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What is the combinatorial reciprocity theorem?

For a sequence ( fn)n∈Z, if both | fn| and | f−n| count some combinatorial objects of
size n ≥ 1, such a result is called a combinatorial reciprocity theorem.

Examples
1. binomial coefficients

(n
k

)

2. chromatic polynomials χG(n)

3. Ehrhart polynomials EhrP(n)
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Dyck paths and Motzkin paths

Dyck paths

(0, 0) (8, 0)

∈ Dyck8

weight = λ2λ3λ2λ1

Motzkin paths

(0, 0) (8, 0)

∈ Mot8

weight = b1λ3b2λ2λ1
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Dyck paths and Motzkin paths

Question
• Is there a combinatorial object counted by |Dyck−n | or |Mot−n |?

• How to define |Dyck−n | and |Mot−n | ?
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Dyck paths and Motzkin paths

Question
• Is there a combinatorial object counted by |Dyck−n | or |Mot−n |?
• How to define |Dyck−n | and |Mot−n | ?

We have to introduce bounded Dyck path and bounded Motzkin path.
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Previous results

Theorem (Cigler and Krattenthaler, 2020)

|Dyck≤2k−1
−2n | = |Alt≤k

2n−1 |
:= |{(a1, · · · , a2n−1) : a1 ≤ a2 ≥ a3 ≤ · · · ≥ a2n−1, 1 ≤ ai ≤ k}|.

They also showed many other interesting results including a reciprocity between
determinants of these numbers.
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Orthogonal polynomials

• Polynomials {Pn(x)}n≥0 are called orthogonal polynomials with respect to a
linear functional L if degPn(x) = n and

L(Pm(x)Pn(x)) = δm,ncn, cn ̸= 0.

• Let {Pn(x)}n≥0 be monic polynomials that satisfy a three-term recurrence
relation: P−1(x) = 0, P0(x) = 1, and for n ≥ 0,

Pn+1(x) = (x − bn)Pn(x)− λnPn−1(x),

for some sequences b = (bn)n≥0 and λ = (λn)n≥1.
• It is well known that these are orthogonal polynomials with respect to a unique

linear functional L with L(1) = 1.
• The moment µn(b,λ) of Pn(x) is defined by µn(b,λ) = L(xn).
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Combinatorics and Moments

Viennot found the following combinatorial interpretation for the moment:

L(xn) = µn(b,λ) =
∑

p∈Motn

wt(p).

Note that
µn(0,λ) =

∑
p∈Dyckn

wt(p).

8 / 26
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Bounded moments

The bounded moments µ≤k
n (b,λ) are defined by

µ≤k
n (b,λ) =

∑
p∈Mot

≤k
n

wt(p).

The sequence (µ≤k
n (b,λ))n≥0 satisfies a homogeneous linear recurrence relation so

that its negative version (µ≤k
−n(b,λ))n≥1 is defined.

We call µ≤k
−n(b,λ) the negative (bounded) moments of the orthogonal polynomials

Pn(x; b,λ).
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Generalized bounded moments

Viennot showed that the generalized moment µn,r,s(b,λ) := L(xnPr(x)Ps(x)) has a
similar combinatorial expression

µn,r,s(b,λ) =
∑

p∈Motn,r,s

wt(p).

Definition
A generalized bounded moment µ≤k

n,r,s(b,λ) is defined by

µ≤k
n,r,s(b,λ) =

∑
p∈Mot

≤k
n,r,s

wt(p).
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Bounded Dyck/Motzkin paths

Dyck≤k
n,r,s

(0, r)
(n, s)

y = k

Mot≤k
n,r,s

(0, r)
(n, s)

y = k

11 / 26



Introduction Preliminaries Combinatorial interpretation General reciprocity theorem

Homogeneous linear recurrence relation

Theorem (EC1, Theorem 4.1.1 and Proposition 4.2.3)
A sequence (fn)n≥0 satisfies a homogeneous linear recurrence relation if and only if∑

n≥0

fnxn =
P(x)
Q(x)

,

for some polynomials P(x) and Q(x) with degP(x) < degQ(x) and Q(0) ̸= 0.

Moreover, in this case, we have∑
n≥1

f−nxn = −P(1/x)
Q(1/x)

,

as rational functions.
The Proposition 4.2.3 is also known as ‘Popoviciu’s theorem’.
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Generating function for the moments

Let P∗
n(x) = xnPn(1/x), and let δP(x; b,λ) be a polynomial obtained from

P(x; b,λ) by moving bi to bi+1 and λi to λi+1.

Theorem (Viennot, 83’)
Let r, s, k be integers with 0 ≤ r, s ≤ k.

∑
n≥0

µ≤k
n,r,s(b,λ)x

n =


xs−rP∗

r (x)δs+1P∗
k−s(x)

P∗
k+1(x) if r ≤ s,

P∗
s (x)δr+1P∗

k−r(x)
P∗

k+1(x)

∏r
i=s+1 λi. if r > s.
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Generating function for the negative moments

Theorem (JKKSS, 2023)
Let r, s, k be integers with 0 ≤ r, s ≤ k. Suppose that µ≤k

−n,r,s(b,λ) is well defined
for n ≥ 1. Then we have

∑
n≥1

µ≤k
−n,r,s(b,λ)x

n =


− xPr(x)δs+1Pk−s(x)

Pk+1(x) if r ≤ s,

− xr−s+1Ps(x)δr+1Pk−r(x)
Pk+1(x)

∏r
i=s+1 λi. if r > s.

Proposition (JKKSS, 2023)
Let b2 = (bn−1bn)n≥1 = (b0b1, b1b2, . . . ). The sequence (µ≤k

−n,r,s(b, b2))n≥1 is
well-defined if and only if k ̸≡ 1 (mod 3).

Question
What is a combinatorial meaning for µ≤k

−n,r,s(b, b2)?
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peak-valley sequences

Definition
An (ℓ, r, s)-peak-valley sequence of length n is a sequence (a1, . . . , an) of
nonnegative integers such that for i = 0, . . . , n + 1,

• if ai ≡ 0 (mod ℓ), then ai is a valley, that is, ai−1 > ai < ai+1,
• if ai ≡ −1 (mod ℓ), then ai is a peak, that is, ai−1 < ai > ai+1,

where we set a0 = r and an+1 = s.

Denote by PVℓ,k
n,r,s the set of (ℓ, r, s)-peak-valley sequences (a1, . . . , an) of length n

with 0 ≤ ai ≤ k for all i = 1, . . . , n.

PVℓ,k
n = PVℓ,k

n,0,0: ℓ-peak-valley sequence.
The weight of a sequence π = (a1, . . . , an) is defined by

wt(π) = Va1 · · ·Van .

15 / 26
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Examples

Let r = 2 and s = 3.

Example (ℓ = 2)
• π = 5 2 3 0 7 4 9 2 7 4 5

• π = 5 2 3 0 7 4 9 2 7 4 5
• 2 < 5 > 2 < 3 > 0 < 7 > 4 < 9 > 2 < 7 > 4 < 5 > 3
• π ∈ PV2,9

11,2,3

Example (ℓ = 3)

• π = 5 4 4 0 8 6 7 8 3 4 7
• 2,5,8 : peaks, and 0,3,6 : valleys
• π ∈ PV3,8

11,2,3

16 / 26
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Continued fraction

By Flajolet’s combinatorial theory of continued fractions, Viennot showed that

∑
n≥0

µ≤k
n (b,λ)xn =

1

1 − b0x −
λ1x2

1 − b1x − . . . −
λkx2

1 − bkx

.

17 / 26
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Continued fraction for the negative moments

Let b2 = (bn−1bn)n≥1 = (b0b1, b1b2, . . . ) and bi = −V−1
i .

∑
n≥1

µ≤k
−n(b,λ)x

n =
− 1

1 − b0x−1 −
λ1x−2

1 − b1x−1 −
λ2x−2

1 − b2x−1 − . . . −
λkx−2

1 − bkx−1

.

18 / 26
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n≥1

µ≤k
−n(b,λ)x

n =
b−1

0 x

1 − b−1
0 x −

b−1
0 b−1

1 λ1

1 − b−1
1 x −

b−1
1 b−1

2 λ2

1 − b−1
2 x − . . . −

b−1
k−1b−1

k λk

1 − b−1
k x

.
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Continued fraction for the negative moments

Let b2 = (bn−1bn)n≥1 = (b0b1, b1b2, . . . ) and bi = −V−1
i .

∑
n≥1

µ≤k
−n(b, b2)xn =

V0x

−V0x − 1 −
1

−V1x − 1 − . . . −
1

−Vkx − 1

.
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Combinatorial interpretation

Theorem (JKKSS, 2023)
Let bi = −V−1

i for all i. We have

µ≤3k−1
−n (b, b2) = V0

∑
π∈PV3,3k−1

n−1

wt(π).

Theorem (JKKSS, 2023)
Let bi = −V−1

i for all i. We have

µ≤3k
−n (b, b2) = V0

∑
π∈P̃V

3,3k
n−1

wt(π).
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Combinatorial interpretation

Corollary (JKKSS, 2023)
We have ∣∣∣Mot≤3k−1

−n

∣∣∣ = ∣∣∣PV3,3k−1
n−1

∣∣∣ .
Corollary (JKKSS, 2023)
We have ∣∣∣Mot≤3k

−n

∣∣∣ = ∣∣∣P̃V3,3k
n−1

∣∣∣ .

20 / 26



Introduction Preliminaries Combinatorial interpretation General reciprocity theorem

matrix representation

We define the tridiagonal matrix A≤k(b,λ) by

A≤k(b,λ) =


b0 1
λ1 b1 1

. . .
λk−1 bk−1 1

λk bk

 .

By the definition of µ≤k
n,r,s(b,λ),

µ≤k
n,r,s(b,λ) = ϵT

r

(
A≤k(b,λ)

)n
ϵs.

21 / 26
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Combinatorial interpretation

Proposition (Hopkins and Zaimi, 2023)
For r, s, k, n ∈ Z≥0 with r, s ≤ k and n ≥ 1, if A≤k(b,λ) is invertible, then

µ≤k
−n,r,s(b,λ) = ϵT

r

(
A≤k(b,λ)

)−n
ϵs.

Theorem (JSSKK, 2023)
Let bi = −V−1

i for all i. We have

µ≤3k−1
−n,r,s (b, b2) = (−1)⌊r/3⌋+⌊s/3⌋ V0 · · ·Vs

V0 · · ·Vr−1

∑
π∈PV3,3k−1

n−1,r,s

wt(π).

22 / 26
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Combinatorial interpretation
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Reciprocity between determinants

Let R(n) be the operator defined on polynomials in bi’s and λi’s that replaces each bi

by bn−i and each λi by λn+1−i. We have the general reciprocity theorem as follows.

Theorem (JSSKK, 2023)
For positive integers k and m, we have

det
(
µ≤k+m−1

n+i+j+2m−2(b,λ)
)k−1

i,j=0
= C · R(k+m−1)

(
det
(
µ≤k+m−1
−n−i−j (b,λ)

)m−1

i,j=0

)
,

where C =
(∏k+m−1

i=1 λk−i
i

)
det
(
A≤k+m−1(b,λ)

)n+2m−2
.

This implies the result of Cigler and Krattenthaler, which is the general reciprocity
theorem for Dyck paths version (that is, for b = 0).
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Consequences
We prove Conjectures 50 and 53 of Cigler and Krattenthaler (2020).

Theorem (JKKSS, 2023)
For all nonnegative integers n, k,m, we have

det

(
2k+2m−1∑

s=0

µ≤2k+2m−1
n+i+j+2m−1,0,s(0, 1)

)k−1

i,j=0

= (−1)((
k
2)+(

m
2))(n+1) det

(∣∣∣Altk+m
n+i+j

∣∣∣)m−1

i,j=0
.

Theorem (JKKSS, 2023)
For all positive integers n, k,m with k + m ̸≡ 2 (mod 3), we have

det
(
µ≤k+m−1

n+i+j+2m−2(1, 1)
)k−1

i,j=0
= (−1)n⌊(k+m)/3⌋ det

(
µ≤k+m−1
−n−i−j (1, 1)

)m−1

i,j=0
.
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