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The original model

Popular matching algorithms were first studied in the model of one-sided
preferences.
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Vertices on the left are agents and those on the right are items.

▶ agents have preferences (ties are allowed) over their neighbors;

▶ items have no preferences.

This is also called a house allocation instance.
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Popular matchings in this model

We say M ≻ N, i.e., M is more popular than N, if

|{a ∈ A : M ≻a N}|︸ ︷︷ ︸
# of agents that prefer M

> |{a ∈ A : N ≻a M}|︸ ︷︷ ︸
# of agents that prefer N

.
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Let us hold elections between some pairs of matchings here.

▶ Say, between the green matching and the blue matching.
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Popular matchings in this model

We say M ≻ N, i.e., M is more popular than N, if

|{a ∈ A : M ≻a N}|︸ ︷︷ ︸
# of agents that prefer M

> |{a ∈ A : N ≻a M}|︸ ︷︷ ︸
# of agents that prefer N

.
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The green matching is more popular than the blue matching.

▶ In the green vs blue election: green gets 2 votes and blue gets only 1.
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Popular matchings in this model

We say M ≻ N, i.e., M is more popular than N, if

|{a ∈ A : M ≻a N}|︸ ︷︷ ︸
# of agents that prefer M

> |{a ∈ A : N ≻a M}|︸ ︷︷ ︸
# of agents that prefer N

.
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The red matching is more popular than the green matching.

▶ In the red vs green election: red gets 2 votes and green gets only 1.
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Popular matchings in this model

We say M ≻ N, i.e., M is more popular than N, if

|{a ∈ A : M ≻a N}|︸ ︷︷ ︸
# of agents that prefer M

> |{a ∈ A : N ≻a M}|︸ ︷︷ ︸
# of agents that prefer N

.
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The blue matching is more popular than the red matching.

▶ In the blue vs red election: blue gets 2 votes and red gets only 1.
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Popular matchings

So we have blue ≻ red ≻ green ≻ blue.

▶ For every matching here, there is a more popular matching.

▶ So this instance has no popular matching.

———————————————————————————————

The popular matching problem

▶ Given an instance G = (A ∪ B,E), does G admit a popular matching?

———————————————————————————————

Is there a simple characterization of popular matchings?

▶ Such a characterization is known.

▶ This leads to an efficient algorithm for the popular matching problem.
[Abraham, Irving, K, and Mehlhorn, 2007]
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Structure of popular matchings for strict rankings

For every a ∈ A, let us add a dummy item d(a) as a’s worst item.

▶ Henceforth, only A-perfect matchings are interesting.

For any a ∈ A:

▶ let f (a) = a’s top choice item;

▶ let s(a) = a’s favorite item that is nobody’s top item.

Claim. For any a ∈ A and any popular matching M:

▶ M(a) is either f (a) or s(a).
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Structure of popular matchings for strict rankings
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▶ Here f (a0) = f (a1) = f (a2) = b0.

▶ And s(a0) = s(a1) = s(a2) = b1.

M is popular ⇒ M(a) ∈ {f (a) ∪ s(a)} = {b0, b1} for all a ∈ A.

▶ There is no such A-perfect matching.

▶ Hence there is no popular matching.
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Structure of popular matchings for strict rankings

1. Suppose a is matched in M to an item worse than s(a).

▶ Match a′ = M(s(a)) to f (a′) [note that s(a) ̸= f (a′)].

▶ Match a to s(a).

▶ Leave M(f (a′)) unmatched.

2. Suppose a is matched to an item strictly sandwiched between f (a) and s(a).

▶ Observe that M(a) = f (a′) for some a′ ̸= a [since M(a) /∈ {f (a), s(a)}].

▶ Match a′ to M(a).

▶ Match a to f (a).

▶ Leave M(f (a)) unmatched.

In both cases, the resulting matching is more popular than M.
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Structure of popular matchings with ties in rankings

Let E1 = {top edges in G}, i.e., ab ∈ E1 ⇐⇒ b is a top item for a.

▶ Matching M is popular ⇒ M ∩ E1 is a maximum matching in
the top subgraph G1 = (A ∪ B,E1).

▶ What are the other edges in a popular matching M?

Call an item b non-critical if:

▶ b is left unmatched in some maximum matching in G1.

For each a ∈ A:

▶ let s(a) = {a’s favorite non-critical items};

▶ let f (a) = {a’s top items}.

M is popular ⇒ M(a) ∈ f (a) ∪ s(a) for all a ∈ A.
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An efficient algorithm

———————————————————————————————

The popular matching algorithm

▶ Let E ′ = {ab : a ∈ A and b ∈ f (a) ∪ s(a)}.
▶ Find a maximum matching M in the graph G ′ = (A ∪ B,E ′).

▶ If M is not A-perfect then return “no popular matching”.

▶ Else return an A-perfect matching M∗ in G ′ that maximizes |M∗ ∩ E1|.

———————————————————————————————

The algorithm finds a maximum matching M in the subgraph G ′ that has

▶ all edges ab s.t. b ∈ f (a) ∪ s(a).

▶ M is A-perfect ⇒ M∗ is popular.

▶ M is not A-perfect ⇒ G has no popular matching.
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An interesting example

The popular matching algorithm works when ties are allowed in preferences.

▶ However it does not work when preferences are partial orders.

▶ For partial order preferences, indifference is not necessarily transitive.

Consider the following instance on the complete bipartite graph with
A = {a1, a2, a3} and B = {b1, b2, b3}.

a1 b1 ≻ b3; b2 ≻ b3.

a2 b1 ≻ b3.

a3 b2 ≻ b1; b2 ≻ b3.

In M = {a1b1, a2b2, a3b3}, we have M(a) ∈ f (a) ∪ s(a) ∀a ∈ A.

▶ But N ≻ M where N = {a1b1, a2b3, a3b2}.

▶ a3 prefers N to M while a1 and a2 are indifferent between M and N.
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Random popular matchings

Consider a “random” instance G = (A ∪ B,E).

▶ Every a picks its ranking independently and uniformly at random from the
set of all permutations of B.

▶ Thus every a ∈ A has a complete and strict ranking.

If |B| > (1.42 · |A|) ⇒ popular matchings almost surely exist [Mahdian, 2006].

▶ In fact, there is a phase transition at 1.42.

▶ So |B| < (1.42− δ) · |A| where δ > 0 is some constant
⇒ almost surely the instance has no popular matching.
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Mixed matchings

A mixed matching is a probability distribution over matchings, i.e.,

Π = {(M0, p0), . . . , (Mk , pk)},

where M0, . . . ,Mk are matchings in G and
∑

i pi = 1 and pi ≥ 0 ∀i .

▶ A mixed matching is a lottery over matchings.

For any two matchings M and N:

let ∆(M,N) = # of votes for M − # of votes for N.

▶ Define ∆(Π,N) =
∑

i pi ·∆(Mi ,N).

Definition. A mixed matching Π is popular if ∆(Π,N) ≥ 0 ∀ matchings N.
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Popular mixed matchings

Do popular mixed matching always exist?

▶ Yes [K, Mestre, and Nasre, 2011].

We model this as a 2-player game.

Mj

Mi

M1

M1

∆(Mi ,Mj)

We need to show ∃Π such that ∆(Π,N) ≥ 0 for all matchings N.
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Popular mixed matchings

Consider the following game where the row player chooses a probability
distribution ⟨p1, . . . , pk⟩ over the rows.

▶ The column player chooses a column N.

Mj

Mi

M1

M1

∆(Mi ,Mj)

▶ Value of the game is ∆(Π,N) =
∑

i pi ·∆(Mi ,N).
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Popular mixed matchings

Row player is the max-player and column player is the min-player.

Claim. maxΠ minN ∆(Π,N) ≤ 0.

▶ Observe that ∆(Π,Π) =
∑

i

∑
j pipj ·∆(Mi ,Mj) = 0.

(since ∆(Mi ,Mj) = −∆(Mj ,Mi ) ∀i , j)

▶ Thus there exists a matching N such that ∆(Π,N) ≤ 0.

Hence for every Π there exists some N such that ∆(Π,N) ≤ 0.

▶ So maxΠ minN ∆(Π,N) ≤ 0.
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Popular mixed matchings

Consider the dual game where the column player chooses a probability
distribution ⟨p′

1, . . . , p
′
k⟩ over the columns first.

▶ The row player chooses a row N ′.

Mj

Mi

M1

M1

∆(Mi ,Mj)

▶ Value of the dual game is ∆(N ′,Π′) =
∑

i p
′
i ·∆(N ′,Mi ).
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Popular mixed matchings

Recall that the column player is the min-player and the row player is the
max-player.

Claim. minΠ′ maxN′ ∆(N ′,Π′) ≥ 0.

▶ Since ∆(Π′,Π′) =
∑

i

∑
j p

′
i p

′
j ·∆(Mi ,Mj) = 0:

▶ there exists a matching N′ such that ∆(N′,Π′) ≥ 0.

Hence for any Π′ there exists an N ′ such that ∆(N ′,Π′) ≥ 0.

▶ So minΠ′ maxN′ ∆(N ′,Π′) ≥ 0.
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Popular mixed matchings

We know from von Neumann’s minimax theorem that

max
Π

min
N

∆(Π,N) = min
Π′

max
N′

∆(N ′,Π′).

▶ Thus 0 ≥ the left side = the right side ≥ 0.

▶ Hence maxπ minN ∆(Π,N) = 0, i.e., ∃Π s.t. ∆(Π,N) ≥ 0 ∀ matchings N.

Thus popular mixed matchings always exist.

▶ Such a mixed matching can be computed efficiently as a popular fractional
matching.
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When cardinality is more important than popularity

Suppose the most important attribute of a matching is its cardinality.
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So it is only maximum matchings that are admissible solutions.

What we seek is a maximum matching M such that:

▶ no maximum matching defeats M in their head-to-head election.

▶ a smaller matching may defeat M.
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When cardinality is more important than popularity

The cardinality of the matching is important in many applications:

▶ assigning staff to hospitals in emergencies such as a pandemic;

▶ allocation problems for humanitarian organizations;

▶ assigning medical students to residencies.

We seek a maximum matching in these applications.

▶ Among maximum matchings, we want a “best” one.

▶ Thus we seek popularity within the set of maximum matchings.
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Popular assignments

Our Problem. Find a popular maximum matching in G , if one exists.

By adding appropriate dummy agents and dummy items to G :

▶ we can assume wlog that G has a perfect matching, i.e., an assignment.

———————————————————————————————

The popular assignment problem

▶ Given an instance G = (A ∪ B,E), does G admit a popular assignment?

———————————————————————————————

▶ This generalizes the popular matching problem.
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Popular assignments

▶ Add |A| dummy items (one per agent as its last choice).

▶ Add |B| dummy agents that are adjacent to all the |A ∪ B| items.

▶ All neighbors are tied for any dummy agent.

Then any matching M ⇝ a perfect matching M̃.

▶ ∆(M,N) = ∆(M̃, Ñ) for any pair of matchings M and N.

Thus the popular assignment problem generalizes the popular matching
problem.
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Popular assignments

For 2-sided preferences:

▶ our algorithm in the red/blue graph

−→ the popular maximum matching algorithm in the colorful graph.

For 1-sided preferences:

▶ it is not clear how to generalize the popular matching algorithm to the
popular assignment algorithm.

No combinatorial characterization of popular assignments is known.
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The LP-method for popular assignments

Given an assignment M, define edge weights in G as follows. For any edge ab:

wtM(ab) =


1 if a prefers b to its partner;

−1 if a prefers its partner to b;

0 otherwise.

Observation. For any assignment N:

wtM(N) =
∑
e∈N

wtM(e) = # of votes for N − # of votes for M.

▶ M is popular ⇐⇒ wtM(N) ≤ 0 for all assignments N in G .

Since wtM(M) = 0:

▶ M is popular ⇐⇒ M is a max-weight assignment under wtM .

T. Kavitha Popular Assignments and Extensions



The LP-method

LP for max-weight assignment:

max
∑
e∈E

wtM(e) · xe

∑
e∈δ(v)

xe = 1 ∀v ∈ A ∪ B and xe ≥ 0 ∀e ∈ E .

M is popular ⇐⇒ the optimal value of this LP is 0.

The dual LP:

min
∑
v

αv

αa + αb ≥ wtM(ab) ∀ab ∈ E

M is popular ⇐⇒ the optimal value of the dual LP is 0.
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Dual certificate

Claim. M is popular ⇐⇒ ∃ dual feasible solution α⃗ such that
∑

v αv = 0 and

▶ αa ∈ {0, 1, 2, . . . , n − 1} for all a ∈ A;

▶ αb ∈ {0,−1,−2, . . . ,−(n − 1)} for all b ∈ B.

Such a solution α⃗ to the dual LP is a dual certificate for M.

▶ Let c : B → {0, 1, 2, . . . , n − 1}.

▶ For each a ∈ A: let c∗(a) = max{c(b) : b ∈ Nbr(a)}︸ ︷︷ ︸
highest color among a’s neighbors

.

▶ We can define a subgraph Gc = (A ∪ B,Ec ) of G as follows.
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The subgraph Gc
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Here c∗(a1) = 2 and c∗(a2) = 1.

▶ Each a keeps edges to its most preferred neighbors in color c∗(a).

▶ Furthermore, a keeps edges to its most preferred neighbors in color
c∗(a)− 1 if they are preferred to all neighbors in color c∗(a).

▶ The bold edges are in Ec and the dashed edges are not.
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The right function c ⇐⇒ there is a popular assignment
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G has a popular assignment if and only if

▶ ∃c : B → {0, 1, 2, . . . , n − 1} s.t. Gc admits a perfect matching M;

▶ αb = −c(b) for b ∈ B and αa = c(M(a)) for a ∈ A is M’s dual certificate.

Problem: Find a right function c : B → {0, 1, 2, . . . , n − 1}, if there is one.
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The popular assignment algorithm

Input: G = (A ∪ B,E) where |A| = |B| = n.

1. Initialize c(b) = 0 for every b ∈ B.

2. Compute a maximum matching M in the subgraph Gc .

3. If M is perfect then return M.

4. For every unmatched b ∈ B do: c(b) = c(b) + 1.

5. If c(b) ≤ n − 1 for all b ∈ B then go back to Step 2; else return “no”.

The above algorithm solves the popular assignment problem
[K, Király, Matuschke, Schlotter, and Schmidt-Kraepelin, 2022].
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Analysing the popular assignment algorithm

Eventually, either a perfect matching M in Gc is returned
or c(b) = n for some b ∈ B.

▶ If M is returned: αb = −c(b) for b ∈ B and αa = c(M(a)) for a ∈ A is

M’s dual certificate.

▶ Suppose c(b) = n for some b ∈ B.

Let β⃗ be a dual certificate for some popular assignment in G .

▶ We show c(b) ≤ |β(b)| for all b ∈ B where c(b) is b’s c-value at the end.

This means:

n = c(b) ≤ |β(b)| ≤ n − 1, a contradiction.

▶ Our algorithm says “no” ⇒ there is indeed no popular assignment in G .
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A popular matching algorithm

Input: G = (A ∪ B,E) where |A| = |B| = n.

1. Initialize c(b) = 0 for every b ∈ B.

2. Compute a maximum matching M in the subgraph Gc .

3. If M is perfect then return M.

4. For every unmatched b ∈ B do: c(b) = c(b) + 1.

5. If c(b) ≤ n − 1 for all b ∈ B then go back to Step 2; else return “no”.

Remark. Suppose “c(b) ≤ n − 1” in step 5 is replaced with “c(b) ≤ 1”.

▶ Then the resulting algorithm solves the popular matching problem.

▶ This algorithm works for partial order preferences as well.
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Popularity with forced edges

Given a set {e1, . . . , ek} in G :

▶ Is there a popular assignment in G that contains all these k edges?

Our algorithm can be easily updated to solve the above problem.

▶ Suppose there is no such popular assignment.

▶ Find a popular assignment that contains as many of these k edges as
possible.

This problem is NP-hard.

▶ Thus it is NP-hard to find a min-cost popular assignment when there is a
function cost : E → {0, 1}.

▶ This hardness holds even when all agents have strict rankings.
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Liquid democracy

r

a b

c d

first rank

second rank

third rank

▶ There are n voters.

▶ Every voter considers its
in-neighbors to be better informed
than itself.

▶ It seeks to delegate its vote to an
in-neighbor.

▶ It has preferences over its
in-neighbors.

▶ Delegation cycles are forbidden.

E.g., a considers b as her best in-neighbor and c as her second best in-neighbor.

▶ For convenience, a dummy vertex r has been added as the root.

Problem. Find an optimal arborescence as per vertex preferences.
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Comparing two arborescences

A vertex prefers the arborescence where it has a more preferred in-neighbor.

▶ Let us compare the solid arborescence A with the dashed arborescence A′.

r

a b

c d

▶ a prefers A′ to A since it prefers c to r ;

▶ b is indifferent between A and A′;

▶ c prefers A′ to A since it prefers d to a;

▶ d prefers A to A′ since it prefers c to r ;

▶ so A′ gets 2 votes and A gets 1 vote, thus A′ ≻ A.

Arborescence A is popular if there is no arborescence A′ such that A′ ≻ A.

▶ A popular arborescence represents a stable way of delegating votes.
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Popular arborescences

Question. Does an instance G = (V ∪ {r},E) have a popular arborescence?
If so, find one.

▶ Our popular assignment algorithm can be extended to solve this problem.

—————————————————————————————————

Matroids [Whitney, 1935]

Combinatorial structures that generalize the notion of linear independence in
matrices.

▶ Assignments are common bases in the intersection of two partition
matroids.

▶ Arborescences are common bases in the intersection of a partition matroid
with a graphic matroid.

—————————————————————————————————
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The LP-method for popular arborescences

For any arborescence A and v ∈ V , let A(v) be the unique edge in A ∩ δ(v).

(here δ(v) is the set of v ’s incoming edges)

Given an arborescence A, define edge weights in G as follows. For any e ∈ δ(v):

wtA(e) =


1 if v prefers e to A(v);

−1 if a prefers A(v) to e;

0 otherwise.

Observation. For any arborescence A′:

wtA(A
′) =

∑
e∈A′

wtA(e) = # of votes for A′ − # of votes for A.

▶ A is popular ⇐⇒ wtA(A
′) ≤ 0 for all arborescences A′ in G .
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The LP-method for popular arborescences

Since wtA(A) = 0:

▶ A is popular ⇐⇒ A is a max-weight arborescence under wtA.

LP for max-weight arborescence:

max
∑
e∈E

wtA(e) · xe

∑
e∈S

xe ≤ rank(S) ∀S ⊆ E

∑
e∈δ(v)

xe = 1 ∀v ∈ V and xe ≥ 0 ∀e ∈ E .

For any S ⊆ E : rank(S) is the maximum size of an acyclic subset of S in G .

▶ A is a popular arborescence ⇐⇒ the optimal value of this LP is 0.
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The dual LP

min

∑
v∈V

αv +
∑
S⊆V

rank(S) · yS


∑
S :e∈S

yS + αv ≥ wtA(e) ∀e ∈ δ(v), ∀v ∈ V

yS ≥ 0 ∀S ⊆ E .

A is popular ⇐⇒ the optimal value of the dual LP is 0.

▶ ∃ an integral optimal solution (y⃗ , α⃗) s.t. {S : yS > 0} is a chain.

▶ A chain C = {C0,C1, . . . ,Ck} has the form C0 ⊂ C1 ⊂ · · · ⊂ Ck .

Moreover, we will have a chain ∅ ⊂ C0 ⊂ · · · ⊂ Ck = E .
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Dual certificates

Our chain C induces a coloring c : E → {0, 1, 2, . . . , k} where

▶ c(e) = the index i such that e ∈ Ci \ Ci−1.

▶ For each v ∈ V : let c∗(v) = max{c(e) : e ∈ δ(v)}︸ ︷︷ ︸
highest color among v ’s incoming edges

.

We define EC ⊆ E : for any v ∈ V , edge e ∈ δ(v) is in EC if:

▶ either c(e) = c∗(v) and e ⪰v e′ for all e′ ∈ δ(v) with color c∗(v)

▶ or c(e) = c∗(v)− 1 and (i) e ⪰v e′ for all e′ ∈ δ(v) with color c∗(v)− 1

and (ii) e ≻v e′ for all e′ ∈ δ(v) with color c∗(v).
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Dual certificates

Arborescence A is popular ⇐⇒ ∃ C = {C0, . . . ,Ck} such that

▶ ∅ ⊂ C0 ⊂ · · · ⊂ Ck = E ;

▶ A ⊆ EC ;

▶ span(A ∩ Ci ) = Ci for all i where

for any S ⊆ E : span(S) = {e : rank(S ∪ {e}) = rank(S).

The dual certificate (y⃗ , α⃗) for A will be:

▶ Let yS = 1 ∀S ∈ C and yS = 0 for all other S .

▶ Let αv = −(# of sets in C that A(v) belongs to).

Problem. Find an arborescence A and chain C if there exist such an A and C.
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The popular arborescence algorithm

Input: G = (V ∪ {r},E) where |V | = n.

1. Initialize k = 0 and C0 = E .

2. Compute a branching I ⊆ EC that lex-maximizes (|I ∩ C0|, . . . , |I ∩ Ck |).

3. If |I ∩ Ci | = rank(Ci ) ∀i then return I .

4. Let j be the minimum index such that |I ∩ Cj | < rank(Cj).

5. Update Cj = span(I ∩ Cj).

6. If j = k then

▶ If k ≤ n − 1 then k = k + 1, Ck = E , and C = C ∪ {E}; go back to step 2.

▶ Else return “no”.

The above algorithm solves the popular arborescence problem
[K, Makino, Schlotter, and Yokoi, 2024].
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4. T. Kavitha, T. Király, J. Matuschke, I. Schlotter, U. Schmidt-Kraepelin.
The popular assignment problem: when cardinality is more important than
popularity. In SODA 2022.

5. T. Kavitha, K. Makino, I. Schlotter, Y. Yokoi. Arborescences, colorful
forests, and popularity. In SODA 2024.

——————————————————————————————

Thank you! Any questions?
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