RANDOM PLANAR GRAPHS

MathStic day combinatorics and probability

Benedikt Stufler Technische Universität Wien <u>dmg.tuwien.ac.at/stufler</u>

RANDOM PLANAR GRAPHS

MathStic day combinatorics and probability

Benedikt Stufler Technische Universität Wien dmg.tuwien.ac.at/stufler

DEFINITION OF PLANAR GRAPHS

Question: How many planar graphs with *n* vertices are there?

• Giménez, Noy (2009): The number g_n of planar graphs with vertices labelled from 1 to n satisfies

$$g_n \sim g n^{-7/2} \rho_G^{-n} n!$$

for constants $g, \rho_G > 0$.

• The asymptotic behaviour of the number \tilde{g}_n of unlabelled planar graphs is unknown.

NUMBER OF LABELLED PLANAR GRAPHS

- Denise, Vasconcellos, Welsh (1996): $g_n \le n!(75.8)^{n+o(n)}$, $(g_n/n!)^{1/n}$ converges
- Bender, Gao, Wormald (2002): $g_n \ge n!(26.1)^{n+o(n)}, \qquad b_n \sim bn^{-7/2}\rho_B^{-n}n!$
- Osthus, Prömel, Taraz (2003): $g_n \le n!(37.3)^{n+o(n)}$
- (Further estimates of growth constants... sorry for omitting those)
- Giménez, Noy (2009): $g_n \sim g n^{-7/2} \rho_G^{-n} n!$ by analytic integration
- Chapuy, Fusy, Kang, Shoilekova (2008): "combinatorial integration", purely combinatorial approach to get analytic specification by Giménez and Noy.
- Stufler (2019+): recover $g_n \sim g n^{-7/2} \rho_G^{-n} n!$ without integration, random walk approach, uses large deviation results by Denisov, Dieker, Shneer (2008)

Question: What are the properties of a uniform random planar graph \mathcal{P}_n with n labelled vertices?

SIMULATION OF RANDOM PLANAR GRAPHS

Fastest known sampling algorithm was invented and implemented by Fusy (2008). It generates planar graphs...

• with size in $[n(1-\epsilon), n(1+\epsilon)] \text{ in }$ expected time O(n).

• with size n in expected time $O(n^2)$.

GIANT CONNECTED COMPONENT

- McDiarmid (2008): Giant connected component, remainder admits a finite Boltzmann-Poisson Random Graph as limit
- McDiarmid (2009): Universality: in general, random graphs from proper addable minor-closed classes of graphs have a remainder with a Boltzmann-Poisson Random Graph as limit.
- Stufler (2018): Universality: Small block-stable classes of graphs. (If such a class fails to be small, the random graph is connected with high probability. See for example Stufler (2020).)

MAXIMUM DEGREE

- McDiarmid and Reed (2008):The maximum degree Δ_n satisfies whp $c_1\log n < \Delta_n < c_2\log n$ for suitable constants $0 < c_1 < c_2$.
- Drmota, Giménez, Noy, Panagiotou, Steger (2012): whp $|\Delta_n c \log n| = O(\log \log n)$ for a constant c>0.

DEGREE DISTRIBUTION

- McDiarmid, Steger, Welsh (2004): Number $d_k(n)$ of vertices of a degree k is $\Theta(n)$
- Drmota, Giménez, Noy (2011): Degree of a random vertex has a limit distribution
- Panagiotou, Steger (2011): Recovered degree distribution via different methods
- Stufler (2019+): Degree of a random vertex converges to the degree of the root of a new Uniform Infinite Planar Graph (UIPG)

LOCAL DISTANCE

 $\mathfrak{M}=$ collection of vertex-rooted locally finite unlabelled graphs $p_k:\mathfrak{M}\to\mathfrak{M}$ projection to k-neighbourhood of the root vertex

$$d_{loc}(G, H) = \frac{1}{1 + \sup\{k \in \mathbb{N}_0 | p_k(G) = p_k(H)\}\}}$$

 $(\mathfrak{M}, d_{|OC})$ is a Polish space

LOCAL CONVERGENCE: UIPG

Annealed Version (Stufler 2019+):

The uniform n-vertex planar graph \mathcal{P}_n rooted at a uniformly selected vertex v_n admits a distributional limit $\hat{\mathcal{P}}$.

We call $\hat{\mathcal{P}}$ the Uniform Infinite Planar Graph (UIPG).

LOCAL CONVERGENCE: UIPG

Annealed Version (Stufler 2019+):

The uniform n-vertex planar graph \mathcal{P}_n rooted at a uniformly selected vertex v_n admits a distributional limit $\hat{\mathcal{P}}$.

We call $\hat{\mathcal{P}}$ the Uniform Infinite Planar Graph (UIPG).

Quenched Version (Stufler 2019+):

The regular conditional law $\mathcal{L}((\mathcal{P}_n, v_n) \mid \mathcal{P}_n)$ satisfies

$$\mathcal{L}((\mathcal{P}_n, \nu_n) | \mathcal{P}_n) \xrightarrow{p} \mathcal{L}(\hat{\mathcal{P}}).$$

THE UIPG IS ALMOST SURELY RECURRENT

- (Benjamini and Schramm, 2001) Let $M < \infty$. If a random locally finite rooted graph G is a distributional limit of rooted random unbiased finite planar graphs (not necessarily uniform) with degrees bounded by M, then with probability one G is recurrent.
- (Gurel-Gurevich and Nachmias, 2013) Instead of a uniform bound on the degrees, it suffices to assume that degree of the root of G has an exponential tail.
- Consequence: the UIPG is almost surely recurrent

NON-EXHAUSTIVE LIST OF MODELS WITH LOCAL LIMITS

- Kesten's tree: Simply generated trees (Kennedy, 1975)
- UIPT: Planar Triangulations (Angel, Schramm 2003)
- UIPQ: Planar Quadrangulations (Krikun 2005)
- UIPM: Planar Maps (Ménard, Nolin 2013)
- UI3PM: 3-connected Planar Maps (Addario-Berry 2014)
- IBPM: Boltzmann Maps (Björnberg, Stefánsson 2014, Stephenson 2018)
- PSHT:Triangulations with a high genus (Budzinsky, Louf 2020)
- UIPG, UI2PG, UI2PM: Planar Graphs (S. 2019+)

Planar graphs

Connected planar graphs

2-connected planar graphs (n vertices)

2-connected planar graphs (n edges)

Weighted blow-ups of 3-connected planar graphs/maps

4-type branching processes

Weighted planar maps

Weighted non-separable planar maps

LOCAL CONVERGENCE: UI2PM

Non-separable Maps (Stufler 2019+):

The uniform n-edge 2-connected (= non-separable) planar map \mathcal{N}_n rooted at a uniformly selected corner c_n admits a novel Uniform Infinite 2-connected Planar Map (UI2PM) $\hat{\mathcal{N}}$ as quenched local limit

$$\mathcal{L}((\mathcal{N}_n, c_n) | \mathcal{N}_n) \xrightarrow{p} \mathcal{L}(\hat{\mathcal{N}}).$$

"Two steps down, one step up"

- \mathcal{M}_n consists of 2-con. core $\mathcal{N}(\mathcal{M}_n)$ and components $(\mathbf{M}_i(\mathcal{M}_n))_{1 \leq i \leq |\mathcal{N}(\mathcal{M}_n)|}$
- For the purpose of proving local convergence, we may pretend that the components are i.i.d. copies of a Boltzmann map
- Waiting time paradox: the component containing a uniformly selected corner c_n follows a <u>size-biased distribution</u>

 \mathcal{M}_n

"Two steps down, one step up"

- $\mathcal{N}(\mathcal{M}_n)$ consists of 2.9-con. core $\mathcal{R}(\mathcal{N}(\mathcal{M}_n))$ and components that substitude its edges
- For the purpose of proving local convergence, we may pretend that the components are i.i.d. copies of a Boltzmann map
- Waiting time paradox: the component containing a uniformly selected corner c_n follows a <u>size-biased distribution</u>

$$p_k(\mathcal{N}(\mathcal{M}_n), c_n^{\mathcal{N}}) = M$$

Problem: k-neighbourhood of core structure $\mathcal{R}(\mathcal{N}(\mathcal{M}_n))$ could have more edges than k-neighbourhood of $\mathcal{N}(\mathcal{M}_n)$

k=1 neighbourhood has 3 edges

k=1 neighbourhood in core has 4 edges

Induction does <u>not</u> work for <u>neighbourhoods</u>

Solution: Use <u>communities</u> instead of neighbourhoods

"Two steps down, one step up"

- $\mathcal{R}(\mathcal{N}(\mathcal{M}_{3n}))$ and $\mathcal{R}(\mathcal{N}_n)$ are distributed like mixtures \mathcal{R}_{X_n} and \mathcal{R}_{Y_n} .
- There are $\mu, a, b > 0$, h density of a 3/2-stable law, such that uniformly for $\ell \in \mathbb{N}$

$$\mathbb{P}(X_n = \ell) = \frac{1}{an^{2/3}} \left(h\left(\frac{\mu n - \ell}{an^{2/3}}\right) + o(1) \right)$$

$$\mathbb{P}(Y_n = \ell) = \frac{1}{bn^{2/3}} \left(h\left(\frac{\mu n - \ell}{bn^{2/3}}\right) + o(1) \right)$$

• For any $\epsilon>0$ there exists M,c,C>0 such that $I_n:=[\mu n-Mn^{2/3},\mu n+Mn^{2/3}]$ satisfies for all large enough n

$$\mathbb{P}(X_n \notin I_n), \mathbb{P}(Y_n \notin I_n) < \epsilon$$

and uniformly for $\ell \in I_n$

$$c < \frac{\mathbb{P}(X_n = \ell)}{\mathbb{P}(Y_n = \ell)} < C$$

"Two steps down, one step up"

"Two steps down, one step up"

Planar graphs

Connected planar graphs

2-connected planar graphs (n vertices)

2-connected planar graphs (n edges)

Weighted blow-ups of 3-connected planar graphs/maps

4-type branching processes

Weighted planar maps

Weighted non-separable planar maps

DIAMETER AND SCALING LIMITS

- (Chapuy, Fusy, Giménez, Noy) There exists a c>0 such that the diameter $D(\mathcal{P}_n)$ satisfies for each small enough $\epsilon>0$ and all $n>n_0(\epsilon)$ $\mathbb{P}(D(\mathcal{P}_n)\not\in [n^{1/4-\epsilon},n^{1/4+\epsilon}])<\exp(-n^{c\epsilon}).$
- Open problem: What happens when we rescale distances by $n^{-1/4}$?

500k vertex simply generated tree in the universality class of the Brownian continuum random tree. Colours correspond to the height of the vertex.

Simulation: GRANT (Generate RANdom Trees), available here: http://github.com/BenediktStufler/grant

Thm. (Aldous, 1991) The uniform labelled tree T_n with its graph distance d_{T_n} and the uniform measure μ_n on its vertices satisfies

$$(T_n, \frac{1}{2\sqrt{n}}d_{T_n}, \mu_{T_n}) \to (T, d_T, \mu_T)$$

for a limiting random measured metric space (T, d_T, μ_T) .

Thm. (Chassaing and Schaeffer, 2004) The height $H(Q_n)$ of a uniform random quadrangulation with n faces admits the width r of Aldous' one-dimensional ISE as scaling limit:

$$(8n/9)^{-1/4}H(Q_n) \to r$$

Thm. (Chassaing and Schaeffer, 2004) The height $H(Q_n)$ of a uniform random quadrangulation with n faces admits the width r of Aldous' one-dimensional ISE as scaling limit:

$$(8n/9)^{-1/4}H(Q_n) \to r$$

Miermont (2013), Le Gall (2013): GHP scaling limit called the Brownian map (M, d_M, μ_M) :

$$(Q_n, (8n/9)^{-1/4} d_{Q_n}, \mu_{Q_n}) \to (M, d_M, \mu_M)$$

Simulation: SIMTRIA (Generate SIMple TRIAngulations): http://github.com/BenediktStufler/simtria, SCENT (Calculate closeness centrality): http://github.com/BenediktStufler/scent Mathematica, Blender

Question: What are the properties of a uniform random spanning tree of a uniform random planar graph \mathcal{P}_n with n labelled vertices?

Uniform spanning tree of a uniform planar map with 1M edges

Histogram for the height of the UST of a uniform random planar **map** with n=10000 edges

Histogram for the height of the UST of a uniform random planar **map** with n=100000 edges

Histogram for the height of the UST of a uniform random planar **map** with n=500000 edges

Histogram for the height of the UST of a uniform random planar **map** with n=1000000 edges

h(n): average height of **simulations** of UST of uniform planar **map** with n edges.

$$\alpha(n) = \log(\frac{h(10n)}{h(n)})/\log n$$

n	10^3	10^4	10^5	10^6	10^7	10^8
h(n)	31.2812	93.8020	273.9275	792.7325	2285.815	6585.556
alpha(n)	0.476927	0.465423	0.461491	0.459914	0.459551	

Non-rigorous Knizhnik-Polyakov-Zamolodchikov (KPZ) formula predicts:

$$\alpha = \frac{5 - \sqrt{10}}{4} = 0.4594305...$$

Many thanks to Nathanaël Berestycki for explaining this to me.

n	10^3	10^4	10^5	10^6	10^7	10^8
h(n)	31.2812	93.8020	273.9275	792.7325	2285.815	6585.556
alpha(n)	0.4 76927	0.4 65423	0.4 6 49	0.459 914	0.459 551	

