-certain con-
vergence of a given set of events in a probabilistic Event-B
model.

Theorem 1 Let M=(v, I(v), V(v), PEVts, Init) be a prob-
abilistic Event-B model and PEvts, C PEVts a set of
convergent events. If M satisfies the above POs (1-5), then
the set PEVts, almost-certainly converges.

Proof LetM = (v, I (v), V(v), Evts, Init) be a probabilistic
Event-B model. Evts = Evts, . U Evts, is the partition of
the set of events Evts into non-convergent events Evts,,. and
convergent events Evts,.

We show that if M satisfies the following convergence
POs:

1. event/var/pNAT

VecEvts .1 (V) A Wo(0)>0A G.(t,0) - V() e NAT
2. event/pBOUND

Ve € Evis..I(0) AW, (V) > 0N G (f,0) - V(v) <U
3. event/wght/BOUND

Ve € Evis..I (D) A Go(f, 0) - W(0) < BW

4. event/param/BOUND
Ve € Evts..I () - card({t|G.(t,v)}) < BP
5. model/pVar

T@) A (Gip1 (T, D)V -V Gu(T, D) BV Wiy (D)
AGip1(F, D) A SPiy1 (5, D) A V(@) < V(D)) V
oV @V W (D) A Gu(F, D) A SP(F, D) A V(D)
< V@)

then M almost-certainly converges (with probability 1).

Recall that almost-certain convergence of M consists in
proving that, from all valuations of the variables of M where
a convergent event is enabled, the probability of eventually
taking a non-convergent event or reaching a deadlock is 1.
In order to prove this result, we consider a slightly modified
version of the DTMC semantics of M and use classical results
on DTMC:s in order to show that the probability of eventually
reaching a given set of states is 1 from all states where non-
convergent events are enabled.

In order to take into account the difference between con-
vergent and non-convergent events, we propose the following
slightly extended version of the DTMC semantics of M. In
this version, all the states are replicated in order to “remem-
ber” the last event executed.

Formally, consider the probabilistic Event-B model M
introduced above and let [M ]| = (S, so, AP, L, Acts, P) be
the DTMC semantics of M as introduced in Definition 2. We
build the DTMC [M]’ = (T, t, AP, L', Acts, P’) where

— T C S x (Acts U {€}) is the set of extended states, con-
sisting in pairs (s, a) where s is a state of [M] and a is
an action (event name),

— to = (80, €) is the initial state,

— L’issuch that L'((s,a)) = L(s) foralls € Sanda €
Acts, and

— P’issuchthat P'((s, a), e, (s', b)) = P(s,e,s)ife=b
and 0 otherwise for all action a.

It is easy to see that M almost-certainly converges iff the
probability of eventually reaching either a deadlock state
or an extended state of the form t = (s, ¢) where e is a
non-convergent event is 1 in [M7])’ from all (extended) states
where convergent events are enabled.

Since [[M] has a potentially infinite set of states, showing
such a result is not trivial. In order to prove it, we therefore
exploit existing results from the theory of DTMC:s. In partic-
ular, we focus on the global coarseness property introduced
in [27], which is a sufficient condition for the “decisiveness”
of infinite-state Markov chains. Formally, given a Markov
chain M = (S, P) and a target set of states F C S, we
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say that M is globally coarse w.r.t. F iff there exists some
minimal bound o > 0 such that for all state s € S, the proba-
bility of eventually reaching F from s is either O or greater or
equal to «. It is then shown in [27] that whenever a Markov
chain M is globally coarse w.r.t. the set F, the probability of
eventually reaching either F or a set of states F from which
F cannot be reached is 1 from any state of M.

In the following, we will apply this result to the DTMC
[MT]’ in order to prove that M almost-certainly converges.

We therefore proceed as follows:

(a)
(b)
(©)
(d)

We start with introducing notations that will be used
throughout the proof.

We then propose a partition of the extended states 7" of
[MT’ and introduce our goal set F C T.

We show that all states from each partition of T satisfy
the global coarseness property w.r.t. F.

We finally show that the set Fis empty and conclude.

We now detail each step of this proof.

(a)

(b)

Consider the following notations:

— In the DTMC [M]’, we partition the set of actions
(event names) as follows: Acts = Acts,. U Acts,,
where Acts,,. is the set of non-convergent actions
and Acts, is the set of convergent actions.

— Given an extended state ¢ and a set of states G € T,
we write P (¢ = OG) for the probability of eventually
reaching G from 7.

— Given a predicate P and an extended state = (s, a)
of [M]’, we write P(t) for the evaluation of P in the
state s.

— Given an extended state t = (s,a) € T, we write
Acts(r) for the set of events enabled in s. Simi-
larly, we write Acts.(¢z) for the set of convergent
events enabled in s and Acts,,.(¢) for the set of non-
convergent events enabled in s.

— Givenasetofevents E andastater = (s,a) € T,we
write W!(E) (or W3 (E) when clear from the context)
for the sum of the weights of the events from E that
are enabled in s.

— Given a state t = (s,a) € T, we write Succ(t) for
the set of extended states that are reached from ¢:

Succ(t) = {t' € T|3e € Acts(t).P'(t, e, ') > 0}

— Givenafinite executiono = tgy, €9, t1, ..., th—1, €n—1,
ty of [MT]', the length of o is written L(c) and is
equal to the number of transitions executed in . In
the above example case, L(0) = n.

We now introduce the following sets of extended states
T:

@ Springer

ecActs,(s2),1'eF,

-T1 = {t = (s,a) € T | Je € Evis.,30 €
T¢, G.(s,0) AVe € Evts, ., V0 € T, =G (s, 0))
is the set of extended states where only convergent
events are enabled.

-1, = {t = (s,a) € T | Je € Evis., 30 €
T¢, Go(s,0) A3e’ € Evis,.,30 € TS, Gu(s,0))
is the set of states where both convergent and non-
convergent events are enabled.

- T3 = {t = (s,a) € T | Ve € Evis.,V0 €
TS, =G, (s, 0)} is the set of states where no conver-
gent events are enabled.

- Ty ={t = (s,a) € T |a € Evts,}is the set of states
reached after performing a non-convergent event.

Itis easy to see that T = T7 U T> U T defines a partition
of T. The convergence property for our probabilistic
Event-B model M clearly concerns states from 73 and
Ts. We therefore define our target set as F' = T3 U T4.
As in [27], we write F for the subset of states of T from
which it is impossible to reach F. We show later that F
is empty.

We now show that all extended states in 7 and 7> and
T3 satisfy the global coarseness property w.r.t F, i.e.
that there exists a minimal bound @ > 0 such that for
each extended state ¢t € T, the probability of eventually
reaching F is either O or greater or equal to «.

— We begin with states in 7>. Let 1, = (s2,a) € T>.
Let F, be the subset of states that are reached from 1,
by non-convergent events. Obviously, F» C Ty C F.
Formally,

Fr={t'=(@G",d)eT |t eSucctr) na € Acts,.}

By definition of 75, at least one convergent event is
enabled in 15, therefore we have W2 (Acts.) > 0. Like-
wise, at least one non-convergent event can be enabled
in tp, thus W2 (Acts,,.) > 0. Therefore, W2 (Acts) > 0.

Recall from Sect. 4.3 that the probability of a transition
(t2,e,t') where e € Acts, () and ¢’ = (s',e) € F, is
given by:

We(s2)
P'(ty,e,t) = P(s2,e,5) = —————
(2, e, 1) (s2,€,5) W (Acts)
x Z[PT;Z(Q) < [ Pootx.s)]
eeTf2 xeVar(e)

By definition, all non-convergent events e take the system
in states in F> regardless of the probabilistic choice made
inside the action of e. Therefore:

> P(t, e, 1) =

Z W, (S 2) “ 1
Ws2(Acts)

ecActs; . (s2)
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As aresult, the probability of eventually reaching F, from

3 w2 (ACtS)l(')
1 is above s TAcs) -

‘We now show by contradiction that there exists ap > 0 s.t
Vi € Tr, P(t2 = OF,) = as.
Assume the contrary, i.e. Yo > 0,3t € Tr s.t P(tr &=
OF) < as.

Let o be such that (% —1) > BW x card(Acts,). There
must exist tp = (sp,a) € T» such that P(r, = OF) <

ap. By the result above, we know that P(r; &= OF>) >
W52 (Acts,,.)

W (Acts) As a consequence, we must have:

W42 (Acts,c)
W52 (Acts)

Recall that W52 (Acts) = W% (Acts,.) + W*2(Acts,).
Therefore,

W42 (Acts)

W2 (Acts,.)

W2 (Acts,) 1
— > —
ws2(Acts,.) an

As a consequence,
1
W2 (Acts.) > W2 (Acts,,.) - | — — 1
a2

By definition of 7>, we have W*2(Acts,,.) > 1, therefore

1
W*2(Acts,) > <— — 1)
o2

Finally, by definition of oy, we have W% (Acts.) >
BW x card(Acts;), which is clearly in contradiction with
PO event/wght/BOUND.

We therefore conclude that there exists o > 0 such that
Ve T, P(h = OF) > as.

— We now move to extended states in 7] : we show that there
exists 1 such that for all extended statest; € Ty, P(t] &=
OF) > aj.

Recall that the probability function of [M]’ is expressed as
follows: For all t; = (s;,a) € T1, e € Acts, and t' =
(s',a) € T, we have

We(s1)
P(t1,e,t') = P(si,e,8') = ———
(1, e 1) (s1,€,5) W (Acts)
x Y [Pre@x [T PSatxsh]
GET" xeVar(e)

Since #; € T, this expression can only be nonzero if e
is a convergent event. In this case, PO event/wght/BOUND
ensures that WS (Acts) < BW - card(Acts.). Therefore,

We(s1)

for all convergent events enabled in #;, we have Wi Acts) =

1
BW-card(Acts,)
Moreover, PO event/param/BOUND ensures that the num-
ber of parameter valuations satisfying the guard of e in sy is
bounded by B P. As a consequence,

Z[PTe(G)x ]_[ P o(x,s)]

OeTf xeVar(e)

1
Zﬁx Z[ H Psel’g(x,s/)]

GETS"I xeVar(e)

Finally, since the probabilities inside each probabilistic
assignment (P (E)) are constant and in finite number, there is
aminimal value 8 > 0 (which we do not detail here) such that
forall 4y = (s1,a) € T1,e € Actse, andt’' = (s',e) € T,
whenever P(t1, e, t’) > 0, we have

Z [ 1_[ P;},@(X,S/)] >

GGTfl xeVar(e)

As a consequence, there exists a minimal value y > 0
such that P'(t;,e,t') > y forall 1y € Ty, e € Acts,, and
t' € T such that P'(t1,e,t’) > 0.

Now, let tp = (sg,ap) € T be an extended state. By
definition of 77 and because of POs event/pBOUND, even-
t/var/oNAT and model/pVar, the value of the variant in g
is between 0 and U and there must exist a transition that
leads the system to an extended state #; = (s1,ap) S.t.
V(t1) < V(ty). Necessarily, we have t; € Ty ort; € Tr
or t1 € Tj3; therefore, there must exist a finite execution
o = to,eq, ... ty_1,th—1,t; With 1, € To U T3 and
Vi<n,tieTirand L(o) < U + 1.

Ift, € T3 C F, then P(tp = OF) > yU*!. Otherwise,
we have t, € T and P(t, = OF) > ap, therefore P (1) &=
OF) > ap - yUtl.

As a consequence, since oy < 1, we have y >y -
yY*1 and there exists @; = a3 - YY1 > 0 such that for all
extended states 1y € T1, P(t; = OF) > «;.

U+1

— Finally, since 75 C F, we have P(t3 = OF) = 1 for all
extended states 13 € T3.

We therefore conclude that [MT’ is globally coarse w.r.t
F. Asaconsequence,Vt € T, P(t = QOF v OF) = 1.

(d) We have shown above that for all extended states either
in T1, T, or T3, we have P(t = OF) > 0. Since T =
T1 U T, U T3, F is therefore necessarily empty.

Since [M]’ is globally coarse w.r.t F and Fis empty,
we have that for all extended state t € T, the probability of
eventually reaching the target set F is 1. As a consequence,
the probability of eventually reaching either a deadlock state
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or an extended state of the form t+ = (s, e) where e is a
non-convergent event is 1 in [M7]’ from all (extended) states
where convergent events are enabled, which concludes our
proof. O

Remark The additional POs imposing boundedness of
weights and event parameters are therefore sufficient (in
addition to the adaptation of standard convergence POs pre-
sented earlier) for proving the convergence of a given set
of events. While these POs are certainly restrictive, they are
easily provable and seem consistent with the requirement on
the boundedness of the variant. Identifying less restrictive
conditions in general is still an open question.

7.1.4 Running example

Recall that, as explained at the end of Sect. 3, we cannot
prove that the peer-to-peer protocol (with failures) always
terminates, because we cannot prove the convergence of the
non-deterministic Event-B model P2P3. Indeed, the event
FailureDL fails to decrease the corresponding variant, there-
fore preventing convergence.

Now consider the fully probabilistic Event-B model P2P p
given in Fig. 7 from Sect. 4. To show that the protocol
always terminates we have to show that the set of events
{Start1DL, Finish1DL, FailureDL} almost-certainly con-
verges (i.e. converges with probability 1).

— The variant is numeric (event/var/pNAT), and we can take
the expression 2 x N x K as a possible upper bound for
the variant (event/pBOUND);

— The weights of the convergent events are bounded by
N x K + 1 (event/wght/BOUND);

— The possible parameter values are bounded by N x K
(event/param/BOUND);

— Finally, in each possible configuration, the event
Finish1DL decreases the variant with a positive prob-
ability (model/pVar).

Since the model P2Pp satisfies all the required POs,
Theorem 1 ensures that the set {Start1DL, Finish1DL,
FailureDL} almost-certainly converges.

In order to illustrate that the variant indeed decreases with
a positive probability from all states using probabilistic event
Finish1DL, we provide in Fig. 15 an extract of the MC
semantics of P2Pp (for N=2 and K=2), where all states are
labelled with the value of the variant.

7.2 Generalisation to introduction of new
standard/probabilistic events in

standard/mixed/probabilistic Event-B models

We now move to the general setting and explain how new
events of any type can be introduced in all types of mod-
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els. We show that the results presented above can be easily
adapted to the more general settings that combine classi-
cal and probabilistic refinement on standard, mixed or fully
probabilistic Event-B models.

New probabilistic events in standard/mixed Event-B models
The results presented above can be adapted to the setting of
standard or mixed Event-B models. In both cases, the result of
introducing new probabilistic events will be a mixed Event-B
model. Fortunately, since only the new probabilistic events
need to be (almost-certainly) convergent, the required POs
are identical to the ones presented in Sect. 7.1. Although the
resulting semantics is an MDP instead of a Markov chain,
the almost-certain convergence results still hold.

Proposition3 Let M = (v, I(v), V(v), MEVts, Init) be
a mixed Event-B model, where MEvts = MEvts,. U
MEVtS .. UMEVLS 4 is the partition of the set of events into
probabilistic convergent events MEVtS ., probabilistic non-
convergent events MEVtS .. and non-deterministic events
MEvts,;. If MEVtS .. satisfies the POs (model/pVar), (even-
t/wght/BOUND), (event/pBOUND) and (event/var/pNAT) pre-
sented in Sect. 1.1, then MEVtS . almost-certainly converges
(with probability 1, regardless of the non-deterministic
choices).

Proof-sketch Since only probabilistic events need to be con-
vergent, non-deterministic choices have no impact on the
almost-certain convergence property. One can therefore eas-
ily adapt the proof of Theorem 1 to the MDP setting,
where the role of schedulers will be trivial: regardless of
the chosen scheduler, the probability of eventually taking a
non-convergent event will be 1.

Standard events in mixed/probabilistic Event-B models After
explaining how to introduce probabilistic events in stan-
dard/mixed/probabilistic Event-B models, we now consider
the reverse operation, i.e. the introduction of new standard
events in mixed or probabilistic Event-B models. Again,
since only the new (standard) events need to be convergent,
it is easy to see that standard convergence POs as presented
in Sect. 2.3 are sufficient for proving almost-certain conver-
gence. Indeed, since only standard (non-deterministic) events
are convergent in the resulting model, it is necessary to show
that every one of them decreases the variant.

Standard and probabilistic events at once Finally, we con-
sider the introduction of both standard and probabilistic
events in a single refinement step. Regardless of the type
of the abstract model, the resulting model will be a mixed
Event-B model. This is the most complex combination as
both standard and probabilistic events need to converge at
the same time.
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Fig. 15 Extract of the DTMC of the simple P2P protocol, with N=2 and K=2

Recall that proving the convergence of a set of new stan-
dard events boils down to proving in all configurations of
the system where convergent events can be executed that
each convergent event must decrease a given variant. On the
other hand, we have shown that a set of probabilistic con-
vergent events almost-certainly converges whenever, in all
states where probabilistic convergent events can be executed,
at least one of these events must decrease the variant.

When both standard and probabilistic events need to con-
verge, we therefore propose to mix both approaches by
requiring that, in all configurations where convergent events
can be executed, at least one of the enabled probabilistic con-
vergent events (if any) must decrease the variant with positive
probability and all enabled standard convergent events (if
any) must decrease it. Therefore, this boils down to proving
standard convergence POs for standard convergent events and
probabilistic almost-certain convergent POs for probabilistic
convergent events. The only modification is that all conver-
gent events (standard and probabilistic) need to respect the
bound on the variant introduced in the probabilistic setting.
We therefore need a new PO for standard convergent events:
Bounded variant for standard events Standard convergent

events can only be enabled when the variant is less or equal
to U.

] 1(5) A Gi(F,5) - V(5)< U

(event/ndpBOUND)

Proposition 4 Let M =(v, I(v), V(v), Init, MEViS) be
a fully mixed Event-B model where MEvts = MEvts . U
MEVts ,,c U MEVtS, ¢ U MEVLS, 4, is the partition of the
set of events into probabilistic convergent events MEVtS .,
probabilistic non-convergent events MEVLS ., standard
convergent events MEVtS, 4., and standard non-convergent
events MEV1S,,4,¢.

If all events from MEVts,. U MEVtS,4. satisfy the
PO (event/var/NAT) presented in Sect. 2.3, all events from
MEVts, 4. satisfy the POs (eventivar) (from Sect. 2.3) and
(event/ndpbound) presented above, and all events from
MEvts . satisfy the POs (event/wght/BOUND), (event/
pBOUND) and (event/var/pNAT) presented in Sect. 7.1, then
the set of events MEVts ,. UMEVtS, 4 almost-certainly con-
verges in M, i.e. converges with probability 1 in the worst
case.

Proof-sketch Again, the proof of Theorem 1 can be easily
adapted to this setting. One then needs to fix an arbi-
trary scheduler and show that, under this scheduler, the
probability of eventually taking a non-convergent event
is 1. Since all non-deterministic choices lead to either
a convergent standard event (which decreases the vari-
ant with probability 1), a non-convergent event (which
ends this proof) or the combined probabilistic transition
(which either decreases the variant with a positive proba-
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bility or is non-convergent itself), the conclusion is easily
obtained.

8 Conclusion and future work

In this paper, we have presented an extension to the Event-B
formalism that allows describing models with probabilistic
aspects. We have focused on two types of models: fully prob-
abilistic models, where all non-deterministic choices present
in standard Event-B models are replaced with probabilistic
choices; and mixed Event-B models that allow expressing
both non-deterministic and probabilistic choices in the same
model. We have provided proof obligations for the consis-
tency of both types of models and expressed their operational
semantics in terms of probabilistic transition systems. More-
over, we have also explained how the addition of probabilistic
information can be done either as a standalone artefact (prob-
abilisation of a standard model) or as a part of the design
process that can be interleaved with standard refinement
steps. In particular, we have focused on the addition of new
probabilistic events in standard/mixed/probabilistic models
and developed sufficient conditions in terms of proof obliga-
tions in order to show that a given set of probabilistic events
is almost-certainly convergent, which is a required property
in this context in standard Event-B.

Although we have considered the addition of new prob-
abilistic events in a standard/mixed/probabilistic model, a
complete counterpart to standard refinement for the proba-
bilistic setting still eludes us. The problem mainly lies in two
operations that are allowed in standard Event-B refinement:
the split and merge operations.

— The split operation allows, in one refinement step,
to transform one abstract event into multiple concrete
events, while allowing the guards of these concrete events
to be more restrictive than the guard of the abstract event.
In the probabilistic setting, the problem mainly lies in
the repartition of the weights of concrete events w.r.t the
weight of the abstract event depending on which of the
guards are satisfied. We have not found yet a satisfy-
ing solution that does not restrict in a too strict way the
original split operation. Indeed, a simple but restrictive
solution is to impose that the guards of the concrete events
must be identical to the guard of the original abstract
event. In this case, we only have to impose that the sum
of the weights of the concrete events is equal to the weight
of the abstract event.

— The merge operation, on the contrary, allows for a sin-
gle concrete event to refine several abstract events at
once. The same problem regarding the repartition of the
weights of the original events arises in this setting, which
has prevented us from finding a satisfying solution yet.
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In the future, we plan on pursuing our work on probabilistic
refinement, which would allow us to propose a modelling
formalism that supports all the potential design strategies
presented in Fig. 1 in the introduction. At the same time,
we are pursuing our investigation of probabilistic properties
and how to verify them using proof-based techniques. In the
spirit of almost-certain convergence, we plan on providing
a set of typical properties that can be easily discharged in
probabilistic Event-B using predetermined proof obligations.

Probabilistic plugin for Rodin We have started the devel-
opment of a probabilistic plugin for the Rodin platform
(see Fig. 16). The Rodin tool [2] is an Eclipse-based IDE
for designing models in Event-B. It allows the creation of
Event-B models, the automatic generation of POs, and it
incorporates some provers for discharging the necessary POs.
Rodin is based on a set of plugins that facilitate its extension
to support new functionalities.

Our plugin is still under development, but it already sup-
ports the specification of fully probabilistic Event-B models
and the generation of some dedicated POs presented in this
paper.

The plugin also allows the probabilisation of a non-
deterministic Event-B model: it automatically generates the
corresponding probabilistic Event-B model. Once this latter
is generated, the developer must complete the weight of each
probabilistic event and probability values for each quantita-
tive probabilistic assignment.

The plugin features are listed in Table 1 where v denotes
the supported functionalities and ~ the functionalities that

Table 1 Plugin features

Writing probabilistic assignments
Annotating events with weights
Generating new PO (event/assign/pWD1)
Generating new PO (event/assign/pWD2)
Generating new PO (event/assign/pFIS)
Generating new PO (event/param/pWD)
Generating new PO (event/WGHT/NAT)
Updating PO (event/pINV)

Updating PO (model/pDLF)

Reusing PO (event/pBOUND)

Reusing PO (event/pBOUND1)

Reusing PO (event/var/pNAT)

Reusing PO (event/pVAR)

Integrating probabilisation process
Checking condition (event/param/proba)
Checking condition (model/assign/proba
Checking condition (event/assign/proba)
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Introducing probabilistic reasoning within Event-B
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Fig. 16 Probabilistic plugin to the Rodin platform

are currently under development. As explained in Sect. 4.2.2,
the modifications on the standard PO (event/pINV) consists
in strengthening the guard by a predicate, indicating that
the weight of the event needs to be strictly greater than 0.
In order to implement these modifications in our plugin,
one solution is to add the predicate W(v) > O to the event
guard G(7,v) of each event. We therefore obtain a new guard
G’'(z,0) = G(z,0) A W(v) > 0, which is used in order to gen-
erate and discharge the standard PO (event/INV).

In the future, we plan on pursuing our work on this plugin
in order to integrate all the features presented in this paper.
In particular, we will reuse works from [40], where another
probabilistic plugin for Rodin is introduced in a slightly dif-
ferent context, in order to generate and discharge our new
POs for almost-certain convergence.
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On the Power of Uncertainties in
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ABSTRACT For decades, microbiologists have considered uncertainties as an unde-
sired side effect of experimental protocols. As a consequence, standard microbial
system modeling strives to hide uncertainties for the sake of deterministic under-
standing. However, recent studies have highlighted greater experimental variability
than expected and emphasized uncertainties not as a weakness but as a necessary
feature of complex microbial systems. We therefore advocate that biological uncer-
tainties need to be considered foundational facets that must be incorporated in
models. Not only will understanding these uncertainties improve our understanding
and identification of microbial traits, it will also provide fundamental insights on mi-
crobial systems as a whole. Taking into account uncertainties within microbial mod-
els calls for new validation techniques. Formal verification already overcomes this
shortcoming by proposing modeling frameworks and validation techniques dedi-
cated to probabilistic models. However, further work remains to extract the full po-
tential of such techniques in the context of microbial models. Herein, we demon-
strate how statistical model checking can enhance the development of microbial
models by building confidence in the estimation of critical parameters and through
improved sensitivity analyses.

KEYWORDS modeling, simulation, uncertainty

ince the work of Monod (1), simple biological modeling has been prominent in

microbiology. Because of their experimental tractability and purported simplicity,
microbial experimental systems have fostered the rise of several cross-scale modeling
approaches from the gene to the population level, which have been extended to test
ecoevolutionary hypotheses. These modeling approaches proposed and addressed
foundational hypotheses that developed into new biological paradigms such as growth
rate or identification of functional units. The first microbial models were driven by
reductionist assumptions (e.g., intracellular quota combined with kinetics mimicking
biochemistry rules) yet demonstrated remarkable predictive power for portraying the
growth of microbes in simple systems such as chemostats (1). Similar quota assump-
tions were used to model phytoplankton physiology (2) and later for modeling simpli-
fied global ocean ecosystems (3).

Reductionist modeling approaches have generally been parameterized from data
gleaned from laborious bench experiments. However, contemporary next-generation
sequencing (NGS) approaches provide unprecedented characterization of the diversity
of microbial communities, yet because feedbacks between biotic and abiotic systems
are inherently nonlinear and complex, mathematical models of microbial guilds inter-
acting with their environment are required. Current models have been developed
along the lines of systems biology approaches (4, 5) or trait-based models (6). Further-
more, NGS provides a large amount of data that represent one experiment alongside
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its associated uncertainties. It is also worth noting that increasing the data set provides
a concomitant increase in the number of uncertainties that must be considered.

Within microbial models, these uncertainties can be accounted for by machine
learning techniques (see Libbrecht and Noble [7] for a review) that produce automat-
ically predictive (deterministic) models from experimental measurements. Uncertainties
are accounted for in the modeling process (e.g., via averaging) but are hidden in the
model itself. Moreover, despite the great predictive power of such modelings, the
resulting models are not necessarily biologically meaningful. In particular, once param-
eterized, a model could be overfit to a data set without reflecting emergent properties
and precluding or reducing knowledge discovery. Considering that a single microbial
system could produce several distinct data sets through several experimental ap-
proaches, several different models are built accordingly (8, 9). All corresponding models
must then be investigated via automatic learning and verification techniques to take
into account their common properties rather than considering each model in isolation
(10). Conversely, other probabilistic modelings consider uncertainties but make the
parameterization difficult or advocate the use of multiple models that are difficult to
validate (11). Despite the aforementioned challenges, uncertainties must be accounted
for and integrated into microbial modeling approaches. Such an issue remains a
general problem across biology, and even in ecology despite a long tradition of dealing
with quantitative uncertainties (12). Herein, as previously done in engineering (13), we
advocate that the proper use of dedicated verification techniques could support efforts
to capture the complexity of microbial systems within models by promoting a com-
putational convergence on uncertainties rather than simple simulations. Below we
present a short overview of current modeling approaches for studying microbial
systems, after which we discuss the computational challenges that must be overcome
to better take into account uncertainties and verify the resulting models.

MICROBIAL STATE-OF-THE ART MODELINGS AND UNCERTAINTIES

Initial biological modeling efforts were inspired by models of physical systems and
formalized using nonlinear ordinary differential equations representing dynamic be-
haviors of gene activity or molecular concentrations. Interactions within these models
are driven by reaction rates associated with particular mechanistic behaviors such as
Michaelis-Menten or Hill functions. The need to use formal methods to analyze such
models has been discussed extensively in the last 15 years (see De Jong [14] for a
state-of-the-art review or Fisher and Henzinger [15]). However, their application mainly
results in a discretization of all interactions, such that the model becomes qualitative.
An advantage in this context is that the resulting qualitative models are computation-
ally scalable and do not need to incorporate an extensive number of parameters that
are mostly out of experimental reach, including parameters that show clear sensitivity
to experimental conditions (16). Nonetheless, even if such models are sufficient to
represent microbial gene regulatory networks, they are generally not sufficient for
modeling quantitative microbial behaviors as needed in the context of simulation of
microbial populations and communities, and subsequently, biogeochemical processes.

In order to represent complex quantitative microbial community responses to
environmental constraints, several studies postulate that the development of genome-
scale metabolic models that consider the whole set of metabolic reactions within a
microbial strain are necessary (17). In this context, the metabolic network consists of
stoichiometric coefficients and mass balance constraints. Herein, the rates are reduced
to fluxes that can be estimated via flux balance analysis (FBA) (18), which negates the
need for specific kinetic parameterization yet provides quantitative predictions. FBA
models are based on constraints, and solving the metabolic network analysis requires
the consideration of boundary conditions for all metabolic fluxes that take place within
the cell (see Bordbar et al. [19] for a review). In particular, recently, Basler et al. (20) have
shown that those boundaries that reflect uncertainties are necessary to better under-
stand intracellular metabolic flux distribution.

In order to simulate microbial communities, one can consider them at equilibrium
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by performing extensions of FBA (21, 22) or focus on dynamic quantitative behaviors by
representing kinetics of several microbial populations via traits. These trait-based
models use nonlinear differential equations and simplified complex dynamic behaviors
with a single parameter. However, because of the inherent complexity of the popula-
tion (23), estimating such a parameter is a difficult task without considering uncertain-
ties and intensive statistical analyses. Despite several attempts to identify those traits
from metagenomic experiments (24), estimating trait parameter values and automat-
ically building predictive models from ecosystem experiments remain key challenges
for the field.

NEED FOR DEDICATED MODEL-CHECKING TECHNIQUES

Following standard parameter estimation, whereby simulations satisfy the trends
and trajectories of experimental data, models are usually tested through sensitivity
analyses. Such analyses test the predictive accuracy of models across a wider range of
parameter values. However, while such testing is commonly used in practice because
of its computational scalability, sensitivity analysis does not provide a formal guarantee
of the correctness of the model but rather a synthesis of extensive number of simula-
tions. In several engineering fields, formal verification of models overcomes this short-
coming by performing model checking (25), which provides such guarantees. Unfor-
tunately, because standard model checking was originally designed to study artificial
systems, such as computer programs, it does not necessarily scale up to meet the
demands of complexity of microbial systems, in particular when dealing with uncer-
tainties. One must therefore combine model checking with sensitivity analyses, as
fostered by recent statistical model-checking (SMC) methods (26-28). Like sensitivity
analysis, SMC is based on simulations and executes the model several times to
converge on a probability for a given property to be satisfied (see Fig. 1 for an
illustration). In this case, the number of simulations that must be performed, and
satisfied, is not arbitrarily fixed by the modeler but rather precomputed in order to
ensure strong (formal) guarantees on the confidence and error levels of the analysis.
Because SMC methods are based on simulations, they do not rely directly on the model
structure (i.e,, number of variables and constraints), only on the ability to run simula-
tions, regardless of the formalization used (i.e., ordinary differential equations [ODEs],
constraint-based, Boolean...). As a consequence, they are suitable for realistic mod-
elings, ensuring strong formal guarantees (29) despite the complexity inherent to
microbial systems.

STATISTICAL MODEL CHECKING OF MICROBIAL MODELS

Because uncertainties are central to SMC methods, our hypothesis is that its use will
be central for microbial model validation. SMC will indeed build formal confidence
(trust) in the validation process while improving standard validation techniques. Stan-
dard validation is usually performed using a sufficiently large number of model
simulations, but the precise number is left to the acumen of the modeler, which is not
a satisfying guarantee with respect to the precision and correctness of the analyses. In
contrast, the precision and correctness of SMC methods are formally certified by using
statistical results to compute the required number of model simulations. Moreover,
SMC methods are tailored for the analysis of models that incorporate uncertainties per
se and therefore take into account parameter variations as standard characteristics of
the models studied. Thus, two potential SMC applications in the context of microbial
system validation could be emphasized.

Model certification rather than sensitivity analysis. Instead of fixing parameter
values to their mean observed values and performing sensitivity analysis of one
parameter at a time (Fig. TA), we propose to embed the uncertainty of the parameter
values into the models by assigning each parameter to a probability distribution based
on its potential values informed by lab or field experiments (Fig. 1B). Consequently, a
trait must then be considered a distribution on a range of values instead of a single
value that represents multiple experiments. The distribution of values over a given
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FIG 1 lllustration of model checking without and with uncertainties. Following a range of experiments,
standard data analysis highlights the distribution of values for a given parameter a. (A) Along a standard
model-checking protocol, one assumes a single value for «, usually the mean. Such a value is then used
for model calibration, which allows a simulation. Simulation results are then compared with observations
for the sake of model verification (e.g., usually via linear regression between prediction and observa-
tions). (B) An example of a model-checking protocol that considers uncertainties per se. Instead of
considering a single parameter value, one considers a range of values and precision guarantees and
performs a range of simulations accordingly (one per color). Altogether, this SMC approach validates the
models while taking into account intrinsic uncertainties and guarantees the desired precision (90% here).

range can thus be set as Gaussian, or as another distribution, in order to fit experi-
mental uncertainties. In SMC, model simulations can be performed by picking param-
eter values within their attached distributions (i.e., by considering the variances of all
parameters) and executing standard simulations. Following a simulation, deciding
whether one prediction is valid can be done by computing the deviation of predicted
values from existing observations. Since several simulations are performed (for several
parameter values), SMC outputs a score representing the ratio of valid simulations.
Thus, the SMC method performs a generalization of standard sensitivity analyses, not
by analyzing the sensitivity of a single average simulation but by analyzing all feasible
simulations and proposing general statistics of the whole; i.e., accurate statistical
guarantees to perform predictive simulations while taking into account experimental
uncertainties. By extension, considering uncertainties also allows us to certify all
simulation behaviors (i.e., average of simulations) for the sake of model validation,
rather than validating a single behavior (i.e., simulation of an average).

Model parameter estimation with uncertainties. Model parameters are often
difficult to measure because microbial communities encapsulate an array of trait data
leading to wide ranges in parameter values. Moreover, identifying a distribution of
parameter values, for instance, trait parameter values for models of microbe-mediated
biogeochemical processes remains a difficult task. One could overcome this difficulty by
considering a slight modification of the SMC paradigm to decipher the global set of
parameters (with uncertainties) that best fit the experimental data (Fig. 2). While the
global range of potential parameter values is often known, the aim here is to identify,
within this range, the “ideal” parameter values (i.e., those that produce the highest rate
of valid simulations). In this context, a partition of the global range of parameter values
(alongside the variance) is produced (Fig. 2B), and simulations are performed for each
of the obtained “subranges” (Fig. 2C). SMC can then provide a certified score for each
of those subranges, which represent an evaluation of their adequacy with respect to
experimental data (Fig. 2D and E). When performed on all subranges from the partition,
this method allows us to identify the parameter subranges that best fit the experimen-
tal data.

CONCLUSION
Uncertainties in parameter values are inherent to models built from experimental
data. Instead of doing our best to rule out these uncertainties through deterministic
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FIG 2 Statistical model checking (SMC) for model parameter estimation with uncertainties. (A and B)
Considering the distribution of parameter values (A), SMC will perform a partition of the global range of
parameter values (B). Notably, all parameters will be identified as a whole, instead of identifying each
parameter independently from others as in standard parameterization techniques. (C and D) Probabilistic
simulations are then performed for each of the “subranges” obtained. (E) Simulations of all models are
then compared to experimental data for the sake of adequacy estimation. (F) Iterated several times, this
protocol allows us to identify parameter subranges that, considered altogether, best fit the experimental
data.

modeling, we advocate that they should be incorporated into the models via the
development of dedicated probabilistic modelings. Originally developed for software
applications, statistical verification of such models will enhance the accuracy of model
validation while also bringing formal evidence of the correctness of the approach. In
addition, the future development of dedicated SMC methods will be the necessary
steps to estimate parameter values with uncertainties, ensuring the satisfaction of
desired properties, which represents the next methodological block for modeling
quantitatively microbial systems from genes to ecosystems.
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0. Introduction

Discrete time Markov chains (MCs for short) are a standard probabilistic modelling formalism that has been extensively
used in the literature to reason about software [1] and real-life systems [2]. However, when modelling real-life systems,
the exact value of transition probabilities may not be known precisely. Several formalisms abstracting MCs have therefore
been developed. Parametric Markov chains [3] (pMCs for short) extend MCs by allowing parameters to appear in transition
probabilities. In this formalism, parameters are variables and transition probabilities may be expressed as polynomials or
rational functions over these variables. A given pMC represents a potentially infinite set of MCs, obtained by replacing
each parameter by a given value. pMCs are particularly useful to represent systems where dependencies between transition
probabilities are required. Indeed, a given parameter may appear in several distinct transition probabilities, which requires
that the same value is given to all its occurrences. Interval Markov chains [4] (IMCs for short) extend MCs by allowing
precise transition probabilities to be replaced by intervals, but cannot represent dependencies between distinct transitions.
IMCs have mainly been studied with three distinct semantics interpretations. Under the once-and-for-all semantics, a given
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IMC represents a potentially infinite number of MCs where transition probabilities are chosen inside the specified intervals
while keeping the same underlying graph structure. The interval-Markov-decision-process semantics (IMDP for short), such as
presented in [5,6], does not require MCs to preserve the underlying graph structure of the original IMC but instead allows
a finite “unfolding” of the original graph structure: new probability values inside the intervals can be chosen each time a
state is visited. Finally, the at-every-step semantics, which was the original semantics given to IMCs in [4], does not preserve
the underlying graph structure too while allowing to “aggregate” and “split” states of the original IMC in the manner of
probabilistic simulation.

Model-checking algorithms and tools have been developed in the context of pMCs [7-9] and IMCs with the once-and-
for-all and the IMDP semantics [10,11]. State of the art tools [7] for pMC verification compute a rational function on the
parameters that characterizes the probability of satisfying a given property, and then use external tools such as SMT solv-
ing [7] for computing the satisfying parameter values. For these methods to be viable in practice, the allowed number of
parameters is quite limited. On the other hand, the model-checking procedure for IMCs presented in [11] is adapted from
machine learning and builds successive refinements of the original IMCs that optimize the probability of satisfying the
given property. This algorithm converges, but not necessarily to a global optimum. It is worth noticing that existing model
checking procedures for pMCs and IMCs strongly rely on their underlying graph structure (i.e., respect the once-and-for-all
semantics). However, in [5] the authors perform model checking of @w-PCTL formulas on IMCs w.r.t. the IMDP semantics
and they show that model checking of LTL formulas can be solved for the IMDP semantics by reduction to the model
checking problem of w-PCTL on IMCs with the IMDP semantics. For all that, to the best of our knowledge, no solutions for
model-checking IMCs with the at-every-step semantics have been proposed yet.

In this paper, we focus on Parametric interval Markov chains [12] (pIMCs for short), that generalize both IMCs and pMCs
by allowing parameters to appear in the endpoints of the intervals specifying transition probabilities, and we provide four
main contributions.

First, we formally compare abstraction formalisms for MCs in terms of succinctness: we show in particular in Proposi-
tion 2 that pIMCs are (strictly) more succinct than both pMCs and IMCs when equipped with the right semantics. In other
words, everything that can be expressed using pMCs or IMCs can also be expressed using pIMCs while the reverse does not
always hold.

Second, we prove in Theorem 1 that the once-and-for-all, the IMDP, and the at-every-step semantics are equivalent
w.L.t. reachability properties, both in the IMC and in the pIMC settings. Notably, this result gives theoretical backing to the
generalization of existing works on the verification of IMCs to the at-every-step semantics.

Third, we study the parametric verification of fundamental properties at the pIMC level: consistency, qualitative reacha-
bility, and quantitative reachability. Given the expressivity of the pIMC formalism, the risk of producing a pIMC specification
that is incoherent and therefore does not model any concrete MC is high. Consistency is therefore of paramount importance.
In order to provide solutions to consistency and reachability, we model these problems using constraint encodings and use
state of the art constraint solvers for solving them. Constraints are first order logic predicates used for modelling and solv-
ing combinatorial problems [13]. A problem is described with a list of variables, each in a given domain of possible values,
together with a list of constraints over these variables. Such problems are then sent to solvers which decide whether the
problem is satisfiable, i.e., if there exists a valuation of the variables satisfying all constraints, and in this case computes a
solution. We therefore propose, in Section 3.1 and Proposition 3, constraint encodings for deciding whether a given pIMC is
consistent and, if so, synthesizing parameter values ensuring consistency. We then extend, in Section 3.2 and Proposition 4,
these encodings to qualitative reachability, i.e., ensuring that given state labels are reachable in all (resp. none) of the MCs
modelled by a given pIMC. Finally, in Section 4.2 and Theorem 2, we focus on the quantitative reachability problem, i.e.,
synthesizing parameter values such that the probability of reaching given state labels satisfies fixed bounds in at least one
(resp. all) MCs modelled by a given pIMC. While consistency and qualitative reachability for pIMCs have already been stud-
ied in [12], the constraint encodings we propose are significantly smaller (linear instead of exponential). To the best of our
knowledge, our results provide the first solution to the quantitative reachability problem for pIMCs.

Our last contribution, presented in Section 5, is the implementation of all our verification algorithms in a prototype tool
that generates the required constraint encodings and can be plugged to any SMT solver for their resolution.

This paper is an extended version of [14]. Firstly, [14] only considers the once-and-for-all and the at-every-step se-
mantics. In this paper we also consider the IMDP semantics. Thus, we extend all results from [14] that only held for the
once-and-for-all and the at-every-step semantics to the IMDP semantics. Secondly, [14] answers quantitative reachability
properties over pIMCs and concludes with the perspective of verifying PCTL* formulas over pIMCs. In this extended version,
we show that PCTL* properties are not equivalent w.r.t. to the different semantics. Thus, the proposed verification processes
in [14] used for verifying qualitative and quantitative reachability properties over pIMCs cannot be trivially extended to the
verification of PCTL* properties over pIMCs. Finally, we extend the experimental evaluation proposed in [14]. In the context
of linear parametric pIMC transitions, we propose in this extended version MILP [15] and SMT [16] implementations of the
qualitative encodings, and SMT implementations of the quantitative encodings. We show that in the qualitative case the
MILP formulation offers an exponential gain in term of resolution time compared to the SMT formulation. Also, experiments
show that we are able to handle pIMCs with more than 15000 states and transitions in the qualitative context, and more
than 250 states and transitions in the quantitative context.
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1. Background

In this section we introduce notions and notations that will be used throughout this paper. Given a finite set of variables
X ={x1,...,x,} we call domain a set of values associated to a variable in X. We write Dy for the domain associated to the
variable x € X and Dy for the set of domains associated to the variables in X. A valuation v over X is a set v ={(x,d) |
x € X,d € Dy} of elementary valuations (x,d) where for each x € X there exists a unique pair of the form (x,d) in v. When
clear from the context, we write v(x) =d for the value given to variable x according to valuation v. A rational function f
over X is a division of two (multivariate) polynomials g; and g, over X with rational coefficients, i.e., f = g1/g2. We write
Q for the set of rational numbers and Qx for the set of rational functions over X. The evaluation v(g) of a polynomial g
under the valuation v replaces each variable x € X by its value v(x).

Given a finite set of states S, we write Dist(S) for the set of probability distributions over S, i.e., the set of functions
w: S —[0,1] such that )" ¢ u(s) = 1. We write I for the set containing all interval subsets of [0, 1]. In the following, we
consider a universal set of symbols A that we use for labelling the states of our structures. We call these symbols atomic
propositions. We will use Latin alphabet in state context and Greek alphabet in atomic proposition context.

Constraints. Let X be a finite set of variables. An atomic constraint over X is a Boolean expression of the form f(X) < g(X),
with < € {<,>, <,>,=} and f and g two functions over variables in X. An atomic constraint is linear if the functions
f and g are linear. A constraint over X is a Boolean combination of atomic constraints over X. Constraints are therefore
first order logic predicates over a given set of variables. Informally, a Constraint Satisfaction Problem (CSP) consists of a set
of variables associated to given domains and subject to constraints. A CSP is satisfiable if there exists a valuation of the
variables that satisfies all constraints. Checking satisfiability of constraint problems is difficult in general, as the space of all
possible valuations has a size exponential in the number of variables.

Definition 1.1 (Constraint Satisfaction Problem). A Constraint Satisfaction Problem (CSP) is a tuple 2 = (X, D, C) where X is a
finite set of variables, D = Dy is the set of all domains associated to the variables from X, and C is a set of constraints
over X.

We say that a valuation over X satisfies Q2 if and only if it satisfies all constraints in C. We write v(C) for the satisfaction
result of the valuation of the constraints C according to v (i.e., true or false). In the following we call CSP encoding a scheme
for formulating a given problem into a CSP. The size of a CSP corresponds to the number of variables and atomic constraints
appearing in the problem. Note that, in constraint programming, having less variables or less constraints during the encoding
does not necessarily imply faster solving time of the problems.

Discrete Time Markov Chains.

Definition 1.2 (Discrete Time Markov Chain). A Discrete Time Markov Chain (MC for short) is a tuple M = (S, sg, p, V), where
S is a finite set of states containing the initial state sg, V: S — 24 is a labelling function, and p: Sx S — [0,1] is a
probabilistic transition function such that for all s € S, p(s, -) € Dist(S).

The labelling function V of a MC M = (S, sg, p, V) associates to each state s € S a set of atomic propositions. Given a
state s € S, V(s) is called the label of s. We write MC for the set containing all discrete time Markov chains.

A Markov Chain can be represented as a directed graph where the nodes correspond to the states of the MC and
the edges are labelled with the probabilities given by the transition function of the MC. In this representation, a missing
transition between two states represents a transition probability of zero. As usual, given a MC M, we call a path of M
a sequence of states obtained from executing M, ie., a sequence w = s1,S2,... such that the probability of taking the
transition from s; to s;yq is strictly positive, p(s;, Si+1) > 0, for all i. A path w is finite if and only if it belongs to S*, i.e., it
represents a finite sequence of transitions from M.

Example 1. Fig. 1 illustrates the Markov chain M = (S, sg, p, V) € MC where the set of states S is given by {so, s1, S2, 53, S4},
the atomic propositions are restricted to {«, 8}, the initial state is sg, and the labelling function V corresponds to
{(s0,9), (51, {a}), (s2,{B}), (53, {cx, B}), (54, {})}. The sequences of states (sg,S1,5S3), (So0,S2), and (sg, S2, S2, S2), are three
(finite) paths from the initial state sg to the states s3 and s;, respectively.

In order to prove some of our results, we need a notion of bisimulation between Markov chains. We therefore use the
classical notion of probabilistic bisimulation.

Definition 1.3 (Probabilistic bisimulation for Markov chains [17]). Let M = (S, sg, p, V) be a Markov chain. A probabilistic bisim-
ulation on M is an equivalence relation R on S such that for all states (s1, s2) € R, we have

e V(s1)=V(sy), and
e p(s1,T) = p(s2, T) for each equivalence class T € S/R.
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Fig. 1. MC M.

Given two MCs My and M, we say that M and M are bisimilar if and only if there exists a probabilistic bisimulation
R on M; UMy with (s}, s3) e R.

Reachability. A Markov chain M defines a unique probability measure u over the set of infinite sequences s, 51, ... € S
(see [17] for details). According to this measure, the probability of a finite sequence of states w = sg, S1, ..., Sp, Written
PM (w) is the product of the probabilities of the transitions involved in this sequence, i.e., PM (w) = p(so, s1) - p(s1,52) - ... -
p(Sn_1. Sn). Naturally, if w is not a path of M, we have PM(w) =0

Given a MC M, the overall probability of reaching a given state s from the initial state so is called the reachability
probability and written IP’S/(\)/‘(OS) or PM ($¢s) when clear from the context. This probability is computed as the sum of
the probabilities of all finite paths starting in the initial state and reaching the state s for the first time. Formally, let
reachs,(s) ={w e S* |w =sp,...,sp with s; =s and s; #s VO <i <n} be the set of such paths. We then define PM(Os) =
ZwereachSO ) PM(w) if s# so and 1 otherwise. This notation naturally extends to the reachability probability of a state s

from a state t that is not sg, written IP’tM(<>s) and to the probability of reaching a state label I' C A written PQA(OF). One
could also extend it to the reachability probability of an atomic proposition « by considering all state labels containing o.
In the following, we say that a state s (resp. a label I' C A) is reachable in M if and only if the reachability probability of
this state (resp. label) from the initial state is strictly positive.

Example 2 (Example 1 continued). In Fig. 1 the probability of the path (sg, S2, S1, 1, $3) is 0.3-0.5-0.5-0.5=0.0375 and
the probability of reaching the state s; from sg is IPQJA](OSO = p(so,S1) + 2+ p(S0,52) - p(s2,52) - p(s2,51) = p(s0, S1) +
p(s0,52) - p(s2,51) - (1/(1 — p(s2,s2))) = 1. Furthermore, the probability of reachlng {B} corresponds to the probability of
reaching the state s», which is 0.3 here.

2. Markov chain abstractions

Modelling an application as a Markov Chain requires knowing the exact probability for each possible transition of the
system. However, this can be difficult to compute or to measure in the case of a real-life application (e.g., because of
precision errors or limited knowledge). In this section, we start with a generic definition of Markov chain abstraction models.
Then we recall three abstraction models from the literature, respectively pMC, IMC, and pIMC, and finally we present a
comparison of these existing models in terms of succinctness.

Definition 2.1 (Markov chain abstraction model). A Markov chain abstraction model (an abstraction model for short) is a pair
(I, =) where L is a nonempty set and |= is a relation between MC and L. Let P be in I, and M be in MC. We say that
M implements P if and only if (M, P) belongs to = (i.e., M &= P). When the context is clear, we do not mention the
satisfaction relation = and only use L to refer to the abstraction model (L, ).

A Markov chain abstraction model is a specification theory for MCs. It consists of a set of abstract objects, called specifica-
tions, each of which representing a (potentially infinite) set of MCs - implementations - together with a satisfaction relation
defining the link between implementations and specifications. As an example, consider the powerset of MC (i.e., the set con-
taining all possible sets of Markov chains). Clearly, (2", €) is a Markov chain abstraction model, which we call the canonical
abstraction model. This abstraction model has the advantage of representing all possible sets of Markov chains but it also
has the disadvantage that some Markov chain abstractions are only representable by an infinite extension representation.
Indeed, recall that there exist subsets of [0, 1] € R which cannot be represented in a finite space (e.g., the Cantor set [18]).
We now present existing MC abstraction models from the literature.
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2.1. Existing MC abstraction models

Parametric Markov Chain is a MC abstraction model from [3] where a transition can be annotated by a rational function
over parameters. We write pMC for the set containing all parametric Markov chains.

Definition 2.2 (Parametric Markov Chain). A Parametric Markov Chain (pMC for short) is a tuple Z = (S, sg, P, V,Y) where S,
So, and V are defined as for MCs, Y is a set of variables (parameters) ranging over [0, 1], and P: S x S — Qy associates
with each potential transition a parameterized probability.

Let M = (S,s0,p,V) be a MC and Z = (§',s;, P, V', Y) be a pMC. The satisfaction relation |=, between MC and pMC
is defined by M |=; Z if and only if S =5, so =s;, V =V’, and there exists a valuation v of Y such that p(s,s’) equals
v(P(s,s")) for all s,s" in S.

Example 3. Fig. 2 shows a pMC Z’ = (S, sg, P, V, Y) where S, so, and V are identical to those of the MC M from Fig. 1, the
set Y contains only one variable p, and the parametric transitions in P are given by the edge labelling (e.g., P(sg,s1) =0.7,
P(s1,s3) =p, and P(s3,s2) =1 — p). Note that the pMC Z’ is a specification containing the MC M from Fig. 1.

Interval Markov Chains extend MCs by allowing to label transitions with intervals of possible probabilities instead of precise
probabilities. We write IMC for the set containing all interval Markov chains.

Definition 2.3 (Interval Markov Chain [4]). An Interval Markov Chain (IMC for short) is a tuple Z = (S, sg, P, V), where S, s,
and V are defined as for MCs, and P: S x S — I associates with each potential transition an interval of probabilities.

Example 4. Fig. 3 illustrates IMC Z = (S, sg, P, V) where S, sg, and V are similar to the MC given in Fig. 1. By observing
the edge labelling we see that P(sp, s1) = [0, 1], P(s1,s1) =[0.5,1], and P(s3, s3) =[1, 1]. On the other hand, the intervals
of probability for missing transitions are reduced to [0, 0], e.g., P(sg, So) = [0, 0], P(sg, s3) = [0, 0], P(s1,s4) =[O0, 0].

In the literature, IMCs have been mainly used with three distinct semantics: once-and-for-all, interval-Markov-decision-
process, and at-every-step. These semantics are associated with distinct satisfaction relations which we now introduce.

The once-and-for-all IMC semantics [7,19,20] is alike to the semantics for pMC, as introduced above. The associated
satisfaction relation =% is defined as follows.
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Definition 2.4 (Once-and-for-all satisfaction). A MC M = (T, to, p, VM) satisfies an IMC Z = (S, sg, P, V') with the once-and-
for-all semantics, written M =% Z, if and only if (T, to, VM) = (S, so, V1) and for all reachable states s in M and all states
s'eS, p(s,s’)eP(s,s).

In this sense, we say that MC implementations using the once-and-for-all semantics need to have the same structure as
the IMC specification. Remark that this definition only targets reachable states in the MC. Indeed, some states of the IMC
could have inconsistent outgoing transitions. While these states cannot be “satisfied” in MC implementations, satisfaction
should still be possible if they are unreachable.

Next, the interval-Markov-decision-process IMC semantics (IMDP for short) [5,6] operates as an “unfolding” of the original
IMC by picking each time a state is visited a possibly new probability distribution which respects the intervals of proba-
bilities. Thus, this semantics allows one to produce MCs satisfying IMCs with a different structure. Formally, the associated
satisfaction relation |=¢ is defined as follows.

Definition 2.5 (Interval-Markov-decision-process satisfaction). A MC M = (T, to, p, VM) satisfies an IMC Z = (S, so, P, V1) with
the IMDP semantics, written M |:§ 7, if and only if there exists a mapping 7 from T to S such that

1. 7 (to) = so,
2. Vi@ () = vM(t) for all states t € T, and
3. p(t,t") € P(m(t), w(t")) for all pairs of states t,t’ in T, where t is reachable in M.

Thus, we have that |:‘} is more general than 9 (i.e, whenever M % 7 we also have M |:§ T for the identity
mapping 7). Note that in [5,6] the authors allow the Markov chains satisfying the IMCs w.r.t. |:§ to have an infinite state
space. In this work we consider Markov chains with a finite state space only, therefore MC implementations with respect to
the IMDP semantics consist in a finite unfolding of the specification IMC, which corresponds to a transient IMDP semantics
followed by a once-and-for-all semantics.

Finally, the at-every-step IMC semantics, first introduced in [4], operates as a simulation relation based on the transition
probabilities and state labels, and therefore allows MC implementations to have a different structure than the IMC specifi-
cation. Compared to the previous semantics, in addition to the unfoldings this one allows to “aggregate” and “split” states
from the original IMC. Formally, the associated satisfaction relation =% is defined as follows.

Definition 2.6 (At-every-step satisfaction). A MC M = (T, to, p, VM) satisfies an IMC Z = (S, so, P, V') with the at-every-step
semantics, written M =% 7 if and only if there exists a relation R € T x S such that (to, Sp) € R, and whenever (t,s) € R,
we have

1. the labels of s and t correspond: VM (t) = VI(s),

2. there exists a correspondence function 8¢ : T — (S — [0, 1]) such that
(a) For all t' € T if p(t,t’) > 0 then §( ) (t") is a distribution on S,
(b) For all s' € S, (Zperp(t,t') - 8¢5 (t")(s")) € P(s,s’), and
(c) Forall (t',s") e T x S, if 8,5 (t")(s") >0, then (t/,s") e R.

Note that reachability of the states from M is not required for the at-every-step satisfaction relation. Indeed, in this case,
states that are not reachable in M can be absent from the satisfaction relation, and therefore do not impact at-every-step
satisfaction.

Example 5 illustrates the three IMC semantics and Proposition 1 compares them. We say that an IMC semantics 1 is
more general than another IMC semantics |=; if and only if for all IMCs Z and for all MCs M if M =, Z then M =1 7.
Also, =1 is strictly more general than | if and only if &= is more general than =; and =, is not more general than |=.

Example 5 (Example 4 continued). Consider the IMC Z from Fig. 3, the MC M from Fig. 1, the MC M, from Fig. 4, and the
MC M3 from Fig. 5. We have that M satisfies Z w.r.t. =% and we say that M; has the same structure as Z. Trivially, we
also have that M satisfies Z w.r.t. =4 and =2.

Regarding M, note that two probability distributions have been chosen for the state s; from Z. This produces two
states t1 and t] in M and changes the structure of the graph. Thus, M; [~ Z. On the other hand, we have that M,
satisfies Z w.r.t. |=§ with the mapping 7 (t;) =s; for all t; and 7 (t]) = s1. Remark that there is no state t4 here, but having
an unreachable state t4 and defining 7 (t4) = s4 would not prevent satisfaction. Trivially, we also have M, =4 7 with the
relation R, = {(t,s) | w(t) =s}.

Finally, in the MC M3 with state space T3 the state s3 from Z has been “split” into two states t3 and tg and the
state t14 “aggregates” the states s; and s4 from Z. The relation R3 C T3 x S containing the pairs (tg, So), (t14, 1), (t14, S4),
(t2, S2), (t3,53), and (t’3, s3) is a satisfaction relation between M3 and Z such as defined by . For instance, consider the
pair (t2, s2) € R. For this pair, define the correspondence function §, s,) such that &, s,)(t2)(s2) =1, 8(,.s,) (£14)(s1) = 0.5,
8(ty.5,) (t14)(s4) = 0.5, and J, s,) (t')(s") = 0 otherwise. We can verify the following:
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Fig. 4. MC M, satisfying the IMC Z from Fig. 3 w.r.t. |=‘}.

0.2

é 1

Fig. 5. MC M3 satisfying the IMC Z from Fig. 3 w.r.t. |=5.

Q

1. For all t’ such that p3(t2,t’) > 0, 8(,,s,)(t") is a distribution on S. This is the case for t; and ti4.
2. Forall s’ €S, (Zper,P3(t2,t") « 8(ty,59) (') () € P(52,5):

[s11:  (Breryp3(ta, t) - 8y,s,) (') (51)) =0.8%0.5=0.4 € [0, 0.6] = P(s2, 51)
[s2]:  (Brersp3(ta,t) - 8y,s,) (t')(52)) =0.2%1=0.2 €[0.2,0.6] = P(s2,52)
[sal:  (Breryp3(ta,t) - 8y,5,) (t')(54)) =0.8%0.5=0.4 € [0, 0.5] = P(s2, 54)

3. For all (t',s") € T3 x S, if 8(t,,5,)(t')(s') > O, then (t',s’) € R3. This is the case for (t2, s2), (t14,51), and (t14, S4).

For all other pairs (t/,s’) € R3, the correspondence functions can be defined trivially as Dirac distributions where
8(v.sy(t14) is either a Dirac on sy, for (t',s) = (to, So) and (t1a, 1), or a Dirac on s4 for (t',s") = (t14, S4).

Thus, M3 =$ Z. On the other hand, M3 bé‘I’ 7 since there exist probabilities on transitions that cannot belong to their
respective interval of probabilities on the IMC (e.g, ps3(t2,t14) =0.8 ¢ [0,0.6] = P(s2,51)).

Proposition 1. The at-every-step satisfaction relation is (strictly) more general than the interval-Markov-decision-process satisfac-
tion relation which is (strictly) more general than the once-and-for-all satisfaction relation.

Proof. Let Z = (S, so, P, V) be an IMC and M = (T, to, p, V') be a MC. We show that (1) M =% Z = M =4 T; (2) M 4
T= MELT; (3)in general M =4 T+ M =9 T; (4) in general M =4 T M =4 7. This will prove that =4 is strictly
more general than |:‘} and that |:‘% is strictly more general than 9. At the same time, note that the following examples
also illustrate that even if a Markov chain satisfies an IMC with the same graph representation w.r.t. the =% relation it may
not verify the =9 relation.

(1) If M =9 Z then by definition of =9 we have that T =S, tp =sg, V(s) = V’(s) for all s € S, and p(s,s’) € P(s,s’) for
all reachable states s € S and all states s’ € S. The mapping 7 from T =S to S being the identity function is such as
required by definition of I:CI’: T (tg) =tg =sg, V'(s) =V (s) =V (m(s)) for all states s S, and p(s,s’) € P((s), 7w (s))
since P(7(s), m(s")) = P(s,s’) and p(s,s’) € P(s,s’) for all reachable states s € S and all states s’ € S. Thus, M |=‘:1[ T

(2) If M |:§ 7 then there exists a mapping 7t from T to S such that 7w (tg) =sg, V/(t) = V (sr (t)) for all states t € T, and
p(t,t')y € P(m(t), m(t")) for all pairs of states t,t’ in T where t is reachable in M. The relation R = {(t,7(t)) |t e T}
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Fig. 6. IMC Z, MCs M, M}, and M} such that M} 9 Z, M} 4T and M} S Z; M, B9 T and M} 18 T; MY =8 T and M) (¢ T; the graph
representation of Z, M/, and M3 are isomorphic.

is such as required by definition of =% (consider for each state in T the correspondence function §: T — (S — [0, 1])
such that 8(t)(s) =1 if w(t) =s and 8(t)(s) = 0 otherwise). Thus M =9 7.

(3) Consider IMC Z and MC M, from Fig. 6. By definition of |=§ we have that M), |=‘§ 7. Indeed, consider the mapping 7
such that m(tg) = sg, mw(t1) = s1, (t2) = s2, and n(t’z) = sy. Let p be the transition function of M’2 and P be the
interval probability transition function of Z. Clearly, we have that p(t,t’) € P(; (t), w (t)). On the other hand, it is clear
that M/, =9 Z since M), and Z do not share the same state space.

(4) Consider IMC Z and MC M} from Fig. 6. By definition of =¢ we have that M} |=¢ Z. Indeed, the relation R containing
(to, So), (t1,51), (t1,S2), (t2,51), and (t2, s2) is a satisfaction relation between Z and M’3 Consider the correspondence
function 8 from T to (S — [0, 1]) such that §(t1)(s1) =4/5, §(t1)(s2) =1/5, 8(t2)(s2) =1, §(tp)(so) =1, and 8(t)(s) =0
otherwise. On the other hand, since the outgoing probabilities from state to in M} do not belong to their respective
interval on probabilities in Z, we have that M5 ¢ Z. O

Parametric Interval Markov Chains, as introduced in [12], abstract IMCs by allowing (combinations of) parameters to be
used as interval endpoints in IMCs. Under a given parameter valuation the pIMC yields an IMC as introduced above. pIMCs
therefore allow the representation, in a compact way and with a finite structure, of a potentially infinite number of IMCs.
Note that one parameter can appear in several transitions at once, requiring the associated transition probabilities to depend
on one another. Let Y be a finite set of parameters and v be a valuation over Y. By combining notations used for IMCs and
PMCs the set I(Qy) contains all parameterized intervals over [0, 1], and for all I =[f1, f2] € I(Qy), v(I) denotes the interval
[V(f1), v(f2)] if 0 < v(f1) <v(f2) <1 and the empty set otherwise.! We write pIMC for the set containing all parametric
interval Markov chains.

Definition 2.7 (Parametric Interval Markov Chain [12]). A Parametric Interval Markov Chain (pIMC for short) is a tuple P =
(S,s0,P,V,Y), where S, sg, V, and Y are defined as for pMCs, and P: S x S — I(Qy) associates with each potential
transition a (parametric) interval.

In [12] the authors introduced pIMCs where parametric interval endpoints are limited to linear combination of pa-
rameters. In our contribution we extend the pIMC model by allowing rational functions over parameters as endpoints of

T Indeed, when 0 < v(f1) <v(f2) <1 is not respected, the interval is inconsistent and therefore empty.
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Fig. 7. pIMC P.

parametric intervals. Given a pIMC P = (S, sg, P, V,Y) and a valuation v, we write v(P) for the IMC (S, sg, Py, V) obtained
by replacing the transition function P from P with the function P,: S x S — I defined by P,(s,s") = v(P(s,s’)) for all
s,s’ € S. The IMC v(P) is called an instance of pIMC P. Finally, depending on the semantics chosen for IMCs, three sat-
isfaction relations can be defined between MCs and pIMCs. They are written gﬂ, |:g1, and |:gI and defined as follows:
M =5, P (resp. |=gI, 1) if and only if there exists an IMC Z instance of P such that M =7 7 (resp. =4, E9).
Example 6. Consider the pIMC P = (S, sg, P, V,Y) given in Fig. 7. The set of states S and the labelling function are the
same as in the MC and the IMC presented in Figs. 1 and 3 respectively. The set of parameters Y has two elements p and q.
Finally, the parametric intervals from the transition function P are given by the edge labelling (e.g., P(s1,s3) =[0.3,q],
P(s2,s4) =[0,0.5], and P(s3,s3) =[1, 1]). Note that the IMC Z from Fig. 3 is an instance of P (by assigning the value 0.6
to the parameter p and 0.5 to q). Furthermore, as said in Example 5, the Markov chains M; and M3 (from Figs. 1 and 4
respectively) satisfy 7 w.r.t. =9, therefore M; and M; satisfy P w.r.t. |=7;.

In the following, we consider that the size of a pMC, IMC, or pIMC L, written |£|, corresponds to its number of states
plus its number of transitions not reduced to 0, [0, 0] or . We will also often need to consider the predecessors (Pred),
and the successors (Succ) of some given states. Given a pIMC with a set of states S, a state s in S, and a subset S’ of S,
we write:

Pred(s)={s'€S|P(,s) ¢
Succ(s)={s' €S| P(,s) ¢
Pred(S") =y Pred(s’)
Succ(S) = Uges Succ(s)

.[0,01}}

.1
{#.10,01}}

2.2. Abstraction model comparisons

IMC, pMC, and pIMC are three Markov chain abstraction models. In order to compare their expressiveness and compact-
ness, we introduce the comparison operators C and =. Let (L, =1) and (L, =) be two Markov chain abstraction models
containing respectively £q and L£;. We say that £ is entailed by £y, written £ C L,, if and only if all MCs satisfying £4
satisfy £, modulo bisimilarity. (i.e., VM =1 £1,3M’ = £5 such that M is bisimilar to M’). We say that £ is (semanti-
cally) equivalent to £, written £1 = L, if and only if £1 C £ and £; C £1. Definition 2.8 introduces succinctness based
on the sizes of the abstractions.

Definition 2.8 (Succinctness). Let (1.1, =1) and (L, =) be two Markov chain abstraction models. 1.; is at least as succinct
as Lo, written L1 < Ly, if and only if there exists a polynomial p such that for every £, € 1.y, there exists £q € I.; such
that £1 =L, and |£1] < p(]£2]). Moreover, 1 is strictly more succinct than I, written I.; < Lo, if and only if I.; < I, and

Ly £ L.

We start with a comparison of the succinctness of the pMC and IMC abstractions. Since pMCs allow the expression
of dependencies between the probabilities assigned to distinct transitions while IMCs allow all transitions to be inde-
pendent, it is clear that there are pMCs without any equivalent IMCs (regardless of the IMC semantics used), therefore
(IMC, E%) £ (pMC, =p), (IMC, |:‘%) £ (PMC, Ep), and (IMC, %) £ (pMC, p). On the other hand, IMCs with the IMDP and
at-every-step semantics allow unbounded unfolding of the state space with different probabilistic choices, which implies
that pMCs would need infinitely many states to represent the same set of MC implementations. Finally, we show that the
set of MC implementations of an IMC with the once-and-for-all semantics can also be represented with a pMC of the same
size as the original IMC. As a consequence, pMCs are strictly more succinct than IMCs with the once-and-for-all semantics.
This is formalized in the following lemma.
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Fig. 9. MCs satisfying the IMC and/or one of the pMCs of Fig. 8.

Lemma 1. pMC and IMC abstraction models are mostly not comparable in terms of succinctness: (1) (pMC, Fp) £ (IMC, E9),

(2) (PMC, =) £ (TMC, =9), (3) (IMC, %) £ (pMC, =), and (4) (1MC, %) £ (pMC, k=). However, pMCs are strictly more suc-
cinct than IMCs with the once-and-for-all semantics: (5) (pMC, =p) < (IMC, E9).

Proof. Let (1.1, =1) and (L.y, =) be two Markov chain abstraction models. Recall that according to the succinctness def-
inition (cf. Definition 2.8) 14 f_ Ly if there exists £, € Ly such that either £1 # £, for all £ € L, or the only way to
have £1 = £, is with £ exponentially larger than £,. Here, we provide examples of IMCs (resp. pMCs) that have no
equivalent pMCs (resp. IMCs). We finish by providing a construction that produces a pMC representing the same set of MC
implementations as a given IMC with the once-and-for-all semantics.

(1-(2)

(3)-(4)

(5)

Consider the IMC Z from Fig. 8. Clearly, all of the MCs given in Fig. 9 satisfy Z with =% and |:§. Remark that
from every state s;, i > 0 in My, there is a different probability of going to sg. As a consequence, the states are not
bisimilar, and therefore building a pMC that matches these probabilities will require as many states as there are in
the MC. Since =9 and Iz‘% allow to represent MCs with an unbounded number of states (and thus an unbounded
number of different probability values for going to sg), we would need pMCs such as P, from Fig. 8 with infinitely
many states to represent the same set of MC implementations.

Consider pMC P, from Fig. 8. Because of the semantics of pMCs, it enforces the transitions from s; to sp and
the transition from s; to Sp to have the same probability. Since IMCs do not allow such dependencies between
transitions, the set of MCs satisfying 7P, cannot be matched by any IMC semantics.

First observe that the arguments above (3)-(4) also apply to (IMC,J). As a consequence it is clear that
(IMC, E9) £ (pMC, =p). Now consider an IMC Z = (S, sg, P, V). We build a pMC Z' = (S, so, P/, V, Y) that has the
same set of MC implementations as Z. The intuition is that each transition equipped with an interval of the form
[l,u], with 0 <l <u <1 can be matched with a transition with probability [ 4+ (u —I) - p, where p is a fresh param-
eter. As a consequence, when p ranges over [0, 1], (I 4+ (u —I) - p) ranges over the interval [l, u]. Formally, we define
Y={pes) |(5)¢€ S2} and for all 5,5’ € S, P'(s, ) =5y + Wi,y —lis,s) - Pes,s), Where P(s,s") = [I(s.s7), Ugs,s) -
It is then easy to see that 7’ has exactly the same set of MC implementations as Z under the once-and-for-all
semantics. Moreover, the size of 7’ is equal to the size of Z. As a consequence, (pMC, =) < IMC, E%. O

We now compare pMCs and IMCs to pIMCs. We show that (pIMC, =) is equivalent to (pMC, =) and pINC is strictly
more succinct than IMC for the three semantics.
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Our comparison results are presented in the following Proposition.

Proposition 2. The Markov chain abstraction models can be ordered as follows w.r.t. succinctness: (1) (pIMC, =p1) < (IMC, |=7),

(2) (eIMC, ;) < (1MC, =), (3) (pIMC, EL;) < (IMC, =9), (4) (pIMC, =47) < (PMC, [=p), (5) (IMC, %) < (PMC, =p),
and (6) (pIMC, |:°pI) = (pMC, p).

Proof. First, recall that the pIMC model is a Markov chain abstraction model allowing to declare parametric interval tran-
sitions, while the pMC model allows only parametric transitions (without intervals), and the IMC model allows interval
transitions without parameters. Clearly, any pMC and any IMC can be translated into a pIMC with the right semantics
(once-and-for-all for pMCs and the chosen IMC semantics for IMCs). This means that (pIMC, '=%1) is more succinct than
(PMC, =p) and pIMC is more succinct than IMC for the three semantics. Furthermore, since pMC and IMC equipped with
=% and |=‘:1[ are not comparable due to the above results, we have that the pIMC abstraction model equipped with ¢ and
|:§ is strictly more succinct than the pMC abstraction model and that the pIMC abstraction model is strictly more succinct
than the IMC abstraction model for all three semantics. This proves items (1)-(5).

Regarding item (6), we propose a construction that derives, from any given pIMC P, a pMC Z that represents the same
set of MC implementations up to bisimilarity.

Let P = (S, S0, P, V,Y) be a pIMC and consider the pMC Z = (S', s, P/, V', Y’) such that

o S'={sP|seS}uU{s?|seS}U{s |seS},
° 56 = Sg,
o V/(s&y=V(s) for all k € {a, b, 1},
e Y =YU{psnls teS} and
e P’ is such that for all sk e S’ (regardless of k) and for all £ € S such that P(s, t) = [I(s,r), U(s,r)], Where I(sry and u ) can
be rational functions over Y,
- P52 =Py (Do — L),
- PS5t =pee - (1= (P — L)) - (U, — Ps,py), and
- P/ ) =pisy - (1= (D) — lis.) - (1= Wesity — Pisy))-

The intuition in this construction is that we build 3 bisimilar copies of each state in S and use one parameter ps,) to
represent the probability of the transition between s and t in an implementation of . From any copy of s, the transition
leading to the copy of t labelled with b enforces that p(r) > Isr). The transition leading to the copy of t labelled with a
enforces that ps ) < u(sy), and as a consequence that I(s ) < us . Finally, the transition leading to the copy of t labelled
with r ensures that the overall probability of going from a given copy of s to all copies of t is p( ). Since all copies of a
given state have the same outgoing transitions and the same label, they are all bisimilar. Therefore, any MC implementation
of Z is bisimilar to a MC with a single copy of each state aggregating all outgoing transitions (with a total probability of
Pes,r) for each transition (s, t)), but an implementation can only exist if the constraints on the parameters and intervals are
satisfied. On the other hand, given an implementation of P with the once-and-for-all semantics, all values of I ), u(s,r), and
P,y are known for this implementation. It is therefore easy to build a new MC following the same construction as above.
This new MC is bisimilar to the original one and trivially satisfies Z.

Finally, we remark that the size of Z is linear in the size of P (there are 3 copies of each state and each transition is
split in 3). As a consequence, we can conclude that (pIMC, |:°pI) = (pMC, Fp). O

3. Qualitative properties

As seen above, pIMCs are a succinct abstraction formalism for MCs. The aim of this section is to investigate qualitative
properties for pIMCs, i.e., properties that can be evaluated at the specification (pIMC) level, but that entail properties on its
MC implementations. pIMC specifications are very expressive as they allow the abstraction of transition probabilities using
both intervals and parameters. Unfortunately, as it is the case for IMCs, this allows the expression of incorrect specifications.
In the IMC setting, this is the case either when some intervals are ill-formed or when there is no probability distribution
matching the interval constraints of the outgoing transitions of some reachable state. In this case, no MC implementation
exists that satisfies the IMC specification. Deciding whether an implementation that satisfies a given specification exists is
called the consistency problem. In the pIMC setting, the consistency problem is made more complex because of the parame-
ters which can also induce inconsistencies in some cases. One could also be interested in verifying whether there exists an
implementation that reaches some target states/labels, and if so, propose a parameter valuation ensuring this property. This
problem is called the consistent reachability problem. Both the consistency and the consistent reachability problems have
already been investigated in the IMC and pIMC setting [21,12]. In this section, we briefly recall these problems and propose
new solutions based on CSP encodings. Our encodings are linear in the size of the original pIMCs whereas the algorithms
from [21,12] are exponential.
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Fig. 10. Variables in the CSP produced by Cg¢ for the pIMC P from Fig. 7.
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3.1. Existential consistency

A pIMC P is existentially consistent if and only if there exists a MC M satisfying P (i.e., there exists a MC M satisfying
an IMC 7 instance of P). As seen in Section 2, pIMCs are equipped with three semantics: once-and-for-all (=2), IMDP
(|:dp1), and at-every-step ( %1)- Recall that I:fDI imposes that implementations need to have the same graph structure as
(or a substructure of) the corresponding specification, up to renaming. In contrast, |=gI and [=}; allow implementations to
have a different graph structure. It therefore seems that some pIMCs could be inconsistent w.r.t. I:gI while being consistent
w.r.t. |=0;. On the other hand, checking the consistency w.r.t. =), seems easier because of the fixed graph structure.

In [21], the author firstly proved that = ; and |=); semantics are equivalent w.r.t. existential consistency, and proposed
a CSP encoding for verifying this property which is exponential in the size of the pIMC. Together with Proposition 1, this
result ensures that the three semantics |:pI, |:pI, and I: ; are equivalent w.r.t. existential consistency. Based on this result
of semantics equivalence we propose a new CSP encodmg written Cgc, for verifying the existential consistency property for
pIMCs.

Let P = (S, so, P,V,Y) be a pIMC. We write C3¢(P) for the CSP produced by C3¢ according to P. Any solution of C3¢(P)
will correspond to a MC satisfying P. In Cz¢(P), we use one variable 7, with domain [0, 1] per parameter p in Y; one
variable 055/ with domain [0, 1] per transition (s,s’) in {{s} x Succ(s) | s € S}; and one Boolean variable ps per state s
in S. These Boolean variables will indicate for each state whether it appears in the MC solution of the CSP (ie., in the MC
satisfying the pIMC P). For each state s € S, constraints are as follows:

(1) Ps» if s= So
(2) ~ps & Zyepreas)\(s)fy =0, if s+ s
(3) —Ps < ZS’ESucc(S)QSS/ =0

4) ps & Zs/’eSucc(s)G;/ =1

(5) ps=6; € P(s,s"), for all s’ € Succ(s)

Recall that given a pIMC P the objective of the CSP Cg(P) is to construct a MC M satisfying P. Constraint (1) states
that the initial state sy appears in M. Constraint (2) ensures that for each non-initial state s, variable ps is set to false if
and only if s is not reachable from its predecessors. Constraint (4) ensures that if a state s appears in M, then its outgoing
transitions form a probability distribution. On the contrary, constraint (3) propagates non-appearing states (i.e., if a state s
does not appear in M then all its outgoing transitions are set to zero). Finally, constraint (5) states that, for all appearing
states, the outgoing transition probabilities must be selected inside the specified intervals.

Example 7 Consider the pIMC P given in Fig. 7. Fig. 10 describes the variables in Czc(P): one variable per transition
(e.g., 91, 9 ), one Boolean variable per state (e.g., po, 01), and one variable per parameter (7, and 7g). The following
constramts correspond to the constraints (2), (3), (4), and (5) generated by our encoding C3¢ for the state 2 of P:

—p2 & 05 =0 p2=0<6) <m,
—.p2<:>921+922+04=0 p2:>0.2§922§71p
P20 +02+05=1 p2=0<6; <0.5

Finally, Fig. 11 describes a solution for the CSP Cs.(P). Note that given a solution of a pIMC encoded by Cs¢, one can
construct a MC satisfying the given pIMC w.r.t. =§ by keeping all states s such that ps is equal to true and considering the

transition function given by the probabilities in the 955/ variables. We now show that our encoding works as expected.

Proposition 3. A pIMC P is existentially consistent if and only if C3c(P) is satisfiable.
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Fig. 11. A solution to the CSP C3¢(P) for the pIMC P from Fig. 7.

Proof. Let P = (S,sp, P,V,Y) be a pIMC.

[«] The CSP C3.(P) = (X, D, C) being satisfiable implies that there exists a valuation v of the variables in X satisfying
all constraints in C. Consider the MC M = (S, sg, p, V) such that p(s,s’) = v(@ss/), for all 955/ € X, and p(s,s’) =0 otherwise.

First, we show by induction that for any state s in S: “if s is reachable in M then v(ps) equals to true”. This is correct
for the initial state so thanks to the constraint (1). Let s be a state in S and assume that the property is correct for at least
one of its predecessors. By the constraint (2), v(ps) equals true if there exists at least one predecessor s” # s reaching s with
a non-zero probability (i.e., v(6;,) # 0). Let s” be the one satisfying the induction property. By the constraint (3), this is only
possible if v(ps7) equals true. Thus v(ps) equals true if there exists one reachable state s” such that v(6;,) # 0. Therefore, all
reachable states s in M are such that v(ps) equals true. As a consequence, the constraint (4) ensures that the probabilities
of the outgoing transitions of all reachable states sum up to 1.

We now show that M satisfies the pIMC P w.r.t. 9. We proved above that for all reachable states s in M, we have
v(ps) equals to true. By the constraint (5) it implies that for all reachable states s in M: p(s,s’) € P(s,s') for all ' As a
consequence, M =% P, and therefore M % P.

[=] The pIMC P being consistent implies by the Theorem 4 from [12] stating that =[; and |=); are equivalent w.r.t.
qualitative reachability, that there exists an implementation of the form M = (S, s, p, V) where, for all reachable states s in
M, it holds that p(s,s’) € P(s,s’) for all s’ in S. Consider M’ = (S, sg, p’, V) such that for each non reachable state s in S:
p'(s,s') =0, for all s’ € S. The valuation v is such that v(ps) equals true if and only if s is reachable in M, v(@ss/) =p'(s,s),
and for each parameter y € Y a valid value can be selected according to p and P when considering reachable states. Finally,
by construction, v satisfies the CSP Cgc(P). O

Our existential consistency encoding is linear in the size of the pIMC instead of exponential for the encoding from [12]
which enumerates the powerset of the states in the pIMC resulting in deep nesting of conjunctions and disjunctions.

3.2. Qualitative reachability

Let P =(S,sq,P,V,Y) be a pIMC and I" C A be a state label. We say that T" is existentially reachable in P if and only
if there exists an implementation M of P where I is reachable (i.e., PM(OT) > 0). In a dual way, we say that T is
universally reachable in P if and only if I" is reachable in any implementation M of P. As for existential consistency, we
use a result from [21] that states that the =% and the =% pIMC semantics are equivalent w.r.t. existential (and universal)
reachability. As for the consistency problem, we get by Proposition 1 that the three IMC semantics are equivalent w.r.t.
existential (and universal) reachability. Note first that in our C3¢ encoding each ps variable indicates if the state s appears
in the constructed Markov chain. However, the ps variable does not indicate if the state s is reachable from the initial state,
but only if it is reachable from at least one other state (i.e., possibly different from sg). Indeed, if the graph representation
of the constructed Markov chain has strongly connected components (SCCs for short), then all ps variables in one SCC may
be set to true while this SCC may be unreachable from the initial state. This is not an issue in the case of the consistency
problem. Indeed, if a Markov chain containing an unreachable SCC is proved consistent, then it is also consistent without
this unreachable SCC. However, in the case of the reachability problem, these SCCs are an issue. The following encoding
therefore takes into account these isolated SCCs such that ps variables are set to true if and only if the corresponding
states are all reachable from the initial state. This encoding will solve the qualitative reachability problems (i.e., checking
qualitative reachability from the initial state). We propose a new CSP encoding, written Cg, that extends Csc, for verifying
these properties. Formally, CSP C3:(P) = (XU X/, DU D’,C U (') is such that (X, D, C) = C3.(P), X' contains one integer
variable ws with domain [0, |S|] per state s in S, D’ contains the domains of these variables, and C’ is composed of the
following constraints for each state s € S:

2 As illustrated in Example 7, M might not be a well formed MC since some unreachable states do not respect the probability distribution property.
However, one can correct it by simply setting one of its outgoing transition to 1 for each unreachable state, which does not impact satisfaction.
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(6) ws=1, if s=sg

(7) ws #1, if s#£sp

(8) ps ¢ (ws #0)

9) ws>1= \/S,Epred(s)\{s}(ws =wy +1) A (65 > 0), if s=£sg
(10) ws =0« /\s’epred(s)\{s}(a)s’ =0)Vv (955/ =0), if s # so

Recall first that CSP Ca¢(P) constructs a Markov chain M satisfying P w.r.t. =4. Informally, for each state s in M the
constraints (6), (7), (9), and (10) in C3; ensure that ws =k if and only if there exists in M a path from the initial state to s
of length k — 1 with non zero probability; and state s is not reachable in M from the initial state sg if and only if ws equals
to 0. Finally, constraint (8) enforces the Boolean reachability indicator variable ps to be set to true if and only if there exists
a path with non zero probability in M from the initial state sg to s (i.e., ws # 0).

Let Sr be the set of states from P labelled with I'. Recall that C5(P) produces a Markov chain satisfying P where
reachable states s are such that ps = true. As a consequence, I' is existentially reachable in P if and only if C3(P) admits
a solution such that \/seSr ps; and I is universally reachable in P if and only if C3(P) admits no solution such that
/\sesr —ps. This is formalized in the following proposition.

Proposition 4. Let P = (S, so, P, V,Y) be a pIMC, " C A be a state label, Sy = {s | V(s) =T}, and (X, D, C) be the CSP C3(P).

e CSP (X,D,CU \/seSr ps) is satisfiable if and only if T is existentially reachable in P
e CSP (X,D,CU /\Sesr —ps) is unsatisfiable if and only if I" is universally reachable in P

Proof. Let P = (S,sp, P,V,Y) be a pIMC, I C A be a state label, Sp = {s | V(s) =T}, and (X, D, C) be the CSP C3:(P).
Recall first, that by Proposition 3 the constraints (1) to (5) in C3(P) are satisfied if and only if there exists a MC M
satisfying P w.r.t. =95.

e [=]IfCSP (X,D,CU \/sesr ps) is satisfiable then there exists a valuation v solution of this CSP and a corresponding
MC M satisfying P w.r.t. =4 such as presented in the proof of Proposition 3. Furthermore, the constraints (6)
to (10) ensure by induction that for all states s € S: v(ws) =k with k > 1 if there exists a path from the initial
state s to the state s of size k — 1 with non zero probability in M, and v(ws) = 0 otherwise. By constraint (8) we
have that v(ps) =true if and only if state s is reachable in M from the initial state sg. Finally, constraint \/sesr Os
ensures that at least one state labelled with I" must be reachable in M. Thus, I' is existentially reachable in P.

[<] If T is existentially reachable in P, then by [12] there exists a MC M satisfying P w.r.t. % such that T is
reachable in M. By construction of our encoding, one can easily construct from M a valuation v satisfying all
constraints in C U \/; 5. ps such that v(ws) contains the size (plus one) of an existing path in M from the initial
state to the state s with a non zero probability, and v(ws) =0 if s is not reachable in M.

e Note that I' is universally reachable in P if and only if there is no MC M satisfying P w.r.t. = such that none of the

states labelled with I is reachable in M. “CSP (X, D, CU A5 —ps) is unsatisfiable” encodes this statement. O

As for the existential consistency problem, we have an exponential gain in terms of size of the encoding compared
to [12]: the number of constraints and variables in Cg, is linear in terms of the size of the encoded pIMC.

Remark 1. In C3; constraints (2) inherited from Cg¢ are entailed by constraints (8) and (10) added to Cg;. Thus, in a practical
approach one may ignore constraints (2) from Cz if they do not improve the solver performance.

4. Quantitative properties

We now move to the verification of quantitative reachability properties in pIMCs. Quantitative reachability has already
been investigated in the context of pMCs and IMCs with the once-and-for-all semantics. In this section, we propose our
main theoretical contribution: a theorem showing that the three IMC semantics are equivalent with respect to quantitative
reachability, which allows the extension of all results from [19,11] to the at-every-step semantics. Based on this result,
we also extend the CSP encodings introduced in Section 3 in order to solve quantitative reachability properties on pIMCs
regardless of their semantics.

4.1. Equivalence of =2, =4, and E=$ w.r.t. quantitative reachability

Given an IMC Z = (S, s, P, V) and a state label I' C A, a quantitative reachability property on Z is a property of the
type PZ(OT) ~ p, where 0 < p <1 and ~ € {<, <, >, >}. Such a property is verified if and only if there exists a MC M
satisfying Z (with the chosen semantics) such that P (GT) ~ p. While the techniques we propose here work for all values
of p, the techniques for qualitative reachability properties are usually more efficient when p =0 or 1.
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As explained above, existing techniques and tools for verifying quantitative reachability properties on IMCs only focus
on the once-and-for-all and the IMDP semantics. However, to the best of our knowledge, there are no works addressing
the same problem with the at-every-step semantics or showing that addressing the problem in the once-and-for-all and
IMDP setting is sufficiently general. The following theorem fills this theoretical gap by proving that the three IMC semantics
are equivalent w.r.t. quantitative reachability. In other words, for all MCs M such that M =§ 7 or M |=§ 7 and for all
state labels T, there exist MCs M< and M5 such that M- =57, Ms> E%Z, and PM=(OT) < PM(OT) < PM=(0T).
Informally, MC implementations for the at-every-step semantics may contain several copies of the original IMC states, each
with a different probability of eventually reaching I'. We therefore build M < (resp. M ) by choosing as sole representative
of a given IMC state the one from M that has the lowest (resp. highest) probability of eventually reaching I". This way we
ensure that M. (resp. M) satisfies the original IMC with the once-and-for-all semantics and has a lower (resp. higher)
probability of eventually reaching I than M. This is formalized in the following theorem.

Theorem 1. Let Z = (S, sg, P, V) be an IMC, " C A be a state label, ~ € {<, <, >, >}, and 0 < p < 1. T satisfies ]P’I(<>l") ~ p with
the once-and-for-all semantics if and only if Z satisfies P (GT) ~ p with the IMDP semantics if and only if Z satisfies PZ(OT) ~ p
with the at-every-step semantics.

The proof presented in the following is constructive: we use the structure of the relation R from the definition of =4
in order to build the MCs M« and M.
In the following, when it is not specified the IMC satisfaction relation considered is the at-every-step semantics (i.e., the
9 satisfaction relation). As said previously, we use the structure of the relation R from the definition of =% in order to
build the MCs M < and M presented in Theorem 1. Thus, we introduce some notations relative to R. Let Z = (S, so, P, vh
be an IMC and M = (T, to, p, VM) be a MC such that M E$Z.Let RC T x S be a satisfaction relation between M and Z.
For all t € T we write R(t) for the set {se€ S|t R s}, and for all s e S we write R~1(s) for the set {te T |t R s}.
Furthermore we say that M satisfies Z with degree n if M satisfies Z with a satisfaction relation R such that each state
t € T is associated by R to at most n states from S (ie., |R(t)| <n); M satisfies Z with the same structure as Z if M
satisfies Z with a satisfaction relation R such that each state t € T is associated to at most one state from S and each state
s e S is associated to at most one state from T (i.e., |R(t)] <1 forall teT and [R™1(s)| <1 for all s € S).

Proposition 5. Let 7 be an IMC. If a MC M satisfies 7 with degree n € N then there exists a MC M’ satisfying T with degree 1 such
that M and M’ are bisimilar.

The main idea for proving Proposition 5 is that if a MC M with state space T satisfies an IMC Z with state space S
according to a satisfaction relation R, then each state t related by R to many states s1,...,S, (with n > 1) can be split in n
states t!, ..., t". The derived MC M’ will satisfy Z with a satisfaction relation R’ where each t; is only associated by R’ to
the state s; (i <n). This M’ will be bisimilar to M and it will satisfy Z with degree 1. Note that by construction the size
of the resulting MC is in O (|J.M| x |Z]).

Proof of Proposition 5. Let Z = (S, sg, P, V!) be an IMC and M = (T, tg, p, V) be a MC. If M satisfies Z (with degree n)
then there exists a satisfaction relation R verifying the =9 satisfaction relation. For each association (t,s) € R, let §.s)
be the correspondence function chosen for this pair of states. M satisfies Z with degree n means that each state in M is
associated by R to at most n states in Z. To construct a MC M’ satisfying Z with degree 1 we create one state in M’ per
association (t, s) in R. Formally, let M’ be equal to (U, ug, p’, V') such that U ={u} | (t,s) e R}, up = ufg V'’ is such that
V/(uf) =V (), and p’(uf, ui,/) =p(t, t') x 8.5 (t')(s). The following computation shows that the outgoing probabilities given
by p’ form a probability distribution for each state in M’, and thus that M’ is a MC. Let u} € U.

S opwiuf) =Y plwiul) = plt.t) x 8.5 E)(s)

us, el (t'sHeR t',sheR
t/
=Y | pt.t) x Y 8e5)sH | =) pt.t) x1=1
t'eT s'eS t'eT

Finally, by construction of M’, since M % Z, we get that R’ ={(u},s) [t € T,s € S} is a satisfaction relation between
M’ and Z. Furthermore, for all u € U, |{s | (u,s) € R'}| < 1. Thus, we get that M’ satisfies Z with degree 1.

Consider the relation B’ = {(uf,t) CU x T | (t,s) € R}. Let B be the closure of B’ by transitivity, reflexivity, and sym-
metry (ie., B is the minimal equivalence relation based on B’). We prove that B is a bisimulation relation between M
and M'. By construction each equivalence class from B contains exactly one state t from T and all states uj such that
(t,s) € R. Let (uj,t) be in B, t’ be a state in T, and B be the equivalence class from B containing t’ (ie, B is the set
{t'hu {uf,/ eU|s €S and (t',s') € R}). Firstly note that by construction the labels agree on uf and t: V'(uf) = V(t). Sec-
ondly the following computation shows that p’(u;, BN U) equals to p(t, BN T), and thus that u; and ¢t are bisimilar:
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P BAUY= > p'wiuf) =) p(t.t)) x 8e.s)(t)(s)

uf:eBﬂU ugfeBﬁU
= " p(t.t) x 85 (t)() =p(t.t) x D 81,5 (t)(5)
{s'eS| (s ,theR} {seS| (. theR )

=p(t,t)yx1=p(t, {t'Hh=pt,BNT)

Moreover, we have by construction that (uig, to) € B, therefore M’ and M are bisimilar. O
Remark 2. Note that whenever a MC satisfies an IMC with degree 1, all correspondence functions involved in the satisfaction
relation are reduced to Dirac distributions, i.e., whenever §(t)(s) > 0 for some s, we have §(t)(s) =1 and §(t)(s’) = O for all

s’ #s.

Corollary 1. Let Z be an IMC, M be a MC satisfying Z, and ¢ be a PCTL* formula. There exists a MC M’ satisfying 7 with degree 1
such that the probability PM' (¢) equals the probability PM (¢).

Corollary 1 is derived from Proposition 5 joined with the probability preservation of the PCTL* formulae on bisimilar
Markov chains (see [17], Theorem 10.67, p. 813). Corollary 1 allows one to reduce to one the number of states in the pIMC
T satisfied by each state in the MC M while preserving probabilities. Thus, one can construct from a MC M satisfying an
IMC Z another MC M’ satisfying the same IMC Z where the states in M’ are related to at most one state in Z. However,
some states in Z may still be related to many states in M’. The objective of Lemma 2 is to reduce these relations to an “at
most one” in both directions (Z to M’ and M’ to 7).

Lemma 2. Let 7 = (S, sg, P, V1) be an IMC, M = (T, to, D, VM) be a MC satisfying Z with degree 1, and T C A be a proposition.
If M does not have the same structure as Z then there exists a MC M1 = (51, 5(1), D1, V{V‘) (resp. My ) satisfying Z with degree 1,
and such that S; € S and PM1(OT) < PM(OT) (resp. So € S and PM2(OT) > PM(OT)).

Lemma 2 reduces the number of states in M while enhancing the maximal or minimal reachability probability. This
lemma has a constructive proof. The main idea of the proof is that, whenever several states in M satisfy the same state
of Z, we only keep the state minimizing (or maximizing) the probability of eventually reaching I". All transitions leading to
removed states are redirected to this “optimal” state. Since all removed states satisfy the same state in Z as the one we keep,
satisfaction is preserved. Moreover, because the remaining states minimize (resp. maximize) the probability of eventually
reaching T', the resulting MC verifies IP’Ml(<>F) <pM (CT) (resp. pM:2 or) = ]P’M(<>I‘)). Before proving Lemma 2, we
introduce some notations and Lemma 3 which will be used for proving Lemma 2.

. . . y
Let S be a set of states. Consider two subsets S; and S, of S, a state s € S and an integer n > 1. We write s xn, \Y)
for the set of finite state sequences initiating in s, ending when they first visit S, (again, if s € S3), and visiting S; exactly
n times. Formally,

S . .
ey Soy={so,...,sk€S*|k>1,s0=s,s,€ S, |{ic[0,k]|sie€S1}=n, ands; ¢ Sy forall0 <i <k}.
In the following, we slightly abuse notations and sometimes use state labels I" C A to represent the set of states labelled
with T,

Lemma 3. Let M = (S, s, p, V) be a MC, " C A be a state label, and s be a state from S such that PM(OT) > 0. Then PM(OT) =1
if V(s) =T and

pM(s Uy

xI'

PM(OT) = .
1-PM(s — {s})

otherwise.

Proof. We focus on the case where V(s) # I'. First, we remark that the above quotient is well-defined. Indeed, since

]P’g\" (¢T) > 0, we have IP’{\’1 (s LN {s}) #1 and therefore 1 — ]P’f\’1 (s LN {sh #0.
By definition, we have

PM(or) = moopMs 24U, T
. nx{s}
By construction of s —— T, we have
M nx{s} M . M (n—1)x{s}
P (s —— I =P " ({s0,....Sk|so=sk=sands; #sAV(s;) #I,0<i<k}) xP;"(s —— T)

oxI"

-1
:PS/V[(S (n—1)x{s}

{sh xPMis ——=5 1)
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1x{s}
R

As a consequence, IP’SM (©T) is the sum of the terms of a geometric series of first term IP’ng (s I') and common

ratio PM (s LN {s}), and therefore

1x{s}
PMis —5 T
PM(oT) = roopM(s B, by - s ( ) o

1—pMi 2L (5

Proof of Lemma 2. Let Z = (S, so, P, V!) be an IMC and M = (T, to, p, V™) be a MC satisfying Z with degree 1. Let R be
the satisfaction relation between M and Z with degree 1. The following proves in 4 steps that there exists M satisfying
Z with degree 1, with a set of states S such that S; € S, and such that ]PM1(<>F) < PM(OT). In the first step, we build
a new MC M’ that has fewer states than M. In the second step, we show that M’ satisfies Z with degree 1. The third
step is dedicated to showing that PM (oT) < PM(OT). Finally, the fourth step concludes by showing how to iterate this
procedure in order to build M.

1. We would like to construct a MC M’ satisfying Z with fewer states than M such that IP’M/(<>F) < IP’M(<>F). Since
R is of degree 1, each state t in T is associated to at most one state s in S. Furthermore, since M does not have
the same structure as Z, there exists at least one state s € S such that |R~1(s)| > 2. Let 5 € S be such a state, and let
Ts ={t1,...,tn} = R1(s), with n > 2. Since this set is finite, there exists at least one state € T; such that ]PEM (OT) is
minimal among the states from Ts. Let U = Ts \ {t}.

We build M’ from M by replacing all transitions going to a state t € U by transitions going to t instead, and by

removing all states from U. If the initial state was in T; and has been removed, then t becomes the new initial state.

Formally M’ = (T’,t;, p’, V') such that T" = (T \ U), V' is the restriction of vMon T/, to=t if to € Ts and t; =tg

otherwise, and for all t,t" € T’: p/(t,t') = p(t,t") if t’ #t and p/(t,t) =Y _ p(t, t). The following computation shows that
t'eTs

the outgoing probabilities given by p’ in M’ are well defined (i.e. form correct probability distributions).

Dope )= p'e.t) + p'tD

t'eT’ t'eT’\{t}
1)
=Y pt,t) + Y p@.t)
t'eT\T; t'eTs
=Y pt,t) =Y p.th =1
t'eT\TsUTs t'eT

Note that the first step comes from the definition of p’ with respect to p.

2. We now prove that M’ satisfies Z with degree 1.

Let R’ C T’ x S be the restriction of R to T’. First, observe that since R is of degree 1, so is R’. We now prove that
R’ is a satisfaction relation between M’ and Z. For each pair (t,s) € R let § s be the correspondence function given
by the satisfaction relation R. Recall that, as said in Remark 2, all correspondence functions s are reduced to Dirac
distributions.

Let (t,s) be in R’ and 8&’5):

if s =5 and 0 otherwise. 8&’5)

satisfaction relation:

(a) Let t/ be in T’ such that p/(t,t’) > 0. If t’ #¢ then (Sgt’s) (t') is equivalent to () (t"), and since p’(t,t') = p(t,t’) > 0
in this case, 8. (t") is a distribution on S by construction. Otherwise, t' =t and by construction 8&75) (t) is a Dirac
distribution on S.

(b) Let s’ be in S. We show that X%p’(t, t" x 5&’5) t"H(s') € P(s,s).

t'eT’
First remark that since R is of degree 1 and T; = R~(5), then for all t’ € T5, we have St (t")(s") =0 for all s #35,
and 35 (t')(5) =1 whenever p(t,t’) > 0.

As a consequence, p’(t,t) x SEM) () =D (pEt, t") x 8.5 (t')(s)) for all s'.
t'eTs

Therefore, we have the following computation.

T' — (S —[0,1]) be such that &f, ,(t)(s) = 8¢5 (t)(s) if ' # t, and 8(e.s) OE) =1
is a correspondence function for the pair (t,s) in R’ such as required by the =%

D Op'(E ) x 85 (E)(s)

t'eT’

=Y D) x 8 (@) + DD x 8 D)
t'eT’\{t}
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=Y Dt t) x 8w E)s) + Y p(t,t') x 8.5 (t)(s)

t'eT\T; t'eTs

=Y Dt 1) x 815N
t'eT
€ P(s,s’) by definition of § s

(c) Let t’ be in T” and s" be in S. We have by construction of R’ from R that if &, , (¢')(s") > 0 then (¢, s") € R.
Therefore, R’ is a satisfaction relation of degree 1 between M and Z. Moreover, since t is either to if to ¢ Ts or t
otherwise, we have (t/,, sg) € R/, which allows to conclude.

3. We now prove that the probability of reaching I" from t is lower in M’ than in M. We consider the MC M”, obtained
from M by replacing all states labelled with I" by absorbing states. Formally M” = (T, to, p”, V™) such that for all
t,teT: p'(t,t)=p@t)if VM@E)#£T, p/'t,t')=1if VM(@t)=T and t =t/, and p’(t,t’) = 0 otherwise. By definition
of the reachability property we get that ]P’{\"" (OT) equals to IP’tM(<>I‘) for all states t in T.

If VM (t) =T, then we trivially have IPEM/(OF) = ]P’EM(OF) = 1. Otherwise, if ]P’EM/(OF) =0 then trivially IF’gW(OF) <

]P>EM(<>F). We therefore assume that IP’gW(OF) >0 and VM(f) #T. The following computation concludes.

From Lemma 3, we have

M 1><{t}
pM (o) O pM ¢ =1, r)

1-PME 25 ()
By construction of M’ from M, we obtain

- 1xTs
@ IP.M(t r)

1—PM(t Ts)

Therefore, by construction of M” from M where states labelled with I" are absorbing states,

” xTs

I IP’M” @ 2L 1y
Since ]P’EMH (OT) is equal to IP’EM" G 1xTs, D)+ Zper, (IPEMH (t 2xTs, {t'}) x PM"(OT) (recall that states labelled with
" are absorbing in M”), we have

2xTs
—_—

@ BN ©OD) = Zoer, M (E (') x P on)

1— .M” (t — Ts)

Moreover, P} (OT) = PM(OT) for all t’ € Ts, which is also correct in M” by construction. Therefore,

© P (OT) — Trery( W’(r S {t') x PAMY(O)
B 1-PM'@ 25 19
n - 2xTs

PM'(OT) x (1 - Zt/eT_IP’-/V‘ T == {t'))

1-pM @ 25 1y
. M 5 2xTs , Mz OxD - 0OxTI .
Finally, we have Trer; P77t — {'h=P" (& —> Ts). Indeed t —— Ts represents all finite state sequences
starting in t and ending in Ts without visiting I" or Ts inbetween. Therefore, since states labelled with I" are absorbing

. - OxI' - 2xTs
in M”, we have t —— Ts5=Uper.t —> ({t'}. As a consequence,

&P (D) x (1-PM @ 2L 1)

” xI'
1-PM'(t LI
=PM'(or)
=PM(or)
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From all states in t’ € T"\ t, we trivially have

4 0x{t OxTs
pM (¢ 2, by pM 2O

Moreover,

’ oxI’ - oxI"
P = b =PM({ == Ty).

Finally, observe that

’ ’ Ox{t ’ 0 - ’
PM o) =PM ¢ 25 14 pM e 25 b < PM (oD,
As a consequence, we clearly have P (OT) < PM(OT) for all ¢/ € T.
4. In order to conclude the proof, the above procedure has to be repeated for all states 5 € S such that |[R~1(s)| > 2, and
then rename the states f to the corresponding 5. Since there are finitely many such classes and since the procedure

removes one of them each time it is applied, this converges to a MC M that satisfies the desired properties (and in
particular S1 C S).

The same method can be used for building a MC M, satisfying Z with degree 1, and such that S, € S and PM2(OTM) >
PM(OT). In this case, some care has to be taken in order to choose the state ¢ that is selected among the set Ts = R™1(5).
Indeed, it does not suffice anymore to select any ¢ such that IP’EM(OF) is maximal. In order to ensure that Lemma 3 can

be applied, we need to have IP’EM'(OF) > 0, which could be wrong for instance if all direct successors of t in M are in T
(even if t is one of the states with maximal probability of eventually reaching I').

Luckily, whenever there is at least one state t € Ts such that ]P’tM (COI') > 0, a simple graph analysis can show that, among
all states TI"™ C Ts that have maximal reachability of eventually reaching I', there must be at least one state t such that the
probability of reaching I" from t without visiting Ts is strictly positive. Formally if there exists t € Ts such that IP’tM(<>F) >0,

then [{fe T5 |PME —5 1) >0 and PM(OT) = PM(OT) W e T5)| = 1.

Choosing such a state t therefore ensures that Lemma 3 can be used and the rest of the proof follows directly by
replacing all occurrences of “<” with “>". 0O

Next, Lemma 4 is a consequence of Corollary 1 and Lemma 2 and states that the maximal and the minimal probability
of reaching a given state label is realized by Markov chains with the same structure as the IMC.

Lemma 4. Let T = (S, sg, P, V) be an IMC, M be a MC satisfying Z w.r.t. =%, and " C A be a state label. There exist MCs M, and
My, satisfying T w.r.t. =9 such that PM1(oT) < PM(OT) < PM2(OT).

Proof. Let 7 be an IMC and M be a MC satisfying Z w.rt. =%. Let M’ be the MC satisfying 7 with degree 1 given by
Corollary 1.

Consider the MCs M and M given by applying Lemma 2 to M’. By construction, we have M; =% Z with degree 1,
PMi(oT) < PM(OI) and PM'(OT) = PM(OT), therefore PM1(OT) < PM(OT). Moreover, since S; € S and My =4 7,
it directly follows that M; 9% 7.

The same reasoning applies to M, concluding the proof. O

Finally, the following proves our Theorem 1 using Lemma 4 and Proposition 1.

Proof of Theorem 1. Let Z = (S, sg, P, V) be an IMC, I' C A be a state label, ~ € {<, <, >, >}, and 0 < p < 1. Recall that
according to an IMC satisfaction relation the property PZ(<¢TI™) ~ p holds if and only if there exists a MC M satisfying Z
(with the chosen semantics) such that PM (o) ~p.

1. We first prove the equivalence w.r.t. = and =$.
[=] Since =% is more general than 9, for all MCs M, if M 9% 7 then M =§ 7 (Proposition 1).
[<] PZ(OT) ~ p with the at-every-step semantics implies that there exists a MC M such that M =% Z and
PM(OT) ~ p. Thus by Lemma 4 we get that there exists a MC M’ such that M’ =% Z and PM'(OT) ~ p.
2. We now prove the equivalence w.r.t. =$ and |:§.
[=] Direct from the fact that |:‘% is more general than =$ (Proposition 1).
[«<] Since =9 is more general than =4, PZ(OT) ~ p with the IMDP semantics implies that PZ(OT) ~ p with the
at-every-step semantics. Thus by Lemma 4 we get that there exists a MC M’ such that M’ =% Z and PM (oT)
~p. O
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Fig. 12. IMC Z, MC M, and MC M; such that property P—;( X (I' AP=1(<¢A))) holds for M3, does not hold for M;, holds for Z w.r.t. =%, and does
not hold for Z w.r.t. 9.

Thus, by Theorem 1 the three semantics =9, lz‘%, and 9 are equivalent with respect to the minimal and the maximal
quantitative reachability properties. However, note that the equivalence of reachability properties does not trivially extend
to more general properties. For instance, consider the formula P—;( X (I' AP—1(CA))), where I" and A are two state labels.
This property states that the probability of visiting a state labelled with I" in the next step and almost certainly reach-
ing a state labelled with A afterwards is 1. Fig. 12 contains an IMC Z such that this property does not hold w.r.t. =4
while it holds w.r.t. 4. Indeed, under the =9 semantics, enforcing that the probability of visiting a state labelled with
I' as the next state is 1 imposes that the branch leading to A is given a probability 0, hence preventing from almost cer-
tainly visiting a state labelled with A afterwards (cf. the MC M; in Fig. 12). On the contrary, the =$ semantics allows
one to unfold the structure, therefore to first assign a probability 1 to the transition leading to I" and then give a prob-
ability 1 to the transition leading to A (cf. the MC M, in Fig. 12). Note that the same would be possible under the |=‘%
semantics.

4.2. Constraint encodings

Note that the result from Theorem 1 naturally extends to pIMCs. We therefore exploit this result to construct a CSP
encoding for verifying quantitative reachability properties in pIMCs. As in Section 3, we extend the CSP Cgc, that produces
a correct MC implementation for the given pIMC, by imposing that this MC implementation satisfies the given quantita-
tive reachability property. In order to compute the probability of reaching state label I" at the MC level, we use standard
techniques from [17] that require the partitioning of the state space into three sets S_1, S—g, and S, that correspond to a
subset of states reaching I" with probability 1, a subset of states from which I" cannot be reached, and the remaining states,
respectively. Once this partition is chosen, the reachability probabilities of all states in S, are computed as the unique so-
lution of a linear equation system (see [17], Theorem 10.19, p. 766). We now explain how we identify states from S_1, S—g
and S, and how we encode the linear equation system, which leads to the resolution of quantitative reachability.

Let P =(S,so,P,V,Y) be a pIMC and I" C A be a state label. We start by setting S_1 = {s| V(s) =I'"}. We then extend
C5:(P) in order to identify the set S_o. Let C5 (P, ") = (XU X', DUD’, CUC’) be such that (X, D, C) = C5(P). X' contains
one Boolean variable As and one integer variable s with domain [0, |S|] per state s in S, D’ contains the domains of these
variables, and C’ is composed of the following constraints for each state s € S:

(11) a5 =1, ifT=V(s)
(12) o #1, ifT £ V(s)
(13) A & (ps A (05 #0)) ,

(14) o5 > 12 Vo esueess) @ =y + 1) A @F > 0), ifT£V(s)
(15) &5 =0 & Ay esuce s @ =0V (65 =0), ifT£V(s)

Note that variables « play a symmetric role to variables ws from Cg;: instead of indicating the existence of a path from
so to s, they characterize the existence of a path from s to a state labelled with T'. In addition, due to constraint (13),
variables A are set to true if and only if there exists a path with non zero probability from the initial state sy to a state
labelled with T" visiting s. Thus, I cannot be reached from states such that As = false. Therefore, S_g = {s | A = false},
which is formalized in Proposition 6.

Proposition 6. Let P = (S, so, P, V, Y) be a pIMC and I" C A be a state label. There exists a MC M (P if and only if there exists

a valuation v solution of the CSP C5 (P, I') such that for each state s € S: v(Xs) is equal to true if and only ifIP’sM(OF) #0andsis
reachable from sg.
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Proof. Constraints (1)-(10) given before ensure that ps is true if and only if s is reachable from so. Moreover, by constraints
(11)-(12) and (14)-(15), a5 > 0 if and only if T" is reachable from s. Therefore, by constraint (13), As is true if and only if
PM(OT) 0 and s is reachable from sg. O

Finally, we encode the equation system from [17] in a last CSP encoding that extends Cj,. Let C5(P,I) = (XU X', DU
D’,Cu ') be such that (X, D, C) =C, (P, T). X' contains one variable ys per state s in S with domain [0, 1], D’ contains
the domains of these variables, and C’ is composed of the following constraints for each state s € S:

(16) —=As = ys =0
(17) s = ys=1, if T=V(s)
(18) As = ¥s = Zyesucc(s) Vs'0s » if C#V(s)

As a consequence, variables ys encode the probability with which state s eventually reaches I' when s is reachable from
the initial state and O otherwise.

Proposition 7. Let P = (S, so, P, V, Y) be a pIMC and T" C A be a state label. There exists a MC M =_; P if and only if there exists

a valuation v solution of the CSP Cs(P, I') such that v (ys) is equal to ]Pg\/l (OT) if s is reachable from the initial state sg in M, and is
equal to 0 otherwise.

Proof. Let P = (S,so,P,V,Y) be a pIMC and I" C A be a state label. C5; extends the CSP C_ that produces a MC M
satisfying P (cf. Proposition 6) by computing the probability of reaching I' in M. The encoding proposed above ensures
the partitioning of the state space S into three sets S—_1, S—gp, and S» that correspond to a subset of states reaching I" with
probability 1, a subset of states from which I" cannot be reached, and the remaining states, respectively. Recall that for each
state s € S variable A is equal to true if and only if s is reachable in M and s can reach I' with a non zero probability.
States that are not reachable from sy do not contribute to the overall probability of reaching I. It is therefore safe to place
them in S_g, although they might have a positive probability of reaching I'. Thus we consider S_g ={s | A; =false}, S—1 =
{s|V(s)=T}, and S; =S\ (S—0 U S—1). Finally constraints in C5; encode the equation system from [17] (Theorem 10.19,
p. 766) according to the chosen sets S—g, S—1, and S,. Thus, ys, equals the probability in M to reach I'. O

Let p €[0,1] € R be a probability bound. Adding the constraint ys, ~ p to the previous Cg; encoding allows one to
determine if there exists a MC M |:g)I P such that PM(OT) ~ p. Formally, let ~ € {<, <, >, >} be a comparison operator,
we write ~ for its negation (e.g, £ is >). This leads to the following theorem.

Theorem 2. Let P = (S,so, P,V,Y) be a pIMC, I" C A be a label, p € [0,1], ~ € {<, <, >, >} be a comparison operator, and
(X, D, C) be C5(P, I'):

e CSP (X, D, CU (ys, ~ p)) is satisfiable if and only if there exists M |=‘1pI P such that PM(OT) ~ p.
e CSP (X, D, CU (ys, = p)) is unsatisfiable if and only if for all M =5 P, PM(OT) ~ p.

Proof. Let P =(S,sp, P,V,Y) be a pIMC, I C A be a state label, p € [0, 1], and ~ € {<, <, >, >} be a comparison operator.
Recall that C5z(P, T') is a CSP such that each solution corresponds to a MC M satisfying P where s, is equal to PMoT).
Thus adding the constraint ys, ~ p allows one to find a MC M satisfying P such that PM (T ~ p. This concludes the
first item presented in the theorem. For the second item, we use Theorem 1 with Proposition 7 which ensure that if the
CSP C5 (P, I') to which is added the constraint ys, ~ p is not satisfiable then there is no MC satisfying P w.r.t. |=‘1pI such

that PM(OT) » p; thus PM(OT) ~ p for all MCs satisfying P w.rt. =8, O

Example 8. Due to the number of constraints in Cs;, we illustrate our approach on a very small pIMC P given in the
top left of Fig. 13. In this example, we are interested in two properties: “Does there exist an implementation such that
P(O{a}) > 0.5?” and “Are all implementations such that P(C{a}) < 0.5?”. These properties are not trivial because the
parameter g appears both on the right side of the interval leading to 1 and on the left side of the interval leading to 2.
In the bottom of Fig. 13, we report the constraints obtained in Csz(P, {«¢}). Some of the most trivial constraints have been
removed for readability.

We first consider the CSP obtained by adding the constraint ensuring the first quantitative reachability property: (Q Ry) :
Y0 > 0.5. Solving this CSP yields a solution that allows to build a MC M, given in the top right of Fig. 13, satisfying the
quantitative reachability property. The valuations obtained by solving the given CSP are such that 7, =0,y = 0.5, 93 =
95 = 0.5, and, more importantly, yo = 0.5.

We now consider the CSP obtained by adding the constraint checking the second quantitative reachability property:
(QR2) : Y0 > 0.5. In this case, the CSP is unsatisfiable, which proves that all implementations are such that P(¢{a}) <0.5.
This is not really surprising as the probability of going to 2 is necessarily greater or equal to the probability of going to 1.
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pIMC P MC M satisfying P(G{a}) > 0.5

1 0
@) (=p1 & (0} =0) A (=p2 & (62 =0))

3) (=p1 & O =) A(=p2 & B3 =0) A...

4) (o & O+ +02=1) A (p1 & O =) A(p2 & 07 =1))

(5) (Po=(0<8<D)A(po= (Tp <O} ST A (o= (Mg <O <D)A...
(6) wo=1

(7 (@ #D A (@2 #1)

(8) (p1 & w1 £0) A (p2 & @2 #0) A (po & wo #0)

9) (1> = @ =wg+ 1D A0 >0)A(w2>1)= (w2 =wo+1) A6 > 0)
(10) (@1 =0)< (@ =0)V (6 =0)) A (@2 =0) < (wo=0) V(65 =0))
a1y o =1

(12)  (@#DA(#1)

13) (Ao € (po A (g #0))) A (A1 € (01 A (01 #0))) A (A2 & (02 A (02 #0)))

(14  (@o>D=>[@=a1+DAG>0]V[(ao=02+1) A6 >0)])
A((ap > 1) = false

(15) (=01 =0V @l =0]Al2=0)V@F=0)]A...

(16) (=20 = W =0)A (A1 = (1 =0) A (=h2 = (12 =0))

a7 am=0=1

(18)  ro=>Wo=v1-04+12-02+1 -0 A...

(QR1) =05
(QRz) )/0 > 0.5

Fig. 13. Constraint encodings for quantitative reachability.

5. Prototype implementation and experiments

Our results have been implemented in a prototype tool> which generates the above CSP encodings, and CSP encodings
from [12] as well. In this section, we first present our benchmark, then we evaluate our tool for the qualitative properties,
and we conclude with the quantitative properties.

5.1. Benchmark

MCs have been used for many decades to model real-life applications. PRISM [9]* is a reference for the verification of
probabilistic systems. In particular, it is able to verify properties for MCs. As said in Section 1, pIMCs correspond to abstrac-
tions of MCs. PRISM references several benchmarks based on MCs.”> Note first that we only consider in this section pIMCs
with linear parametric expressions. In this context all CSP encodings for verifying the qualitative properties only use linear
constraints while the CSPs encodings for verifying the quantitative properties produce quadratic constraints (i.e., non-linear
constraints). This produces an order of magnitude between the time complexity for solving the qualitative properties vs. the
quantitative properties w.r.t. our encodings. Thus, we consider two different benchmarks presented in Table 1 and 2. In both
cases, pIMCs are automatically generated from the PRISM model in a text format inspired from [19].

3 All resources, benchmarks, and source code are available online as a Python library at https://github.com/anicet-bart/pimc_pylib.
4 http://www.prismmodelchecker.org/.
5 See the category discrete-time Markov chains on the PRISM website.
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Table 1
Benchmarks composed of 459 pIMCs over 5 families used for verifying qualitative properties.
Set of benchmarks #pIMCs #nodes #edges #intervals #pInBounds #parameters
min avg max min avg max
HERMAN N=3 27 8 28 0 7 18 0 3 11 {2,5,10}
HERMAN N=5 27 32 244 19 50 87 0 12 38 {2,5,10}
HERMAN N=7 27 128 2188 37 131 236 3 31 74 {5, 15,30}
EGL L=2; N=2 27 238 253 16 67 134 0 15 57 {2,5,10}
EGL L=2; N=4 27 6910 7 165 696 1897 3619 55 444 1405 {2,5,10}
EGL L=4; N=2 27 494 509 47 136 276 3 32 115 {2,5,10}
EGL L=4; N=4 27 15102 15 357 1448 4068 7772 156 951 3048 {2,5,10}
BRP M=3; N=16 27 886 1155 16 64 135 1 15 45 {2,5,10}
BRP M=3; N=32 27 1766 2 307 40 128 275 3 32 129 {2,5,10}
BRP M=4; N=16 27 1095 1 443 22 80 171 0 20 62 {2,5,10}
BRP M=4; N=32 27 2183 2 883 49 164 323 3 39 139 {2,5,10}
CROWDS CS=10; TR=3 27 6563 15143 1466 3036 4598 57 235 535 {5, 15,30}
CROWDS CS=5; TR=3 27 1198 2038 190 410 652 8 31 76 {5, 15, 30}
NAND K=1; N=10 27 7392 11 207 497 980 1416 109 466 1126 {50, 100, 250}
NAND K=1; N=5 27 930 1371 60 121 183 9 58 159 {50, 100, 250}
NAND K=2; N=10 27 14322 21567 992 1863 2652 197 866 2061 {50, 100, 250}
NAND K=2; N=5 27 1728 2 505 114 217 329 23 101 263 {50, 100, 250}
Table 2
Benchmarks composed of 4 pIMCs used for verifying quantitative properties.

Benchmarks #nodes #edges #pInBounds #parameters

NAND K=1; N=2 104 147 82 4

NAND K=1; N=3 252 364 200 5

NAND K=1; N=5 930 1371 726 7

NAND K=1; N=10 7392 11207 5698 12

For the first benchmark used for verifying qualitative properties, we constructed the pIMCs from existing MCs by ran-
domly replacing some exact probabilities on transitions by (parametric) intervals of probabilities. Our pIMC generator takes
4 arguments: the MC transition function; the number of parameters for the generated pIMC; the ratio of the number of
intervals over the number of transitions in the generated pIMC; the ratio of the number of parameters over the number of
interval endpoints for the generated pIMC. The benchmarks used are presented in Table 1, where #intervals represents the
number of transitions equipped with intervals and #pInBounds represents the number of parametric interval endpoints. We
selected 5 applications from PRISM [9]: HERMAN - the self-stabilisation protocol of Herman from [22]; EGL - the contract
signing protocol of Even, Goldreich & Lempel from [23]; BRP - the bounded retransmission protocol from [24]; cRowDs -
the crowds protocol from [25]; and NAND - the nand multiplexing from [26]. Each one is instantiated by setting global
constants (e.g., N for the application HERMAN, L and N for the application EGL) leading to more or less complex MCs. We
used our pIMC generator to generate a heterogeneous set of benchmarks: 459 pIMCs with 8 to 15102 states, and 28 to
21567 transitions not reduced to [0, 0]. The pIMCs contain from 2 to 250 parameters over 0 to 7772 intervals.

For the second benchmark used for verifying quantitative properties we extended the NAND model from [26]. The original
MC NAND model has already been extended as a pMC in [7], where the authors consider a single parameter p for the
probability that each of the N nand gates fails during the multiplexing. We extend this model to pIMC by considering one
parameter for the probability that the initial inputs are stimulated, and we have one parameter per nand gate to represent
the probability that it fails. We consider 4 pIMCs with 104 to 7392 states, and 147 to 11207 transitions not reduced to
[0, 0]. The pIMCs contain from 4 to 12 parameters appearing over 82 to 5698 transitions.

5.2. Constraint modelling

Given a pIMC in a text format our tool produces the desired CSP according to the selected encoding (i.e., one from [12],
Cac, Car, or C5;). Recall that our benchmark only consider linear parametric expressions on transitions. The choice of the
constraint programming language for implementing a CSP encoding depends on its nature (e.g., the type of the variables:
integer vs. continuous, the kind of the constraints: linear vs. non-linear). Table 3 summarizes the nature of the encodings
where SotA stands for the encoding from [12] answering the existential consistency problem. Thus, SotA, C3¢, and C3; can be
implemented as Mixed Integer Linear Programs (MILP) [15] and as Satisfiability Modulo Theory (SMT) programs [16] with
QF_LRA logic (Quantifier Free Linear Real-number Arithmetic). This logic deals with Boolean combinations of inequations
between linear polynomials over real variables. Note that, QF_LRA does not deal with integer variables. Indeed logics mixing
integers and reals are harder than those over reals only. However, all integer variables in our encodings can be replaced



A. Bart et al. / Theoretical Computer Science 747 (2018) 48-74 71

Table 3
Characteristics of the four CSP encodings SotA, Cz¢, Car, and Cs;.
Encoding Size of the produced CSPs Boolean var. Integer var. Real-number var. Boolean constr. Linear constr. Quadratic constr.
SotA exponential no no yes yes yes no
Cac linear yes no yes yes yes no
Car linear yes yes yes yes yes no
Csp linear yes yes yes yes yes yes
Table 4

Comparison of sizes, encoding, and solving times for three approaches: (1) SotA encoding implemented in SMT, (2) C3. encoding implemented in SMT, and
(3) C3¢ encoding implemented in MILP (times are given in seconds).

Set of benchmarks avg(#variables) avg(#constraints) avg(encod. time) avg(solv. time)
(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

HERMAN  N=3 71 42 42 1258 272 238 0.10 0.07 0.07 0.01 0.01 0.01
HERMAN  N=5 1031 282 282 51064 2000 1750 1.52 008 008 024 0.03 0.01
HERMAN  N=7 16402 2333 2 333 1293907 16483 14278 5047 0.13 0.13 592 0.28 0.04
EGL L=2; N=2 462 497 497 4609 3917 3658 0.21 0.08 0.08 0.02 0.04 0.01
EGL L=2; N=4 13786 14081 14081 138596 112349 105178  5.66 044 044 054 215 0.36
EGL L=4; N=2 958 1009 1 009 9560 8013 7498 0.36 010 010 0.04 0.08 0.02
EGL L=4; N=4 30138 30465 30465 301866 243421 228058  13.03 087 087 126 11.31 0.97
BRP MAX=3; N=16 68995 2047 2047 738580 16063 14902 32.29 012 0.12 354 021 0.06
BRP MAX=3; N=32 OM 4079 4 079 OM 32047 29734 OM 0.18 018 OM 0.47 013
BRP MAX=4; N=16 103105 2 544 2544 1114774 19960 18511 46.54 0.13 0.13 542 027 0.08
BRP MAX=4; N=32 OM 5072 5 072 oM 39832 36943 oM 0.21 0.21 oM 0.63 0.17
CROWDS CS=10; TR=3 oM 21723 21723 oM 165083 149923 oM 0.67 0.66 oM 11.48 0.79
CROWDS CS=5; TR=3 oM 3253 3253 oM 25063 23008 oM 0.16 0.15 oM 0.39 0.09
NAND K=1; N=10 87506 18732 18732 888733 145108 133768 15206 056 056 3.72 6.21 0.79
NAND K=1; N=5 6277 2434 2434 62987 18098 16594 10.26 0.12 012 024 025 0.07
NAND K=2; N=10 169786 36 022 36022 1722970 279998 258298 29893 104 1.04 7.75 31.81 2.06
NAND K=2; N=5 11623 4366 4366 117814 33218 30580 19.24 017 017 044 048 013

by real-number variables.® Each integer variable x can be declared as a real variable whose real domain bounds are its
original integer domain bounds; we also add the constraint x < 1 = x = 0. Since we only perform incrementation of x this
preserves the same set of solutions (i.e., ensures integer integrity constraints). Finally, due to the non-linear constraints in
C5;, these encodings are implemented as SMT programs [16] with the QF_NRA logic (Quantifier Free Non linear Real-number
Arithmetic). We use the same technique as for Czc and Cg; for replacing integer variables by real-number variables. We chose
the programming language Python for implementing our CSP modeller. We do not evaluate any arithmetic expression while
generating CSPs, and numbers in the interval endpoints of the pIMCs are read as strings and no trivial simplification is
performed while modelling. We do so to avoid any rounding of the interval endpoints when using floating point numbers.

Experiments have been realized on a 2.4 GHz Intel Core i5 processor. Time out has been set to 10 minutes. Memory out
has been set to 2 GB. Table 4 presents the average size (i.e., the number of variables and the number of constraints) of the
instances considered for each set of benchmarks introduced in Table 1, as well as the average encoding and solving time
for the existential consistency problem using (1) SMT SotA encoding, (2) SMT Csc encoding, and (3) MILP Cg encoding.
First, note that all pIMCs are successfully compiled when using our Cg. encoding while the SotA encoding produces out of
memory errors for 4 sets of benchmarks: more than 20% of the instances (see OM cells in Table 4). We recall that the SotA
encoding is defined inductively, and that it iterates over the power set of the states. In practice, this implies deep recursions
joined with enumeration over the power set of the states. The exponential gain exposed in Section 3 is visible in terms of
number of variables and constraints in Table 4, and in terms of encoding time in Fig. 14. Each dot in Fig. 14 corresponds to
one instance of our benchmark. While the encoding time ranges between 0 and 1 s when using the C3¢ encoding, it varies
between 0 and 500 s when using the SotA encoding (if it does not run out of memory).

MILP formulation of logical constraints (e.g., conjunction, disjunction, implication, equivalence) implies the introduction
of binary variables called indicator variables [27]. Each indicator variable is associated to one or more constraints. The
valuation of the indicator variable activates or deactivates its associated constraints. We tried to formulate the SotA encoding
into MILP. Unfortunately, the nested conjunctions and disjunctions imply the introduction of a huge number of indicator
variables, leading to giant instances giving bad encoding and solving time. However, since the Boolean variables in Cz¢
exactly correspond to indicator variables, the MILP formulation of the C3. encoding does not introduce additional variables
or constraints. The difference between Cz in SMT and Cz¢ in MILP comes from the encoding of the domains of the

6 Note that obtaining integer integrity constraints over real-numbers can be costly.
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Fig. 15. Comparing solving time for the existential consistency problem.

continuous variables: in SMT, it requires the use of inequality constraints, e.g., 0 < x < 1. The encoding time is the same for
SMT and MILP Cg encoding.

5.3. Solving

We chose Z3 [28] in its last version (v. 4.4.2) as SMT solver. We chose CPLEX [29] in its last version (v. 12.6.3.0) as MILP
solver. Both solvers have not been tuned and we use their default strategies. Experiments have been realized on a 2.4 GHz
Intel Core i5 processor. Time out has been set to 10 minutes. Memory out has been set to 2 GB.

Table 4 presents the resolution time for the existential consistency problem on our first benchmark using (1) SMT SotA
encoding, (2) SMT C3¢ encoding, and (3) MILP Cg. encoding. While the SotA CSPs are larger than the Cg¢ CSPs, the solving
time for the SotA CSPs appears to be competitive compared to the solving time for the C3 CSPs. The scatter plot in Fig. 15
(logarithmic scale) compares solving times for the SMT SotA encoding and SMT Cs. encoding. However when considering
the resolution time of the problem (ie., the encoding time plus the solving time) the Cs. encoding clearly answers faster
than the SotA encoding. Finally, the comparison between the solving time using SMT Cs¢ encoding and MILP Cg encoding
is illustrated in Fig. 16. It shows that both the loss of safety (passing from real numbers with Z3 SMT resolution to floating



A. Bart et al. / Theoretical Computer Science 747 (2018) 48-74 73

100 T
brp ¥
egl []

crowds A

herman <
5} 10 L nand O
n
R
&
£ @ BB
(a9
2 ! o
=]
” i)
i
s}
g od
(]
Q
m
O

oooo
0.01 =
0.01 0.1 1 10 100

C3. encoding in SMT (time in sec)

Fig. 16. Comparing solving time between SMT and MILP formulations.

Table 5

Comparison of solving times between qualitative and quantitative encodings.
Benchmark pIMC Cac Car Cap

#states #trans. #par. #var. #cstr. time #var. #cstr. time #var. #cstr. time

NAND K=1; N=2 104 147 4 255 1526 017 s 170 1497 0.19 s 296 2457 69.57 s
NAND K=1; N=3 252 364 5 621 3727 0.24s 406 3557 030 s 703 5828 31.69 s
NAND K=1; N=5 930 1371 7 2 308 13859 0.57 s 1378 12305 0.51 s 2404 20165 T.O.
NAND K=1; N=10 7392 11207 12 18611 111366 946 s 9978 89705 1344 s 17454 147015 TO.

point numbers with CPLEX MILP resolution) and the fact that CPLEX is highly optimized for MILP problems whereas Z3 is
a “generic” solver lead to a non negligible gain in terms of resolution time (near to an exponential gain in our benchmark).
Indeed the SMT Cz¢ encoding requires 50 seconds to complete the solving process for all benchmarks while the MILP Cac
encoding needs less than 5 seconds for the same instances.

Table 5 summarizes the results w.r.t. our second benchmark: the pIMC sizes (in terms of states, transitions, and parame-
ters), the CSP sizes (in terms of number of variables and constraints), and the resolution time using the Z3 solver. Note first
that we perform pre-processing when verifying reachability properties: using a simple graph analysis, we eliminate some
states that cannot, trivially, reach the goal states. This explains why Cgr has less variables and constraints than Cz¢. Finally,
note the order of magnitude between the resolution time required for solving the qualitative properties vs. the quantitative
properties w.r.t. our encodings. Indeed, we did not succeed in solving pIMCs with more than 300 states and 400 transitions
for quantitative properties while we verified pIMCs with more than 10000 states and 20000 transitions in the qualitative
context.

6. Conclusion and perspectives

In this paper, we have compared several Markov chain abstractions in terms of succinctness and we have shown that
Parametric Interval Markov Chain is a strictly more succinct abstraction formalism than other existing formalisms such as
Parametric Markov Chains and Interval Markov Chains. In addition, we have proposed constraint encodings for checking sev-
eral properties over pIMC. In the context of qualitative properties such as existential consistency or consistent reachability,
the size of our encodings is significantly smaller than other existing solutions. In the quantitative setting, we have com-
pared the three semantics for IMCs and pIMCs and showed that the semantics are equivalent with respect to quantitative
reachability properties. As a side effect, this result ensures that all existing tools and algorithms solving reachability prob-
lems in IMCs under the once-and-for-all semantics can safely be extended to the IMDP and at-every-step semantics with
no changes. Based on this result, we have then proposed CSP encodings addressing quantitative reachability in the context
of pIMCs regardless of the chosen semantics. Finally, we have developed a prototype tool that automatically generates our
CSP encodings and that can be plugged to any constraint solver accepting the SMT-LIB format as input.
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Our tool for pIMC verification could be extended in order to manage other, more complex, properties (e.g., supporting the
LTL-language in the spirit of what Tulip [19] does). Also one could investigate a practical way of computing and representing
the set of all solutions to the parameter synthesis problem.
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Abstract. Unmanned Aerial Vehicles (UAV) are now widespread in our
society and are often used in a context where they can put people at risk.
Studying their reliability, in particular in the context of flight above a
crowd, thus becomes a necessity. In this paper, we study the modeling
and analysis of UAV in the context of their flight plan. To this purpose,
we build a parametric probabilistic model of the UAV and use it, as well
as a given flight plan, in order to model its trajectory. This model takes
into account parameters such as potential filter or sensor (like GPS)
failure as well as wind force and direction. Because of the nature and
complexity of the successive obtained models, their exact verification
using tools such as PRISM or PARAM is impossible. We therefore de-
velop a new approximation method, called Parametric Statistical Model
Checking, in order to compute failure probabilities. This method has
been implemented in a prototype tool, which we use to resolve complex
issues in a practical case study.

Keywords: UAV - Formal Model - Markov Chain - Parametric statisti-
cal model checking

1 Introduction

Unmanned Aerial Vehicles (UAV) are more and more present in our lives through
entertainment or industrial activities. They can be dangerous for their environ-
ment, for instance in case of a failure when an UAV (aka a drone) is flying above
a crowd. Unfortunately until today, there does not exist any kind of UAV reg-
ulation around the world. Only some recommendations are used; for instance
in order to avoid accidents in case of malfunctioning, a drone should never fly
above a crowd.

In this context, we are working with PIXIEL group to build a reliable UAV
control system. PIXIEL group is a company expert in safety drones and public
performances including UAVs. For example, PIXIEL is in particular known for
developing a public performance in the French entertainment park called ”Puy

* Supported by PIXIEL and Association Nationale Recherche Technologie (ANRT)
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du Fou” that includes both human actors and drones. The company is strongly
attached to the safety of the public. Therefore, ensuring that its UAV systems
are secure for humans during the performances is a priority. As for the current
practices, the performances including UAVs are only allowed to occur when the
weather is sunny and when the area above which the UAVs fly is unauthorized
for actors and public. However, there is no certification proving that the UAVs
always follow their intended flight plan.

The management of performances indeed requires to pay close attention to
the drone trajectory computation as well as to the accuracy of the measure-
ments concerning its immediate position in space and its movements. However,
a rigorous study is necessary to ensure reliability of the drone control system,
for instance by decreasing the risks of failure using the appropriate tuning of the
drone flying parameters which impact the computation of its trajectory. Accord-
ingly, the questions are how to prove that the UAV failure probability is low and
which parameters have to be taken into account to ensure human safety during
performances including UAVs.

High-quality aircrafts such as Hexarotors can easily avoid the majority of
minor failures related to hardware because they can fly with only five motors
and the probability of concurrent failure of more than two motors is in general
negligible. In the same way, in case of battery failure, the UAV is able to land
down on a specified area without any safety issue for the environment as long as
it is situated in a safe zone where humans are not endangered. However, software
failure may be a lot more problematic and complex to study. In this case, the
UAV behavior might become unpredictable. One critical issue in this context
is the potential inaccuracy of position estimation in drone systems, either as a
result of inaccurate sensor measurements or of misinterpretation of data coming
from those sensors. Besides aircraft system failure consideration, there is also a
far more critical aspect to take into account: the weather environment. Therefore,
a general approach to improve UAV safety is to study the impact of inaccuracy
in position measurements on the resulting flight path compared to a given, fixed,
flight plan while taking into account weather conditions.

There are many works dedicated to the UAV domain. In [20] Koppany M&thé
and Lucian Bugoniu basically explain the functioning of a drone. UAV movement
recognition is studied in [10]. Automatic landing on target is described in [17]
and monitoring and conservation are dealt with in [11]. Some works also try to
detect breakdowns and malfunctions that can impact drones. We can mention
inter alia, the detection of communication errors in a multi-drone framework
studied in [13] or the development of a basic diagnosis model for solving system
issues in [9]. Our work is closer to this second category of topics. However, to
the best of our knowledge, there are no existing works on the parametric study
of the impact of component inaccuracy on UAV trajectory. In [5,24] the authors
study through the secure estimation problems how to estimate the true states of
an UAV system when the measurements from sensors are corrupted, for instance
by attackers. In their work, these authors reformulate the estimation problem
into the error correction problem and then they use the successively observed
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measurement anomalies to reconstruct the correct states of the system. While
the used techniques are completely different, the objectives of avoiding bad states
is similar to ours, in avoiding the states reaching bad security zones.

The purpose of our work is therefore to provide means to study the reliability
of UAVs in the context of a given flight plan. In order to do that, we have to
build a formal (mathematical) model which will allow us (1) to analyze the
drone system and detect the most important parameters, and (2) to tune those
parameters in order to reduce the system failure probability. To this intent,
we thoroughly study the UAV system, formalize it and analyze it with using
parametric probabilistic methods. Among the components of a drone system,
we particularly focus on the Flight Control System (FCS), which is responsible
for computing estimations of the UAV position during its flight in order to adapt
its trajectory to a given predefined flight plan. We therefore build a formal model
of the flight controler in terms of parametric probabilistic models that takes into
account the potential inaccuracy of the position estimation. Since UAVs are
particularly sensitive to the weather environment (and in particular to wind
conditions), we also enhance our model in order to take into account potential
wind perturbations. Since wind force can drastically vary from one point of a
given flight plan to another, we also use parameters to encode the wind force
and allow our model to adapt to particular weather conditions.

The contributions of this paper are:

— a method to build a parametric model of UAV systems; the parameters
can then be finely tuned until reaching values that ensure defined safety
thresholds;

— a parametric statistical model checking technique; this enables us to formally
analyze the parametric models build for the drones. Indeed because of the
complexity of the built models, tools such as PRISM [15,16] and PARAM [12]
were limited for their analysis.

— an illustration of the use of our method on a complex industrial case study.

The paper is organized as follows. In Section 2 we provide the essential back-
ground to understand UAV functioning and then we build a formal model that
support their behaviours. Section 3 is an introduction to parametric Markov
chains and Statistical Model Checking. Implementations of the models and ex-
perimentations are presented in Section 4; finally Section 5 draws conclusions
and further work.

2 Building a Formal Model of UAV

In this section, we present our method to build the UAV model. Recall that
we are interested in studying UAV safety, i.e. studying the probability that a
UAV encounters dangerous situations. These situations are of two kinds: either
the UAV can stop flying and fall, or it can enter a ”forbidden” zone were it
endangers humans. As explained earlier, professional UAV can handle the falling
risk through material redundancy. Moreover, as long as a UAV stays in a ”safe”
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zone, it will not endanger human even in case of falling. The aim of our model
is therefore to evaluate the probability for a UAV to enter a ”forbidden” zone.

We start by explaining how the zones are computed with respect to the
given flight plan. We then show how the UAV software can be decomposed
into components and focus on the most important ones. Finally, we detail how
the formal (mathematical) models for the important components are built and
present the resulting global model.

2.1 Safety zones

In the context of software,
considerations in airborne sys-
tems and equipment certifica- C

5

tion (named DO-178C) defined 4

five levels of safety zones, the g

most secure being Zone 1 and 1
Iy "B

the most dangerous being Zone
5. These zones are characterized
by their distance from the in-
tended flight plan, as shown in
Figure 1.

The size of each safety zone is not definitely fixed; it can be defined for a
specific requirement or for a given application. In practice the safety zones are
specifically defined for a flight environment and for a given flight plan. The
main principle is that no human should be present in Zones 1 to 3, while a few
people can be present in Zone 4 and most people can be present in Zone 5.
As a consequence, the probability that the UAV endangers humans is directly
proportional to the probability that it enters Zones 4 or 5. In the following of
the paper, our target will therefore be to compute this probability.

Fig. 1: Safety zones

2.2 Drone components

We now move to the decomposition of the UAV hardware and UAV software into
components and introduce the most important component in the UAV system:
the flight controller (FC). The FC is responsible for collecting data from various
sensors, using this data to compute the precise position and attitude of the drone
and adjust the attitude in order to follow the given flight plan to the best of its
ability.

Notice the difference between po-
ROLL sition and attitude: while the position
of the UAV is defined by 3-dimensional
coordinates z, y and z, its attitude is
the collection of yaw, pitch and roll
measurements for the UAV compared
to the vertical (see Figure 2). The at-
Fig.2: Attitude coordinates titude allows to control the movement
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Remote
Sensors Sensors Control

Radio Reciever Board

Filter Modulation

Flight Control

Fig. 3: Flight Control Overview

of the UAV: by controlling the speed of each motor, one can control which motor
will be the highest, and hence control the direction the UAV will fly to.

Flight Controller As explained above, the FC is the central component in any
UAV as it is responsible for collecting data from sensors and translating them
to the UAV attitude. An overview of the FC of an UAV is given in Figure 3.
Remark that the FC can be linked to components responsible for communicating
with a remote control. While these components are necessary in order to allow
a pilot to take over when the automatic flight mode of the UAV fails, we will
consider in the following that this is not the case and that the UAV we study
are always in automatic flight mode.

As one can see from Figure 3, the intuitive behavior of the FC is as follows.
The filter uses sensors measurements in order to compute the current drone
position and attitude. Since the data can be noisy and inaccurate, the filter
uses complex algorithms in order to clean the noises in the measurements and
compute a realistic position and attitude. Remark that in some cases, the filter
can itself introduce inaccuracy in the computed position and attitude, which can
be problematic. Once the estimated current position and attitude are computed,
the Proportional Integral Derivative (PID) uses this information to compute the
local trajectory that the drone has to follow in order to be as close as possible
to its intended flight plan. This local trajectory is then transformed into a new
value for the attitude of the drone. Finally, Modulation transforms this attitude
into signal to the Electronic Speed Controller (ESC) which is responsible for
controlling each motor’s speed.

Recall that we are interested in computing the probability that a UAV enters
a forbidden zone while following its flight plan. By construction, as long as the
position and attitude measurements are perfect, there is no reason why the UAV
should deviate from its intended trajectory, and therefore the probability that it
enters a forbidden zone is null. However, as explained above, the data gathered
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from sensors can be noisy and inaccuracy can sometimes be introduced through
filtering. In this case, the estimated position and attitude of the UAV can be
faulty, resulting in a deviation from the intended flight plan and potentially
leading to a forbidden zone. It is therefore of paramount importance to study
how the filters work and to take into account in our formal model the potential
inaccuracy of position and attitude measurement.

Filter The role of the filter is to use sensors measurements in order to compute
the UAV position and attitude with the highest possible precision. However, the
high precision comes with a cost in terms of complexity: in order to gain precision,
filters have to run complex algorithms which takes time. As a consequence, the
most precise filters are also the slowest, which implies that the position can be
estimated less often, which itself results in inaccuracy.

There exists a large amount of filters in UAV industry, among which one
can find Extended Kalman Filter (EKF) [22], Explicit Complement Filter [8],
Gradient Descent [19], Conjugate Gradient, and a more accurate but slower
filter: Unscented Kalman Filter (UKF) [6], etc. Usually, researchers use EKF as a
fundamental to compare to other kinds of filters and explain precision and speed
differences. All filters improve their accuracy during the flight through training,
in particular by recording recurrent noises and correcting them. However, this
training is only valid through a single flight and is lost as soon as the UAV lands.

Since the accuracy of the estimated position and attitude is of paramount
importance for computing the probability of entering a forbidden zone, and
since the choice of filter has a direct impact on this measurement, we chose
to implement this accuracy as a parameter of our model. This will be explained
in more details in Section 2.4.

2.3 Formal Model of the UAV in its Environment

We use a flow diagram to present our global approach

l Filter for formalizing the UAV functioning (See Figure 4).
| _Computation After a step where the filter computation reflects the
Por—— J, precision of position and attitude estimation, we con-
Computation | sider the computations of the probabilities to reach the
| T given safety zones in the next time-step; accordingly,
| Computation |~  the idea is to adapt the next attitude according to the

original flight plan in order to be more secure. The
last step allows to incorporate wind perturbations and
compute the next UAV position.

As explained above, the filter is one of the most
crucial components and its ability to estimate the UAV
position precisely has a huge impact on the probability of reaching a forbidden
zone. For this reason, we choose to represent the accuracy of the estimated
position of the UAV (therefore including both sensor measurements and filter
correction) as a parameter of our model. In the following, we show how the next

Fig.4: A flow diagram
of the formalization
steps
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position of the UAV is computed according to the current estimated position,
and how errors in the estimation can lead to the drone entering forbidden zones.

Computation of the next position We now explain how the next position
is computed according to the estimated current position. In particular, we show
that inaccuracy in the estimation can lead the UAV to entering a forbidden zone.

Fig. 5: Issue on drone location and misleading positions

For the sake of simplicity, we assume here that the UAV moves in 2 dimen-
sions only and that inaccuracy only occurs on one of them. Figure 5 illustrates
the situation. Assume that the intended flight plan consists in going from point A
to point B. Assume also that the current position of the UAV is exactly on A but
that the estimated position (taking into account sensors and filter inaccuracy)
is on A’. As a consequence, the PID will try to correct the current deviation by
changing the angle of the UAV in order to lead it back to B. However, since the
UAV is really on A, the correction will instead lead the UAV to a position B’,
in the forbidden zone. Fortunately, the position estimation takes place several
times between A and B, according to the filter frequency f. Therefore, a new
position will be estimated before reaching B’, hopefully with a better accuracy,
which will allow the PID to again correct the trajectory. We should also take into
account that the speed of the UAV is also computed according to the flight plan,
which precises the remaining time and distance before the next checkpoint. We
now show how we can compute the safety zone where the UAV ends before the
position is estimated again. In Figure 5, this zone is represented by the distance
Sh.

Let Sanswer be the distance that the UAV covers before a new estimation of
the position. Let V' be the velocity of the UAV, which is computed by the PID in
order to reach B on time, i.e. in precisely T time units. We therefore have V =
A'B/T, and Sanswer = V/f = (A’B)/(T * f). Finally, AA'/A'B = S,,/Sanswer,
and therefore

AA
T Tk f
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Remark that the resulting deviation is directly proportional to AA’/ f, hence
the necessity to take into account the trade-off between accuracy and filter speed
in order to optimize the probability of never entering any dangerous zone.

Taking into account wind perturbations follows a similar computation than
the one presented above. This allows us to incorporate wind parameters as well

in our model.

2.4 Resulting Global Model

f: Frequency

T: Time
" change point
times = 0
times++ times >= T*f
> —h
[times < T*£
Filter Computation
FilterProba2 FilterProbad
FilterProbal | Filte'fmbaﬁ | FilterProba5
! i l
F1 F2 F3 F4 F5

........ T

Sé{i:ei:y Zone Computation
proportion p = 1 / £*(T - times/f)

if (y * p > SafetyZoneDistance?2)
—> SafetyZone3' (ZS3')
else if (y ™ p > SafetyZoneDistancel)
—> SafetyZone2' (Z52')
else —> SafetyZonel' (ZS1')
P/ ¥ /AN 17 ey

L\l
Y v Vv ¥ %
Zs1' 52" Z83' 54" Z85'
| | I ] I

WindProba3 [WindProbad
L
w1 w2 w3 W4

[ i A A
M AN AN AN

WindPrcbalJ WindProba2 |Wind Tﬂﬂm”tatifm

if y + wind > SafetyZoneDistance2
—> SafetyZone3(ZS3)
else if y + wind > SafetyZoneDistancel
—> SafetyZone2(ZS2)
else —> SafetyZonel (ZS1)

AT AT T A
2TV

/T N
Z51 Zs2 Z83 Z54 2S5

L To ]

else (risk of next point)

Fig. 6: Global behaviour of the FCS

The global model of the UAV flight
control system is depicted in Figure 6.
The purpose of this model is to rep-
resent the computations taking place
in the FCS in order to adapt the UAV
trajectory to the intended flight plan
according to inaccurate position and
attitude estimations as well as wind
perturbations. In this model, the exact
position of the UAV is encoded using
3-d coordinates. These coordinates are
then compared to the intended flight
plan in order to decide to which safety
zone they belong. As soon as the UAV
reaches one of the forbidden zones (4
or 5), the computation stops.

The model uses several proba-
bilistic parameters. Parameters Filter-
Probal, FilterProba2, FilterProba3,
FilterProba4 and FilterProbab repre-
sent the accuracy of the position and
attitude estimation by both the filter
and the sensors. The resulting prob-
abilistic choice depicted in the box la-
belled Filter Computation therefore
dictates the distance between the ex-
act and estimated position of the UAV.
This choice is followed by a computa-
tion in the box labelled Safety Zone
Computation that computes the ex-
act coordinates of the next position
of the drone and allows to decide the

safety zone to which this position belongs. When the wind is not taken into
account, the result of this computation is enough to decide whether the model
should pursue its execution. When the wind is taken into account, another step
follows, depicted in the box labelled Wind Computation, where other prob-
abilistic parameters are used in order to decide the wind strength (we assume
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that the direction is constant) and a new position taking into account these
perturbations is computed. Finally, the zone to which this last position belongs
is computed and, depending on whether this zone is safe, the model goes on to
another position estimation.

Remark that the filter frequency and the position and distance of checkpoints
in the flight plan are given as inputs to the model. The position of checkpoints in
the flight plan allows to compute the required UAV speed, while the frequency
of the filter allows to fix the number of position estimations that will happen in
a given flight plan (i.e. the number of loops the model goes through, at most).

3 Parametric Statistical Model Checking

As explained above, we have developed a parametric probabilistic model in or-
der to represent the behaviour of our UAV according to a given flight plan. We
now introduce the necessary theory to formally compute the probabilities of a
given UAV entering a forbidden zone in the context of its flight plan. We start
by recalling a classical verification technique called Statistical Model Check-
ing (SMC), then introduce the modeling formalism we use: parametric Markov
Chains (pMCs) and finally show how SMC can be adapted to this formalism.

3.1 Standard Statistical Model Checking

Recall that a Markov Chain (MC) is a purely probabilistic model M = (.5, s, P),
where S is a set of states, sp € S is the initial state, and P : S x S — [0,1] is
a probabilistic transition function that, given a pair of states (s, s2), yields the
probability of moving from s; to ss.

Given a MC M, one can define a probability measure on the infinite execu-
tions of M using a standard construction based on the o-algebra of cylinders.

A run of a MC is a sequence of states sg, s1 ... such that for all i, P(s;, s;41) >
0. Given a finite run p = sgsq . .. s, its length, written |p| represents the number
of transitions it goes through (including repetitions). Here |p| = [. We write
I'm(1) (or simply I'(1) when M is clear from the context) for the set of all finite
runs of length [, and I'yg for all finite runs i.e. I'yy = UienI'm(1). As usual we
define the probability measure, written P54 on runs based on the sigma-algebra
of cylinders (see e.g. [2]). This gives us that for any finite run p = sgs1... Sn,
Pa(p) = [1—; P(si—1,si). In the rest of the section, we only consider finite
runs. Given a reward function r : I'(l) — R, we write E},(r) for the expected
value of r on the runs of length [ of a given MC M.

Statistical Model Checking [23] is an approximation technique that allows
to compute an estimation of the probability that a purely probabilistic systems
satisfies a given property*. In particular, the Monte Carlo technique uses samples
of the runs of length [, I'(l), of a given Markoc chain M in order to estimate the

4 Particular SMC techniques also allow to estimate the satisfaction of qualitative prop-
erties [18].
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probability that M satisfies a given bounded linear property. It can also be used
for approximating the expected value of a given reward function r on the runs
I'(l) of M. In order to provide some intuition, we briefly recall how standard
Monte Carlo analysis works in the context of statistical model checking of MC. In
this context, a set of n samples of the runs of the MC. These runs are generated
at random using the probability distribution define through the Markov chain.
Each of these samples is evaluated, yielding a reward value according to the
reward function r. According to the law of large numbers (see e.g. [21]), the
mean value of the samples provides a good estimator for the expected value
of the reward function r on the runs of the given MC. Moreover, the central
limit theorem provides a confidence interval that only depends on the number
of samples (provided this number is large enough).

3.2 Parametric Markov Chains(pMC)

Markov Chains are inadequate in the context of drone flight plan analysis. In-
deed, the models we develop in this context are subject to uncertainties that we
model using parameters, such as precision of the position and attitude estima-
tions and wind strength. The resulting models are therefore not purely proba-
bilistic since they contain parameters. As a consequence, we need to use a more
expressive type of model that allows to take into account probabilistic parame-
ters, such as Parametric Markov Chains (see e.g. [1]).

A pMC is a tuple M = (5, s¢, P, X) such that S is a finite set of states, sg € S
is the initial state, X is a finite set of parameters, and P : S x S — Poly(X)
is a parametric transition probability function, expressed as a polynomial on
X. A parameter valuation is a function v : X — [0,1] that assigns values to
parameters. A parameter valuation v is valid w.r.t. a given pMC M if, when
replacing parameters with their assigned values, the resulting object is a MC
(i.e. the outgoing probabilities of all states sum up to 1). If v is a valid parameter
valuation with respect to M, the resulting Markov chain is written ME.

Given a pMC M, a run p of M is a sequence of states sosy ... such that
for all i > 0, P(si, si4+1) # 0 (i.e. the probability is either a strictly positive real
constant or a function of the parameters). As for MCs, we write I'a¢(l) for the
set of all finite runs of length [ and 'y for the set of all finite runs.

Observe that for any valid parameter valuation v, 'y (1) € I'ng(1) since v
may assign 0 to some transition probabilities.

3.3 Parametric SMC

As it is, standard SMC cannot be used in the context of pMC because of their
parametric nature. Indeed, we cannot produce samples according to the para-
metric transition probabilities. Luckily, the underlying theory used in SMC can
be extended in order to take into account parameters. The method we propose in
the following is in line with a technique called importance sampling (see [21] for
a description). The purpose of this technique is to sample a stochastic system
using a chosen probability distribution (which is not the original distribution



Parametric Statistical Model Checking of UAV Flight Plan 11

present in this system) and “compensate” the results using a likelihood ratio in
order to estimate a measure according to the original distribution. In the con-
text of SMC, importance sampling has mainly been used in order to estimate the
probability of rare events [3] and/or to reduce the number of required samples
in order to obtain a given level of guarantee [14]. It has also been used in the
context of parametric continuous-time Markov chains in order to estimate the
value of a given objective function on the whole parameter space while using a
reduced number of samples [4]. However, to the best of our knowledge, impor-
tance sampling has never been used in order to produce symbolic functions of
the parameters as we do here.

The intuition of the method we propose here is to fix the transition proba-
bilities to an arbitrary function f, which we call normalization function, and to
use these transition probabilities in order to produce samples of the pMC M.
However, instead of evaluating the obtained runs by directly using the desired
reward function r, we define a new (parametric) reward function r’ that takes
into account the parametric transition probabilities. We show that, under any
parameter valuation v, the evaluation of the mean value of 7’ on the set of sam-
ples is a good estimator for the expected value of the reward r on M". The
central limit theorem (see e.g. [21]) also allows to produce parametric confidence
intervals, but we do not go into details here (see [7] for more details on this
topic).

Remark. The choice of the normalization function is crucial. In particular, the
results presented below require that the graph structure of the MC obtained with
this normalization function is identical to the graph structure of the MC obtained
using the chosen parameter valuation. This is discussed in more details in [7].
In the following, we only consider parameter valuations that assign non-zero
probability to parameterized transitions. Since we use the uniform normalization
function, the graph structures of the obtained MCs are indeed identical, which
ensures that the results presented below hold as expected.

Let Pa : I'ny — Poly(X) be a parametric reward function. For any valid
valuation v and any run p € I'nge we have Pago (p) = Pa(p)(v).

Given any valid normalization function f and any run p € 'y, let paramet-

. : — _Palp)
ric reward function ' be r’(p) = PMffp)r(p).

We now prove that the expected values are equal. Let p € ' (1) be a
random sample of M/ and let Y be the random variable defined as follows
Y = 1/(p). The following computation shows that, under any valid parameter
valuation v such that M/ and M have the same structure, we have E(Y)(v) =

El 4o (7).
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E(¥)(s) = ( 3 PMf<p>y<p>)<v>

PET 5 (1)

_ Pa(p) . ;
- perM:f(z)PMf(p)PMf(p) (p)>( )
> Pa(p)(v)r(p)
pEFMf(l)
Y Puslp)r(e)
peF/\/(f(l)

> Puslp)r(p)

pPEL M (1)
=El . (r)

Our adaptation of the Monte Carlo technique for pMC is thus to estimate the
expected value of Y in order to obtain a good estimator for the expectation of r.
Let p1,. .., pn be a set of n runs of length | of M7. Let Y; be the random variable
with values in Poly(X) such that Y; = 7/(p;). Notice that the Y; are independent
copies of the random variable Y. Y; are therefore independent and identically
distributed. Let v be the parametric function giving their mean value.By the
results above, for all valid parameter valuation v such that M? and M/ have the
same structure, Ey (. (r) = E(Y)(v) = E(X1, Yi/n)(v) = v(v). Our parametric
approximation of the expected value is therefore:

In the sequel we will this use Parametric Statistical Model Checking (PSMC)
to check the formal model we will implement for the UAV.

4 TImplementation, Experimentations and Results

While our complete formal model has been introduced in Section 2 in the form
of an automata, we now explain how we successively implemented and improved
the model by considering different formalisms and model checking tools. At each
step, we show the limitations of the related model which leads to the next step
of the implementation. The different steps of the model implementations are
depicted in Figure 7.

To start, a first partial version of the formal model of Section 2.3 was imple-
mented as a PRISM model using the PRISM tool [16], without parameters.

This first version, as depicted in 7a, corresponds to a very simple UAV flight
plan, going in a straight line from point A to point B in T time units. In this
context, the intermediate positions are estimated 7" * f times, where f is the
frequency of the filter. The sizes used for the five security zones are respectively
20m, 40m, 60m, 80m and 100m.



Parametric Statistical Model Checking of UAV Flight Plan 13

As explained in Sec-
tion 2, the filter removes
the noise corrupting data
coming from sensors. In
this first version, we only
consider potential devia-
tions along the y-axis. At
each computation step,
the inaccurate position
given by the filter is com-
puted using the accuracy
of the filter and sensors
(as a single real-valued

- variable), and compared
) to the intended position
as given by the flight
plan. The safety zone is
deduced from the dis-
tance between the esti-
mated position and the
intended position. If the
UAYV enters Zones 4 or 5,
the computation stops.

position
with noises

times < T*f position

with noises

Safety Zone
1-3

(b

times < T*f

times >= T*f

change change
obieciive @ objective

Safety Zone
13

In this first model,
the accuracy of the fil-
alse ter is probabilistic but

not parametric, i.e. prob-
ability values have been

() (d) encoded directly in the
model. These values are
the results of a set of ex-
periments performed by
using a flight controller plugged on a production line with a predefined path
with a loop. We launched several runs of the device on the production line path
and measured the outputs of the EKF filter. These measures then allowed us
to compute the estimated position, which can then be compared to the exact
position on the production line. We consequently obtained probabilities for the
accuracy of the position estimation using an EKF filter and sensors coming from
an industrial UAV. However, the major drawback of these experimentations is
that they did not reflect a realistic UAV environment. In particular, since the
experiment was conducted indoor using a fixed production line, the precision of
some of the sensors (GPS for instance) is not representative of the precision one
could obtain in a realistic flight environment. Although we were able to verify
this model using PRISM, the results are not representative and can only be con-
sidered as a proof-of-concept. Since our aim is to study the same problem for

Fig. 7: Incremental development of the SMC model
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different accuracy probabilities, we changed the exact probability values to pa-
rameters and submitted this new model to the PRISM Model Checker. However,
because of the real-valued variables used in the model and of the numerous inter-
mediate computations, PRISM was not able to handle this model and timed-out
after 2 hours of unsuccessful computations.

Facing these shortcomings with the PRISM tool, we considered the imple-
mentation of our model with the PARAM tool [12] which is a model checker
for parametric discrete-time Markov chains. PARAM is efficient and allows to
compute the probability of satisfying given properties as polynomials or rational
functions of the parameters. As PRISM, PARAM also failed to model check our
current version of the model. At this stage, since both PARAM and PRISM
failed to verify our simplest model because of its complexity, we considered us-
ing a different approach based on Parametric Statistical Model Checking. For
this purpose, we developed a prototype tool®. In this context, our model was ex-
pressed as a python program using real-valued variables both for the position of
the UAV and for the probabilistic parameters. It appears that PSMC is partic-
ularly efficient in this context, and was able to verify our model (by performing
more than 20k simulations) in less than 1 minute. We therefore chose to pursue
our experimentation using this prototype tool and refined versions of our model.

In the second version of the model, depicted in Figure 7b, we allowed devia-
tions to also occur along the x-axis. This is not problematic when considering a
straight line flight plan, but could become important as soon as the flight plan
is curved (as the one in Figure 1). Indeed, in this context, deviations along the
z-axis (for example if the drone is ”late”) could result in the PID deciding to cut
the trajectory, i.e. going straight to point C before reaching point B, therefore
promoting a trajectory that might colide with the forbidden safety zones. Again,
our tool managed to verify this model in a very short time.

For the third version of the model as depicted in Figure 7c, we add a third
target point to the flight plan, which is not aligned with the first to points, i.e.
like in Figure 1.In this third version, the inacurracy of the position estimation
along the z-axis also allows the UAV to be "late” and decide to cut the flight
plan as explained above.

Finally, the last version, as depicted in Figure 7d, takes into account wind
perturbations. We assumed here that the wind direction was constant but that
the wind force was again parametric. This will allow us to study the right trade-
off between filter capacity and frequency depending on the weather conditions.
This last version is the most complex we studied, and therefore took more time
to verify than the previous ones. With our prototype tool, it took 190 seconds
to perform the verification using 10k simulations in this context while the same
amount of simulations only took 28 seconds for the previous model (without
wind parameters).5

5 available at https://github.com/paulinfournier/MCpMC

5 We do not share the exact models used in our prototype tool for confidential-
ity reasons, but the models used in PRISM and PARAM can be found here:
https://github.com/br4444/modelPrism/tree/master
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The outputs of our prototype tool are multivariate polynomials on the pa-
rameters of our model. Given the number of parameters, the size of the model
and the length of the considered simulations, these polynomials are quite com-
plex and therefore difficult to report in this paper. As an example, below is the
output polynomial representing the probability that a UAV enters Zones 4 or 5
using our last version of the model:

0.43 * ProbaFilters « ProbaWind, + 0.16 x ProbaFilters * ProbaWinds
+ 0.17 x ProbaF'ilters x ProbaWinds + 0.28 x ProbaF'ilters x ProbaWindy
+ 0.85 % ProbaF'iltery * ProbaWind, +

Instead of showing the resulting polynomials, we will only present the evalu-
ation of these polynomials using realistic values for the parameters. We defined
two scenarios (Scenario 1, Scenario 2) with one set of values of parameters for
each scenario. For these two scenarios, ProbaF0 (resp F1, F2, F3, F4) models
the probability that the estimated position is from 0 to 2m (resp. 2—4m, 4—6m,
6 — 8m, 8 — 10m) from the real position. In the first (resp. second) scenario, we
have set these values to 0.15/0.3/0.4/0.1/0.05 (resp. 0.1/0.25/0.35/0.2/0.1). Ac-
cording to experiments done at PIXIEL, the first scenario is more realistic than
the second one. Similarly, the wind parameters correspond to the probability of
having a wind force of 0 — 20km/h,20 — 30km/h, 30 — 50km /h and 50 — 70km /h
respectively and have been set to 0.55/0.43/0.01/0.01 (which corresponds to typ-
ical weather conditions in Nantes, France) for the numerical evaluation. In both
scenarios, Zone 4 (resp. 5) is situated 8m (resp. 50m) from the flight plan.

In Table 1, we gather the results for running the simulation for the two
considered scenarios; the simulation with PSMC is performed with 10k, 20k and
50k samples. Each time, a polynomial is computed and then evaluated using the
parameter values given above. In order to illustrate the stability of our results
despite their statistical nature, each complete scenario was performed two times
(labelled V1 and V2 in the table). The value reported in the table represents
the probability of the UAV eventually reaching Zones 4 or 5 during its flight.
Experiments were performed using the formal models presented in Figure 7c
(without wind) and Figure 7d (including wind perturbations) on a flight plan
resembling the one shown in Figure 1, with a total flight duration of 5s and a
filter frequency of 1H z. We considered two versions of the model from Figure 7d:
7d(np) where wind strength is directly input as a constant probability in the
model (resulting in a polynomial where the only variables represent the precision
of position estimation), and 7d(p) where wind strength is input as parameter
variables in the model (allowing to evaluate/optimize the resulting polynomial
according to any wind strength). Remark that the results in the first case are
more precise because there are less variables in the polynomial, and obtained in
a more efficient manner. Depending on whether we are interested in specific or
generic information concerning the weather environment, we can chose to use
the first of the second version. Remark that the probabilities of entering the
forbidden zones are quite high. This is not surprising as Zone 4 is situated 8m
from the intended trajectory and the precision of position estimation can be up
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Table 1: Results of the experiments

Model 10k 20k 50k
Vi V2 | V1| V2 | V1 | V2
Running time| 7c 28s 51-54s 142-143s

Scenario 1 e 14.99% | 5.09% |4.74%| 5.10% |4.91%|4.98%
Scenario 2 Tc  10.38%](10.04%](9.82%|10.05%(9.95%(9.81%
Running time| 7d(np) 28s 53-54s 149-155s
Scenario 1 7d(np) | 5.43% | 5.31% |5.61%| 5.21% {5.59%|5.47%
Scenario 2 |7d(np)| 10.8% | 10.9% |10.8%| 10.8% |10.9%10.7%
Running time| 7d(p) 185-190s 311-314s 612-621s
Scenario 1 7d(p) | 4.95% | 5.97% |5.28%| 6.62% [4.16%|5.61%
Scenario 2 7d(p) | 9-55% | 9.87% |10.3%| 11.3% |9.57%|10.7%

to 10m. These values have been made deliberately high for the purpose of this
study but can be chosen more realistically when verifying the real model.

5 Conclusion and Future Work

In this paper, we have presented a formal model to study the safety of a UAV
in automatic flight following a predefined flight plan. This formal model consists
in a parametric Markov Chain and takes that takes into account the precision
of position and attitude estimation using sensors and filters as well as poten-
tial wind perturbations. We have also proposed a new verification technique for
parametric probabilistic model: parametric Statistical Model Checking. This new
technique has been implemented in a prototype tool. While state of the art tools
such as PRISM and PARAM have timed out on the verification of the simplest
version of our formal model, our prototype tool has been able to successfully
verify the most complex version in less than 12 minutes.

In the future, we plan to keep enhancing our model in order to include filter
frequency to be used as a parameter in the model. Using these parameters will
allow us to obtain the parametric probability to enter dangerous zones depending
on both the filter frequency and the precision probabilities. Studying/optimizing
this parametric probability will allow PIXIEL to work on the trade-off between
frequency and precision in order to choose their components wisely depending
on their intended flight plan.
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