

Internship topic

Quantum Alternating Operator Ansatz with dedicated mixers for Constrained Binary Quadratic Problems

Context

Quantum computing is increasingly being explored by the optimization community to address combinatorial optimization problems. Specifically, the main problems tackled currently are Quadratic Unconstrained Binary Optimization (QUBO) problems using quantum heuristics (Quantum Approximate Optimization Algorithm (QAOA) [1], more general variational quantum methods [2, 3], Quantum Annealing [4] etc.). Constrained problems, representing a significant part of everyday challenges, are under-studied. The classical Lagrangian relaxation, or similar methods, coupled with quantum heuristics for unconstrained problems are mainly invoked for such constrained problems [5], in parallel of reformulations of the initial problem [6]. However, other approaches dealing with constraints at the core of the algorithm exist, such as the Quantum Alternating Operator Ansatz algorithm [7] where constraints are characterized by mixers (Mixer-QAOA). It is these particular methods that interest us here.

Mixers for constraints with QAOA

The algorithm at stake for this internship is Mixer-QAOA [7]. This is a hybrid heuristic which consists in alternating between a quantum and a classical part. The quantum part produces a state $|\theta\rangle$ by a quantum circuit parametrized by $\theta \in \mathbb{R}^d$, $d \in \mathbb{N}$. The classical part optimizes over θ driven by the aim that $|\theta\rangle$ has a high probability of being measured as the optimal solution of the initial problem. The new idea of Mixer-QAOA, compared to the seminal QAOA dealing with unconstrained problems only, is to express the constraints as mixers in the quantum circuit such that the latter manipulates only feasible states. Such mixers have been found for specific constraints (e.g. constant Hamming weight [8, 9]) but building mixers for other general constraints remains an open question.

In this internship, we aim at solving the Quadratic Knapsack Problem with cardinality constraint (kQKP) [10] with Mixer-QAOA, meaning designing mixers for two types of constraints (capacity and cardinality). In the long term, it will lead to the study of more generic problems, where many variations are possible (in terms of objective function, types of constraints, domains of the variables). Notice that we will also be able to investigate other methods to solve the kQKP by integrating Mixer-QAOA in classical decomposition methods [11].

From a practical point of view, Mixer-QAOA (in the gate-based model) on small instances of kQKP will be implemented and simulated with Qiskit. If it is relevant, some experiments will also be conducted on quantum hardware accessible on the cloud.

A continuation in a PhD after this internship may be considered.

Practical information

Employer: Laboratory LIPN within the framework of an academic internship agreement
Internship location: LIPN (Laboratoire d'Informatique de Paris Nord), UMR CNRS 7030
Université Sorbonne Paris Nord
99 avenue Jean-Baptiste Clément 93430 Villetteuse
Duration: 4-6 months at spring 2026
Remuneration: Internship compensation
Required level: Second year of Research Master or third year of Engineering School
Profil: Combinatorial optimization, Quantum computing, Computer science, Applied mathematics, Python

Advisors

Camille Grange (LIPN, Sorbonne Paris Nord) grange@lipn.univ-paris13.fr
Lucas Létocart (LIPN, Sorbonne Paris Nord) lucas.letocart@lipn.univ-paris13.fr

References

- [1] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm. *arXiv preprint arXiv:1411.4028*, 2014.
- [2] Camille Grange, Michael Poss, and Eric Bourreau. An introduction to variational quantum algorithms for combinatorial optimization problems. *4or*, 21(3):363–403, 2023.
- [3] Giacomo Nannicini. Performance of hybrid quantum-classical variational heuristics for combinatorial optimization. *Physical Review E*, 99(1):013304, 2019.
- [4] Tadashi Kadowaki and Hidetoshi Nishimori. Quantum annealing in the transverse ising model. *Physical Review E*, 58(5):5355, 1998.
- [5] Thinh Viet Le and Vassilis Kekatos. Solving constrained optimization problems via the variational quantum eigensolver with constraints. *Physical Review A*, 110(2):022430, 2024.
- [6] Fred Glover, Gary Kochenberger, Rick Hennig, and Yu Du. Quantum bridge analytics i: a tutorial on formulating and using qubo models. *Annals of Operations Research*, 314(1):141–183, 2022.
- [7] Stuart Hadfield, Zhihui Wang, Bryan O’gorman, Eleanor G Rieffel, Davide Venturelli, and Rupak Biswas. From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. *Algorithms*, 12(2):34, 2019.
- [8] Jeremy Cook, Stephan Eidenbenz, and Andreas Bärtschi. The quantum alternating operator ansatz on maximum k-vertex cover. In *2020 IEEE International Conference on Quantum Computing and Engineering (QCE)*, pages 83–92. IEEE, 2020.
- [9] Zhihui Wang, Nicholas C Rubin, Jason M Dominy, and Eleanor G Rieffel. Xy mixers: Analytical and numerical results for the quantum alternating operator ansatz. *Physical Review A*, 101(1):012320, 2020.
- [10] Lucas Létocart, Marie-Christine Plateau, and Gérard Plateau. An efficient hybrid heuristic method for the 0-1 exact k-item quadratic knapsack problem. *Pesquisa Operacional*, 34:49–72, 2014.
- [11] Alberto Ceselli, Lucas Létocart, and Emiliano Traversi. Dantzig-wolfe reformulations for binary quadratic problems. *Mathematical Programming Computation*, 14(1):85–120, 2022.