Internship proposal
Distributed model-checking for time and prioritised Petri nets

Supervisors: Étienne André, Laure Petrucci
Location: LIPN, CNRS UMR 7030
Université Paris 13
99 avenue Jean-Baptiste Clément
93430 VILLETANEUSE

Model-checking aims at verifying that a software or hardware system meets its specification. Petri nets allow for compact modelling of systems.

One of the main issues verification faces is the so-called “state space explosion problem”. Several techniques allow to counter this problem: states representation, transition sequences abstraction, distributed verification, etc.

Among these techniques, modular verification [CP00, LP04, LM04] takes into account the modular structure of the model during the state space construction, for systems composed of synchronised semi-autonomous subsystems. This approach has been extended to time Petri nets [LP07] and Petri nets with dynamic priorities [LP11].

Objectives of the internship: Modular state spaces for these Petri nets extensions may contain spurious states since the synchronisation constraints in the modular case does not solely depend on the local module configuration. Priorities from other modules may preempt a synchronisation. This makes properties verification more complex than in the case of place/transition nets.

The internship will lead to new algorithms for properties verification using modular state spaces for time or prioritised Petri nets, without unfolding. These algorithms will be inherently distributed, which is consistent with the modular verification setting. The algorithms will be proven correct and implemented within the high-level Petri nets analysis tool HELENA (http://www.lipn.fr/~evangelista/helena/).

References


