
Research summary by Lê Thành Dũng (Tito) Nguyễn, September 2020
Broadly speaking, most of my research involves or is inspired by linear logic (LL) in some way. That
said, it is never only about LL: I try to draw connections with various other fields. Of course, as an
offspring of the celebrated Curry–Howard–Lambek correspondence, LL was connected to programming
languages and to category theory from its birth. But I am referring to topics such as combinatorics or
automata theory, whose relationship to proof theory hasn’t been explored as much.

Past: proof nets through the lens of graph theory. Linear logic was first defined both by sequent
calculus and by a new kind of proof system, called proof nets. The latter marks a radical departure
from tradition: proofs are now graph-like, that are not defined inductively unlike usual tree-like proofs;
correctness is checked via a global combinatorial criterion, instead of a mere local verification of the
validity of the inference rules. The sequentialization theorem says that these proof nets are equivalent to
the sequent calculus for LL; it is arguably the hardest result in Girard’s seminal paper on LL (1987).

It seems like a natural idea to use graph theory in the study of proof nets, but this has been pursued
mostly by a single person, namely Christian Retoré. He discovered in the 1990s that proof net correctness
can be recast using the notion of perfect matching in a graph, and that the sequentialization theorem is
equivalent to Kotzig’s theorem on perfect matchings (1959; see also Szeider 2004). My first research paper
(FSCD 2018 / LMCS 2020) seems to be the first attempt at exploiting the full potential of Retoré’s idea:
I show that it allows for “unreasonably effective” applications of the vast literature on graph algorithms
and structural graph theory to proof nets for Multiplicative Linear Logic with Mix (MLL+Mix).

More recently, Lutz Straßburger and I have applied (in unpublished work) these graph-theoretic
tools to Retoré’s pomset logic, an extension of MLL+Mix with a self-dual non-commutative connective.
What’s interesting about this logic is that it is defined by a system of proof nets for which no well-behaved
sequent calculus counterpart is known. The challenge of designing an inductively defined proof system
accomodating self-dual non-commutativity led Alessio Guglielmi to introduce a logic called system BV
in the late 1990s. It was the initial use case for the deep inference methodology which has become since
then an important approach in proof theory (see http://alessio.guglielmi.name/res/cos/).

Thanks to an obscure paper on edge-colored directed graphs, Lutz and I discovered that provability in
pomset logic is a strictly harder decision problem than in BV, assuming NP ̸= coNP. This led us to find
a concrete formula that is provable in pomset logic but not in BV, refuting the longstanding conjecture
that the two are equivalent. (But please wait for a preprint to be uploaded before spreading the news!)

Present: implicit automata in typed λ-calculi. The field of implicit computational complexity
seeks to characterize complexity classes by using constrained programming languages; it is practiced by
several people at LIPN (Damiano, Paulin, Thomas, Virgile). The research programme that I am carrying
out with Pierre Pradic explores a counterpart for automata and transducers.

Remarkably, automata naturally appear in the study of the simply typed λ-calculus (STLC). Consider
the types Bool = o → o → o of Church booleans and Str[A] = (A → A) → (A → A) → A → A of
Church-encoded binary strings – A may be an arbitrary type, while o is a base type (A,B ::= o | A → B).
Hillebrand and Kanellakis (LICS 1996) showed that a language L ⊆ {0, 1}∗ is definable in STLC by some
t : Str[A] → Bool (A may be chosen depending on L) if and only if it is regular.

Pierre and I published at ICALP 2020 a characterization of star-free languages in a λ-calculus with
non-commutative types – morally, such a type system forces functions to use their arguments in the order
that they are given in. After this, we turned to string-to-string functions instead of languages, working
with various transducer models whose theory is currently an active research topic; this led to several
discussions around transducers with automata theorists (Mikołaj Bojańczyk and Amina Doumane). We
have also come to realize that equivalence results about definability of languages or functions are mere
epiphenomena: they come from deeper structural connections that can be expressed in the language of
category theory (some relevant keywords are “Dialectica categories” and “Geometry of Interaction”).

Future. Well, rumor has it that I’m supposed to write a PhD manuscript this year, so the rest can
wait… But a lot of questions on implicit automata are still open (e.g. Str[A] → Str[o] in STLC). I am
also interested in semantics of polymorphism (e.g. hypercoherences + normal functors) which play a role
in my solution to an open problem in implicit complexity posed by Patrick Baillot (post-proceedings of
DICE-FOPARA 2019) – in fact this result involves regular languages and led me to implicit automata.

http://alessio.guglielmi.name/res/cos/

