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The problem in this talk: a supervised learning task
Given a dataset

D = {(yν , xν)}nν=1, (yν , xν) ∼ P(Y×Rd) i.i.d.

construct a predictor in the form

ŷ = ŷ(x; θ̂), θ̂ ∈ Rp

where θ̂ has to be found by minimizing some empirical risk function,

θ̂ = arg min
θ∈Rp

[
1
n

n∑
ν=1

ℓ(yν , xν ;θ)

loss

+ λ∥θ∥2

reg.

]
For example

(yν , xν) = e.g.

+1,

 or

−1,

 =⇒

x ∈ Rd

u = erf(Fx) ∈ Rp

ŷ = sign(θ⊤u)
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θ̂ = arg min
θ∈Rp

[
1
n

n∑
ν=1

ℓ(yν , xν ;θ)

loss

+ λ∥θ∥2

reg.

]

We are interested in the statistics of θ̂ over the ensemble induced by P as

n, d, p → +∞ with n/d = Θ(1) p/d = Θ(1)

and in particular in its asymptotic performance

ϵℓ:=lim
n

1
n

n∑
ν=1

ℓ(yν ,xν ;θ̂), ϵt :=lim
n

1
n

n∑
ν=1

I
(
yν ̸=ŷ(xν ;θ̂)

)
, ϵg :=E

[
I
(
y ̸=ŷ(x;θ̂)

)]
.
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The problem in this talk: a supervised learning task

A very large number of works focused on this setting. The theoretical analysis goes through
modeling choices of different ingredients.

■ The “architecture” through the design of risk/predictor.

■ The optimization algorithm adopted to find θ̂.

■ The dataset structure.

A Leitmotif of the theoretical investigations in Statistics and Statistical Physics since
pioneering works, has been a Gaussian design for the covariates {xν}ν :
■ xν ∼ P where P is a Gaussian distribution or a Gaussian mixture, possibly in presence of

correlation;
Mei andMontanari (2022); Gerace et al. (2020); Mignacco et al. (2020); Baldassi et al. (2020); Loureiro et al. (2021).. .

■ a Gaussian Equivalence Principle allows an effectively Gaussian description.
Montanari et al. (2019); Mei andMontanari (2022); Goldt et al. (2020,2022).. .

Are these Gaussian assumptions “good enough”?
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Hints of Gaussian equivalence

Gaussian equivalence hypothesis:

P(x) =⇒ N(µ,Σ), µ = E[x], Σ = E[xx⊺] ?

Theorem (informal)
Hu and Lu (2022); Montanari and Saeed (2022); Dandi, Stephan, Krzakala, Loureiro, Zdeborová (2023)

In an ERM task, training loss and test error are universal and corresponding to a
Gaussian equivalent setting as long as the features are such that

sup
∥v∥≤1

∥v⊺x∥ψ2 < +∞, lim
d

sup
v

|E[f (v⊺x)]− E[f (v⊺z)]| = 0

for f bounded Lipschitz and z ∼ N(µ,Σ).

Z The subgaussianity condition is not an artifact of the proof: it is a necessary condition!

See also:Donoho and Tanner (2009); Bordelon, Canatar, Pehlevan (2020); Spigler, Geiger,Wyart (2020); Jacot, Şimşek, Spadaro,

Hongler, Gabriel (2020); Seddik, Louart, Couillet, and Tamaazousti (2020); Loureiro, Gerbelot, Cui, Goldt, Krzakala, Mézard, Zdeborová

(2021); Loureiro, Sicuro, Gerbelot, Pacco, Krzakala, Zdeborová (2021)

3 / 19



Relevance of HOCs

Refinetti, Ingrosso, Goldt (2022)

Real data are not Gaussian and neural networks can “see” (and exploit) that.

What is the simplest model for non-Gaussian covariates
that “breaks” Gaussian universality?
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Gaussian Scale Mixtures



Gaussian scale mixtures aka Elliptic distributions aka Superstatistics

Gaussian scale mixtures (GSMs) [Andrews, Mallows (1974)] have the form

x d
= 1√

d
σz , z ∼ N(0, Id), σ ∼ ϱ positive

Theorem [Andrews, Mallows (1974)]

x ∼ σz with z ∼ N(0, 1) for some ϱ iff E[x] = 0 and (−∂y)
kpx(

√
y) ≥ 0 for all k ∈ N0.

■ Covariance Σ = E[xx⊺] = 1
dE[σ

2]Id : possibly infinite covariance when E[σ2] = +∞.

■ sup∥v∥≤1 ∥v⊺x∥ψ2 = +∞ if σ has unbounded support.

−40 −20 0 20 4010−4

10−3

10−2

10−1

x

p(
x)

p(x)=
1
π

1
1+x2

=

∞∫
0

e−
x2

2σ2

√
2πσ

√
2
π

e−
1

2σ2

σ2︸ ︷︷ ︸
ϱ(σ)

dσ.
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The geometry of GSM

x d
= 1√

d
σz , z ∼ N(0, Id), σ ∼ ϱ positive

As d → +∞,
Pr[∥x∥ > r] → Pr[σ > r].

0 1 2 3

−4

−2

0

2

r ≡ ∥x∥

ln
p(
r)

c = 2, d = 100

a = 3

a = 1

a = 1/2

Gaussian

Example

ϱ(σ)∝
exp

(
− c
σ2

)
σ2a+1

⇒p(x)∝
(
1+

d∥x∥2

2c

)−a− d
2

σ2
0 := E[∥x∥2] =

{
c

a−1 if a > 1

+∞ if 0 < a ≤ 1

We can recover the Gaussian limit as

ϱ(σ)
a→+∞−−−−−→
σ2
0=

c
a−1

δ
(
σ2 − σ2

0

)
.
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A motivation

GSMs are not just a theoretical dataset model. In 1999, M.J. Wainwright and E.P. Simoncelli
observed that GSMs appears in the statistics of natural images.

By analysing the distribution of a wavelet subband of natural images they observed a
striking GSM structure.

GSMs features are therefore not that artificial.
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Classification of heavy-tailed clouds
with Urte Adomaityte and Pierpaolo Vivo



Set-up for classification

We consider a database of features D = {(yν , xν)}nν=1 generated via

xν = yνµ+
1√
d
σνzν , yν ∼ Rad, σν ∼ ϱ , zν ∼ N(0, Id), ∥µ∥2 = 1/d.

The goal is to find θ̂ such that

θ̂:=argmin
θ

[
1
n

n∑
ν=1

ℓ(yνθ
⊺xν)+λ∥θ∥2

]

We considered square and logistic loss:

ℓ(yθ⊺x) = (1−yθ⊺x)2, ℓ(yθ⊺x) = ln(1+e−yθ⊺x)

and given a new datapoint x ∈ Rd , the prediction will
be given by

x 7→ ŷ = sign
(
θ̂
⊺
x
)
∈ {−1, 1}.

−1
−0.5

0
0.5

1−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

We work in the proportional regime, n, d → +∞, α = n/d = Θ(1).
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How to solve the problem: the replica method in a nutshell

R̂D(θ) :=
1
n

n∑
ν=1

ℓ (yνθ
⊺xν) + λ∥θ∥2 ⇒ θ̂ = argmin

θ
R̂D(θ)

We aim at computing, in the proportional limit

min
θ

R̂D(θ) = − lim
β→+∞

1
β
ln

∫
e−βR̂D(θ) dθ

ZD(β)

.

To do so, we make, first of all, a concentration assumption

lim
n
min
θ

R̂D(θ) = − lim
n

lim
β→+∞

E[lnZD(β)]

β
.

Then we apply the so-called replica trick

− lim
n
E[lnZD(β)] = lim

s→0

1− limn E[Z s
D(β)]

s
.

What it is found in the end is that the problem can be rewritten in terms of a
low-dimensional expression depending on a set of order parameters

lim
n
min
θ

R̂D(θ) = min
q,m,v

Φ(q,m, v).
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A set of equations for the order parameters

q = lim
d→+∞

1
d
∥θ̂∥2, m = lim

d→+∞
µ⊺θ̂.

plus an auxiliary one, v , solving [ζ ∼ N(0, 1)]

m=
m̂

λ+v̂
,

q=
m̂2+q̂
(λ+v̂)2

,

v=
1

λ+v̂
,

q̂=αE[σ2f 2],

v̂=−α
E[σf ζ]
√
q

,

m̂=αE[f ],

ω:=m+σ
√
qζ,

h:=argmin
u

[
(u−ω)

2σ2v

2

+ℓ(u)
]
,

f :=
h−ω

σ2v
.

As in the Gaussian case

ϵℓ = E [ℓ(−h)]

ϵt = E[θ(−h)]

ϵg = E[θ(−ω)].

■ θ̂ is Gaussian
θ̂

d
= m

√
dµ+

√
q2 − m2ξ, ξ ∼ N(0, Id).

■ If (y, x) ̸∈ D, then

θ̂
⊺
x d
= ym+ σ

√
qζ, ζ ∼ N(0, 1).

■ If (y, x) ∈ D, then

θ̂
⊺
x d
= argmin

u

[
(ym+

√
qσζ − u)2

2σ2v
+ ℓ(yu)

]
, ζ ∼ N(0, 1).
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■ θ̂ is Gaussian
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d
= m

√
dµ+

√
q2 − m2ξ, ξ ∼ N(0, Id).

■ If (y, x) ̸∈ D, then

θ̂
⊺
x d
= ym+ σ

√
qζ, ζ ∼ N(0, 1).

■ If (y, x) ∈ D, then

e.g., square loss θ̂
⊺
x d
=

m+ σ2v
1+ σ2v

y +

√
qσ

1+ σ2v
ζ, ζ ∼ N(0, 1).
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“Breaking” Gaussian universality

Let us consider a mixture of clouds having the
same finite covariance

Σ± = 1
dE[σ

2]Id

Using

ϱ(σ) ∝ 1
σ2a+1

exp
(
− c
σ2

)
with

c
a− 1

= E[σ2]

■ No “Gaussian universality”: training
error, training loss, test error all depend
on the tail exponent a although
matching first and second moments.

■ With square loss, optimal performance
for finite λ, with λ → +∞ in the limit
of Gaussian clouds.
Mignacco et al. (2020); Baldassi et al. (2020).

■ No obvious performance ordering:
using a Gaussian equivalent setting is
beneficial for large α.
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Very heavy-tailed classification

We can also consider two clouds having no
covariance

E[σ2] = +∞

Clouds have tail decay ∥x∥−2a in the radial
direction with a ∈ (0, 1].

In this case, heavier tail gives worse
performances.

Square loss λ = 10−3
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Tail effects on the separability transition

If we consider logistic loss at zero
regularisation, this is equivalent to search for
the max-margin hyperplane as

argmin
θ

[
1
n

n∑
ν=1

ln
(
1+e−yνθ⊺xν

)
+λ∥θ∥2

]
θ→λ−1/2θ−−−−−−−→
λ→0+

argmin
θ

n∑
ν=1

max {0,−yνθ
⊺xν} .

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x1

x 2

■ In the single Gaussian case Sur and Candès (2019) has shown that there is a phase
transition in α = n/d: points separable for α < α⋆. In the limit of infinite covariance
Cover (1965) had shown that α⋆ = 2.

■ Explicit formula by Mignacco et al. (2020) for the separability of K = 2 clusters and
implicit analytical criterion for the generic case of K Gaussian clusters by Loureiro et al.
(2020).
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Existence of the MLE

In our setting, separability is possible iff

α ≤ max
θ∈(0,1]

1− θ2

S⋆(θ)
=: α⋆

where

S⋆(θ) =
∫∞
0 z2E

[
N
(
z + θ

σ
; 0, 1

)]
d z.

Using

ρ(σ) ∝ 1
σ2a+1

e−
c/σ2

■ at given finite variance, the Gaussian
threshold value is a lower bound.

■ in the limit of infinite width α⋆ → 2.

10−4 10−3 10−2 10−1 100 101 102
10−2

10−1

100

101

102

103

Finite
covariance

Infinite
covariance

c
α
⋆
−

2

a = 1/4

a = 1/2
a = 1
a = 2
a = 10

E[σ2] = 1/2

E[σ2] = 1
E[σ2] = 5

For a = 1

α
⋆ = 2 +

1

c
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An extreme deconstruction: random labels

Suppose now that we assign the labels to our
points completely randomly. Some
universality emerges by effect of the lack of
correlations label/structure.

With Gaussian clouds:

■ Equivalent to single Gaussian cloud

P(x) ≈ N

(
x; 0,

σ2

d
Id
)
.

■ Using square loss and random labels,
universal training loss for λ → 0

ϵℓ =
1
2

(
1− 1

α

)
+

.

Gerace et al. (2022); Pesce et al. (2023)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x1

x 2

Why random labels?

■ Adopted in capacity calculations by
e.g. Gardner and Derrida (1989) and Vapnik
(1989)

■ Zhang et al. (2021) used the setting as a
reference for worst-case analysis and in
the study of training time vs training
with informative labels.
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An extreme deconstruction: random labels

Suppose now that we assign the labels to our
points completely randomly. Some
universality emerges by effect of the lack of
correlations label/structure.

With heavy-tailed clouds:

X Equivalent to single GSM cloud

P(x) ≈ E
[
N

(
x; 0,

σ2

d
Id
)]

.

V Using square loss and random labels,
universal training loss for λ → 0

ϵℓ =
1
2

(
1− 1

α

)
+

.

For a > 1, a = c + 1 so that Σ = 1/dId .
Square loss with λ = 10−4 on random labels
for K = 2 clouds vs prediction for K = 1 cloud.
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Regression with heavy tails
with Urte Adomaityte, Bruno Loureiro, Leonardo Defilippis



Regression with heavy tails
Consider now a dataset D = {(yν , xν)}ν∈[n] generated via a linear model

y = θ⊺
0 x+

√
∆η, η ∼ N(0, 1), ∆ > 0

where again

x d
= 1√

d
σz , z ∼ N(0, Id), σ ∼ ϱ(σ)
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y = θ⊺
0 x+

√
∆η, η ∼ N(0, 1), ∆ > 0

where again

x d
= 1√

d
σz , z ∼ N(0, Id), σ ∼ ϱ(σ)

Useful set-up to model a variance contamination,

ϱ(σ) = (1− ε) δ(σ − σ0)

Gauss

+ ε ϱc(σ)

contamination

, ε ∈ [0, 1].

To mitigate the presence of the contamination Huber
(1965) proposed a differentiable, robust loss:

|y−θ⊺x|δ:=

{
(y−θ⊺x)2 if |y−θ⊺x|<δ,

2δ|y−θ⊺x|−δ2 if |y−θ⊺x|≥δ.

Asymptotic properties for regression on GSMs
studied by El Karoui et al. (2013, 2018) under the
assumption

E[σ4] < +∞.

−δ δ

44
x

y
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Regression with heavy tails
Consider now a dataset D = {(yν , xν)}ν∈[n] generated via a linear model

y = θ⊺
0 x+

√
∆η, η ∼ N(0, 1), ∆ > 0

where again

x d
= 1√

d
σz , z ∼ N(0, Id), σ ∼ ϱ(σ)

MSE rates for Huber loss

If ϱ(σ) ∼ 1
σ2a+1 for σ ≫ 1, ∀δ

lim
d

∥θ0−θ̂∥2

∆
=
α≫1


1
σ2
0α

+o
(

1
α

)
if a>1,

1
σ2
0αlnα

+o
(

1
αlnα

)
if a=1,

1
(σ2

0α)
1/a
+o

(
1
α

1/a

)
if a∈(0,1).

If δ → +∞ (square loss)

σ2
0= lim

x→+∞

(
1−E

[
x

x+σ2

])
xmin{1,a}

(lnx)δa,1
. Square loss (dashed) and optimal Huber (continuous)

vs experiments (circles). Squares are the Bayes

optimal bound.
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Conclusions



Conclusions and perspectives

■ “Doubly-random” models can be useful to study non-Gaussianity — see e.g., the recent
work of Székely et al. (2024) on spiked models.
GSMs are in particular a good theoretical setup for heavy tails, robustness and to go
beyond the “Gaussian shell” geometry.

■ Heavy tails “break” some recently found universality laws even in the simplest possible
set-ups (convex ERM).

■ Separability transitions/rates are affected by power-law tails.

Some open questions.
■ What would happen using random features?

■ What is the effect of fat tails (i.e., outliers) in fairness models?

■ Rigorous proofs?
Work in progress with Cédric Gerbelot.

■ What about the dynamics?
Building on results of Ben Arous, Bruna et al. (2023) have shown that the Gaussian picture is
preserved in the GSM setting if E[σ4] < ∞: a proper information exponent determines the
out-of-mediocrity timescale in online SGD.
Also, work in progress with Urte Adomaityte, Bruno Loureiro and Pierfrancesco Urbani.
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■ “Doubly-random” models can be useful to study non-Gaussianity — see e.g., the recent
work of Székely et al. (2024) on spiked models.
GSMs are in particular a good theoretical setup for heavy tails, robustness and to go
beyond the “Gaussian shell” geometry.

■ Heavy tails “break” some recently found universality laws even in the simplest possible
set-ups (convex ERM).

■ Separability transitions/rates are affected by power-law tails.

Some open questions.
■ What would happen using random features?

■ What is the effect of fat tails (i.e., outliers) in fairness models?

■ Rigorous proofs?
Work in progress with Cédric Gerbelot.

■ What about the dynamics?
Building on results of Ben Arous, Bruna et al. (2023) have shown that the Gaussian picture is
preserved in the GSM setting if E[σ4] < ∞: a proper information exponent determines the
out-of-mediocrity timescale in online SGD.
Also, work in progress with Urte Adomaityte, Bruno Loureiro and Pierfrancesco Urbani.

17 / 19



Thank you for your attention.
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