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DEFINITION OF PLANAR GRAPHS



Question: How many planar graphs with  
vertices are there?

n

• Giménez, Noy (2009): The number  of planar graphs with 
vertices labelled from  to  satisfies 

 
for constants .

• The asymptotic behaviour of the number  of unlabelled planar 
graphs is unknown.

gn
1 n
gn ∼ gn−7/2ρ−n

G n!
g, ρG > 0

g̃n



NUMBER OF LABELLED PLANAR GRAPHS
• Denise, Vasconcellos, Welsh (1996):  ,    converges

• Bender, Gao, Wormald (2002): 

• Osthus, Prömel, Taraz (2003): 

• (Further estimates of growth constants... sorry for omitting those)

• Giménez, Noy (2009):  by analytic integration

• Chapuy, Fusy, Kang, Shoilekova (2008): "combinatorial integration", purely combinatorial 
approach to get analytic specification by Giménez and Noy.

• Stufler (2019+) : recover  without integration, random walk approach, 
uses large deviation results by Denisov, Dieker, Shneer (2008)

gn ≤ n!(75.8)n+o(n) (gn/n!)1/n

gn ≥ n!(26.1)n+o(n), bn ∼ bn−7/2ρ−n
B n!

gn ≤ n!(37.3)n+o(n)

gn ∼ gn−7/2ρ−n
G n!

gn ∼ gn−7/2ρ−n
G n!



Question: What are the properties of a uniform 
random planar graph  with  labelled vertices?𝒫n n



SIMULATION OF RANDOM PLANAR GRAPHS
Fastest known sampling algorithm was invented and 
implemented by Fusy (2008). It generates planar graphs...

• with size in
 in 

expected time .

• with size  in expected 
time .

[n(1 − ϵ), n(1 + ϵ)]
O(n)

n
O(n2)

Uniform planar graph 
with roughly 10k vertices



GIANT CONNECTED COMPONENT
• McDiarmid (2008): Giant connected component, remainder 

admits a finite Boltzmann-Poisson Random Graph as limit

• McDiarmid (2009): Universality: in general, random graphs from 
proper addable minor-closed classes of graphs have a remainder 
with a Boltzmann-Poisson Random Graph as limit.

• Stufler (2018): Universality: Small block-stable classes of graphs. (If 
such a class fails to be small, the random graph is connected with 
high probability. See for example Stufler (2020).)



MAXIMUM DEGREE

• McDiarmid and Reed (2008): The maximum 
degree  satisfies whp  
for suitable constants .

• Drmota, Giménez, Noy, Panagiotou, Steger 
(2012):  whp  for 
a constant 

Δn c1 log n < Δn < c2 log n
0 < c1 < c2

|Δn − c log n | = O(log log n)
c > 0.



• McDiarmid, Steger,  Welsh (2004): Number  of vertices of a 
degree  is 

• Drmota, Giménez, Noy (2011): Degree of a random vertex has a 
limit distribution

• Panagiotou, Steger (2011): Recovered degree distribution via different 
methods

• Stufler (2019+): Degree of a random vertex converges to the degree 
of the root of a new Uniform Infinite Planar Graph (UIPG)

dk(n)
k Θ(n)

DEGREE DISTRIBUTION



LOCAL DISTANCE
𝔐 = collection of vertex-rooted locally finite unlabelled graphs

(𝔐, dloc) is a Polish space

pk : 𝔐 → 𝔐 projection to k-neighbourhood of the root vertex



LOCAL CONVERGENCE: UIPG

selected vertex vn admits a distributional limit 𝒫̂ .

Annealed Version (Stufler 2019+):

The uniform n-vertex planar graph 𝒫n rooted at a uniformly

We call 𝒫̂ the Uniform Infinite Planar Graph (UIPG).



LOCAL CONVERGENCE: UIPG

selected vertex vn admits a distributional limit 𝒫̂ .

Annealed Version (Stufler 2019+):

The uniform n-vertex planar graph 𝒫n rooted at a uniformly

We call 𝒫̂ the Uniform Infinite Planar Graph (UIPG).

Quenched Version (Stufler 2019+):

ℒ((𝒫n, vn) |𝒫n)
p ℒ(𝒫̂) .

The regular conditional law ℒ((𝒫n, vn) |𝒫n) satisfies



THE UIPG IS ALMOST SURELY RECURRENT
• (Benjamini and Schramm, 2001) Let . If a 

random locally finite rooted graph  is a distributional 
limit of rooted random unbiased finite planar graphs 
(not necessarily uniform) with degrees bounded by , 
then with probability one  is recurrent.

• (Gurel-Gurevich and Nachmias, 2013) Instead of a 
uniform bound on the degrees, it suffices to assume that 
degree of the root of  has an exponential tail.

• Consequence: the UIPG is almost surely recurrent

M < ∞
G

M
G

G



NON-EXHAUSTIVE LIST OF MODELS WITH 
LOCAL LIMITS

• Kesten's tree: Simply generated trees (Kennedy, 1975)

• UIPT: Planar Triangulations (Angel, Schramm 2003)

• UIPQ: Planar Quadrangulations (Krikun 2005)

• UIPM: Planar Maps (Ménard, Nolin 2013)

• UI3PM: 3-connected Planar Maps (Addario-Berry 2014)

• IBPM: Boltzmann Maps (Björnberg, Stefánsson 2014, 
Stephenson 2018)

• PSHT: Triangulations with a high genus (Budzinsky, Louf 2020)

• UIPG, UI2PG, UI2PM: Planar Graphs (S.  2019+)



Planar graphs

Connected planar 
graphs

2-connected 
planar graphs
(n vertices)

2-connected 
planar graphs

(n edges)

Weighted 
blow-ups of 
3-connected

planar 
graphs/maps

Weighted 
non-separable
planar maps

Weighted planar 
maps

4-type branching 
processes



LOCAL CONVERGENCE: UI2PM

Non-separable Maps (Stufler 2019+):

The uniform -edge 2-connected (= non-separable) 
planar map  rooted at a uniformly selected corner  
admits a novel Uniform Infinite 2-connected Planar Map 
(UI2PM)  as quenched local limit

n
𝒩n cn

𝒩̂

ℒ((𝒩n, cn) |𝒩n)
p ℒ(𝒩̂) .



"2.9-connected"-
core ℛ(𝒩n)

Planar map ℳn

NEW NON-BIJECTIVE PROOF METHOD

"Two steps down, one step up"

Non-separable
planar map 𝒩n

Non-separable
core 𝒩(ℳn)

"2.9-connected"-
core ℛ(𝒩(ℳn))



𝒩(ℳn)

ℳn

•  consists of 2-con. core  and components 

• For the purpose of proving local convergence, we may pretend that the 
components are i.i.d. copies of a Boltzmann map

• Waiting time paradox: the component containing a uniformly selected 
corner  follows a size-biased distribution

ℳn 𝒩(ℳn) (𝖬i(ℳn))1≤i≤|𝒩(ℳn)|

cn

NEW NON-BIJECTIVE PROOF METHOD



ℳn 𝒩(ℳn)

cn

pk(ℳn, cn) = M



ℳn

𝒩(ℳn)

cn



"2.9-connected"-
core ℛ(𝒩n)

Planar map ℳn

NEW NON-BIJECTIVE PROOF METHOD

"Two steps down, one step up"

Non-separable
planar map 𝒩n

Non-separable
core 𝒩(ℳn)

"2.9-connected"-
core ℛ(𝒩(ℳn))



•  consists of 2.9-con. core  and components that 
substitude its edges

• For the purpose of proving local convergence, we may pretend that the 
components are i.i.d. copies of a Boltzmann map

• Waiting time paradox: the component containing a uniformly selected 
corner  follows a size-biased distribution

𝒩(ℳn) ℛ(𝒩(ℳn))

cn

NEW NON-BIJECTIVE PROOF METHOD



c𝒩
n

ℛ(𝒩(ℳn))𝒩(ℳn)

pk(𝒩(ℳn), c𝒩
n ) = M



Problem: -neighbourhood of core structure  could 
have more edges than -neighbourhood of 
k ℛ(𝒩(ℳn))

k 𝒩(ℳn)

Induction does not work for neighbourhoods

Solution: Use communities instead of neighbourhoods



"2.9-connected"-
core ℛ(𝒩n)

Planar map ℳn

NEW NON-BIJECTIVE PROOF METHOD

"Two steps down, one step up"

Non-separable
planar map 𝒩n

Non-separable
core 𝒩(ℳn)

"2.9-connected"-
core ℛ(𝒩(ℳn))



•  and  are distributed like mixtures  and .

• There are ,  density of a -stable law, such that uniformly for  

 

• For any  there exists  such that 
satisfies for all large enough  

 
and uniformly for  

ℛ(𝒩(ℳ3n)) ℛ(𝒩n) ℛXn
ℛYn

μ, a, b > 0 h 3/2 ℓ ∈ ℕ

ℙ(Xn = ℓ) =
1

an2/3 (h ( μn − ℓ
an2/3 ) + o(1))

ℙ(Yn = ℓ) =
1

bn2/3 (h ( μn − ℓ
bn2/3 ) + o(1))

ϵ > 0 M, c, C > 0 In := [μn − Mn2/3, μn + Mn2/3]
n

ℙ(Xn ∉ In), ℙ(Yn ∉ In) < ϵ
ℓ ∈ In

c <
ℙ(Xn = ℓ)
ℙ(Yn = ℓ)

< C

NEW NON-BIJECTIVE PROOF METHOD



"2.9-connected"-
core ℛ(𝒩n)

Planar map ℳn

NEW NON-BIJECTIVE PROOF METHOD

"Two steps down, one step up"

Non-separable
planar map 𝒩n

Non-separable
core 𝒩(ℳn)

"2.9-connected"-
core ℛ(𝒩(ℳn))



"2.9-connected"-
core ℛ(𝒩n)

Planar map ℳn

NEW NON-BIJECTIVE PROOF METHOD

"Two steps down, one step up"

Non-separable
planar map 𝒩n

Non-separable
core 𝒩(ℳn)

"2.9-connected"-
core ℛ(𝒩(ℳn))



Planar graphs

Connected planar 
graphs

2-connected 
planar graphs
(n vertices)

2-connected 
planar graphs

(n edges)

Weighted 
blow-ups of 
3-connected

planar 
graphs/maps

Weighted 
non-separable
planar maps

Weighted planar 
maps

4-type branching 
processes



DIAMETER AND SCALING LIMITS

• (Chapuy, Fusy, Giménez, Noy) There exists a  
such that the diameter  satisfies for each small 
enough  and all  

.

• Open problem: What happens when we rescale 
distances by ?

c > 0
D(𝒫n)

ϵ > 0 n > n0(ϵ)
ℙ(D(𝒫n) ∉ [n1/4−ϵ, n1/4+ϵ]) < exp(−ncϵ)

n−1/4



SCALING LIMITS

Simulation: GRANT (Generate RANdom Trees), available here: http://github.com/BenediktStufler/grant

500k vertex simply generated tree in 
the universality class of the Brownian 
continuum random tree. Colours 
correspond to the height of the 
vertex.



SCALING LIMITS

Uniform labelled tree with 
1M vertices. Colours 
correspond to closeness 
centrality of the vertex.



SCALING LIMITS
Thm. (Aldous, 1991) The uniform labelled tree  with its 
graph distance  and the uniform measure  on its 
vertices satisfies

Tn
dTn

μn

(Tn,
1

2 n
dTn

, μTn
) → (T, dT, μT)

for a limiting random measured metric space .(T, dT, μT)



SCALING LIMITS
Thm. (Chassaing and Schaeffer, 2004) The height  of a 
uniform random quadrangulation with  faces admits the 
width  of Aldous' one-dimensional ISE as scaling limit:

H(Qn)
n

r

(8n/9)−1/4H(Qn) → r



SCALING LIMITS

(8n/9)−1/4H(Qn) → r

Miermont (2013), Le Gall (2013): GHP scaling limit called 
the Brownian map :(M, dM, μM)

(Qn, (8n/9)−1/4dQn
, μQn

) → (M, dM, μM)

Thm. (Chassaing and Schaeffer, 2004) The height  of a 
uniform random quadrangulation with  faces admits the 
width  of Aldous' one-dimensional ISE as scaling limit:

H(Qn)
n

r



Uniform simple 
triangulation of the 
sphere with 1M faces

Simulation: 	 SIMTRIA (Generate SIMple TRIAngulations): http://github.com/BenediktStufler/simtria,  
	 	 	 SCENT (Calculate closeness centrality): http://github.com/BenediktStufler/scent 
	 	 	 Mathematica, Blender

http://www.apple.com
http://github.com/BenediktStufler/scent


UNIFORM SPANNING TREE



UNIFORM SPANNING TREE

Question: What are the properties of a uniform 
random spanning tree of a uniform random planar 
graph  with  labelled vertices?𝒫n n



UNIFORM SPANNING TREE

Uniform spanning tree 
of a uniform planar 
map with 1M edges



UNIFORM SPANNING TREE

Histogram for the height of the UST of a uniform 
random planar map with  edges n = 10000



UNIFORM SPANNING TREE

Histogram for the height of the UST of a uniform 
random planar map with  edges n = 100000



UNIFORM SPANNING TREE

Histogram for the height of the UST of a uniform 
random planar map with  edges n = 500000



UNIFORM SPANNING TREE

Histogram for the height of the UST of a uniform 
random planar map with  edges n = 1000000



UNIFORM SPANNING TREE
: average height of simulations of UST of uniform planar map

with  edges.
h(n)

n

α(n) = log(
h(10n)
h(n)

)/log n

n 10^3 10^4 10^5 10^6 10^7 10^8

h(n) 31.2812 93.8020 273.9275 792.7325 2285.815 6585.556

alpha(n) 0.476927 0.465423 0.461491 0.459914 0.459551



Non-rigorous Knizhnik-Polyakov-Zamolodchikov (KPZ) formula predicts: 

UNIFORM SPANNING TREE

n 10^3 10^4 10^5 10^6 10^7 10^8

h(n) 31.2812 93.8020 273.9275 792.7325 2285.815 6585.556

alpha(n) 0.476927 0.465423 0.461491 0.459914 0.459551

α =
5 − 10

4
= 0.4594305...

Many thanks to Nathanaël Berestycki for explaining this to me.



THANKS FOR YOUR 
ATTENTION

Thanks for your attention.


