Cross-cap drawings and signed reversal distance Niloufar Fuladi

Joint work with: Arnaud de Mesmay Alfredo Hubard

Journée-séminaire de combinatoire Université Sorbonne Paris Nord 10 Dec 2024

The surface we obtain after gluing two ends of a strip of paper after a half-twist is a **Möbius band**.

The surface we obtain after gluing two ends of a strip of paper after a half-twist is a **Möbius band**.

■ The surface we obtain after gluing two ends of a strip of paper after a **half-twist** is a **Möbius band**.

- A Möbius band has only one side.
- \blacksquare Right and left on the band are not well defined.

The surface we obtain after gluing two ends of a strip of paper after a half-twist is a **Möbius band**.

- A Möbius band has only one side.
- \blacksquare Right and left on the band are not well defined.
- Simplest example of a **non-orientable surface**.

Niloufar Fuladi [Cross-cap drawings and signed reversal distance](#page-0-0) 10th December 2024 1 / 24

The DNA of some species only differ by their gene sequences.

The DNA of some species only differ by their gene sequences. \blacksquare The evolutionary distance between two species can be approximated by the number of **reversals** needed to transform one gene sequence into another.

The DNA of some species only differ by their gene sequences.

- \blacksquare The evolutionary distance between two species can be approximated by the number of **reversals** needed to transform one gene sequence into another.
- We use the similarity between reversals and Möbius band to solve two problems.

- **A surface** is a topological space that locally looks like the plane or the half plane.
- The points that locally look like the half plane comprise the **boundary** of the surface.

- **A surface** is a topological space that locally looks like the plane or the half plane.
- The points that locally look like the half plane comprise the **boundary** of the surface.
- A surface is **non-orientable** if and only if it contains a Möbius band, otherwise it is **orientable**.

- **A surface** is a topological space that locally looks like the plane or the half plane.
- The points that locally look like the half plane comprise the **boundary** of the surface.
- A surface is **non-orientable** if and only if it contains a Möbius band, otherwise it is **orientable**.
- **T** Two surfaces are **homeomorphic** if one can be transformed continuously to the other without cutting or gluing.

Niloufar Fuladi [Cross-cap drawings and signed reversal distance](#page-0-0) 10th December 2024 3 / 24

- We can obtain all surfaces by cutting disks from a sphere and attaching **handles** and **cross-caps**.
- A surface obtained by only attaching handles is **orientable**.

- We can obtain all surfaces by cutting disks from a sphere and attaching **handles** and **cross-caps**.
- A surface obtained by only attaching handles is **orientable**.
- **All surfaces can be classified by:**

- 2 number of boundaries
- 3 orientability

- **T** Two curves are of the **same type** if there exists a homeomorphism of the surface that maps one to the other.
- \rightarrow A curve is **separating** if it cuts the surface into two connected components.

- **T** Two curves are of the **same type** if there exists a homeomorphism of the surface that maps one to the other.
- A curve is **separating** if it cuts the surface into two connected components.
- A separating curve is **contractible** if it separates a disk from the surface.

- **T** Two curves are of the **same type** if there exists a homeomorphism of the surface that maps one to the other.
- A curve is **separating** if it cuts the surface into two connected components.
- A separating curve is **contractible** if it separates a disk from the surface.

- **T** Two curves are of the **same type** if there exists a homeomorphism of the surface that maps one to the other.
- A curve is **separating** if it cuts the surface into two connected components.
- A separating curve is **contractible** if it separates a disk from the surface.
- → A curve is **one-sided** (**two-sided**) if it has a neighborhood homeomorphic to the Möbius band (annulus).

- **T** Two curves are of the **same type** if there exists a homeomorphism of the surface that maps one to the other.
- A curve is **separating** if it cuts the surface into two connected components.
- A separating curve is **contractible** if it separates a disk from the surface.
- → A curve is **one-sided** (**two-sided**) if it has a neighborhood homeomorphic to the Möbius band (annulus).

- **T** Two curves are of the **same type** if there exists a homeomorphism of the surface that maps one to the other.
- A curve is **separating** if it cuts the surface into two connected components.
- A separating curve is **contractible** if it separates a disk from the surface.
- → A curve is **one-sided** (**two-sided**) if it has a neighborhood homeomorphic to the Möbius band (annulus).
- A curve on a non-orientable surface is **orienting** if it cuts the surface into an orientable one.

A discrete model

Our surfaces are obtained by gluing polygonal disks.

T This can be seen as an **embedded graph** on the surface: An injective map $G \hookrightarrow S$ from a graph *G* to the surface *S*.

A discrete model

■ Our surfaces are obtained by gluing polygonal disks.

This can be seen as an embedded graph on the surface: An injective map $G \hookrightarrow S$ from a graph *G* to the surface *S*.

A discrete model

Our surfaces are obtained by gluing polygonal disks.

T This can be seen as an **embedded graph** on the surface: An injective map $G \hookrightarrow S$ from a graph *G* to the surface *S*.

- A graph embedding induces a **discrete metric** on the surface.
- \blacksquare The length of a curve is the number of times it crosses the graph embedded.

Visualizing the homeomorphism between these surfaces is not easy.

- Visualizing the homeomorphism between these surfaces is not easy.
- \blacksquare A common approach is to cut both to a disk and put the disks in correspondence.

- **E** Visualizing the homeomorphism between these surfaces is not easy.
- A common approach is to cut both to a disk and put the disks in correspondence.

Such a graph that cuts the surface into simpler pieces is called a **decomposition** of the surface.

Question: How much can we control the **length** of a decomposition?

Niloufar Fuladi [Cross-cap drawings and signed reversal distance](#page-0-0) 10th December 2024 7 / 24

Overview

1 Two technical tools:

- A model to represent non-orientable embeddings: Cross-cap drawing
- An algorithm in genome rearrangement: Signed reversal distance
- 2 A short topological decomposition for non-orientable surfaces
- 3 Degenerate crossing number and Mohar's conjecture

Overview

- Two technical tools:
	- A model to represent non-orientable embeddings: Cross-cap drawing
	- An algorithm in genome rearrangement: Signed reversal distance
- 2 A short topological decomposition for non-orientable surfaces
- 3 Degenerate crossing number and Mohar's conjecture

Overview

- **1** Two technical tools:
	- A model to represent non-orientable embeddings: Cross-cap drawing
	- An algorithm in genome rearrangement: Signed reversal distance
- 2 A short topological decomposition for non-orientable surfaces
- **3** Degenerate crossing number and Mohar's conjecture

[Two technical tools](#page-30-0)

■ One can represent a non-orientable embedding by a planar drawing.

■ One can represent a non-orientable embedding by a planar drawing.

■ One can represent a non-orientable embedding by a planar drawing.

One can represent a non-orientable embedding by a planar drawing.

One can represent a non-orientable embedding by a planar drawing.

One can represent a non-orientable embedding by a planar drawing.

One can represent a non-orientable embedding by a planar drawing.

One can represent a non-orientable embedding by a planar drawing.

- A **cross-cap drawing** is a planar drawing with such transverse crossings at cross-caps.
- This **localization** of cross-caps is not "canonical"!

One can represent a non-orientable embedding by a planar drawing.

A **cross-cap drawing** is a planar drawing with such transverse crossings at cross-caps.

Question: Can we control the number of times an edge enters a cross-cap?

One can represent a non-orientable embedding by a planar drawing.

A **cross-cap drawing** is a planar drawing with such transverse crossings at cross-caps.

Question: Can we control the number of times an edge enters a cross-cap?

Theorem (Schaefer, Štefankovič '22)

2) Genome rearrangement

- **The signed reversal distance** between two signed permutations is the minimum number of **reversals** to go from one to the other.
- **If is computable in polynomial time** [Hannenhali-Pevzner '99].
- \blacksquare This has strong similarities with crosscap drawings.

2) Genome rearrangement

- **The signed reversal distance** between two signed permutations is the minimum number of **reversals** to go from one to the other.
- **If is computable in polynomial time** [Hannenhali-Pevzner '99].
- \blacksquare This has strong similarities with crosscap drawings.

2) Genome rearrangement

- **The signed reversal distance** between two signed permutations is the minimum number of **reversals** to go from one to the other.
- **If it is computable in polynomial time** [Hannenhali-Peyzner '99].
- \blacksquare This has strong similarities with crosscap drawings.

[A short topological](#page-44-0) [decomposition for non-orientable](#page-44-0) [surfaces](#page-44-0)

Canonical decompositions

Orientable canonical decomposition: a one-vertex graph with the fixed rotation system $a_1b_1a_1b_1a_2b_2a_2b_2\dots$

Theorem (Lazarus, Pocchiola, Vegter, Verroust '01)

Given a graph cellularly embedded on an orientable surface of genus g, there exists an orientable canonical decomposition, so that each loop crosses each edge of the graph at most 4 *times (total length O*(*gn*)*).*

Canonical decompositions

E Can I cut along the **non-orientable canonical decomposition**? the one vertex graph with rotation system *aabbcc* · · ·

Canonical decompositions

Can I cut along the **non-orientable canonical decomposition**? the one vertex graph with rotation system *aabbcc* · · ·

Theorem (F., Hubard, de Mesmay '21)

Given a graph cellularly embedded on a non-orientable surface, there exists a non-orientable canonical decomposition such that each loop in the system crosses each edge of the graph at most in 30 points (total length O(*gn*)*).*

- Best previous bound is $O(g^2n)$ (Lazarus '14).
- \blacksquare We use a new approach combining the Schaefer, Stefankovič algorithm and the Hannenhali-Pevzner algorithm.

Other cutting shapes

A more general question on finding short decompositions:

Negami's conjecture ('01)

Let G_1 and G_2 be two graphs cellularly embedded on a surface S of genus g . G_1 and *G*² can be embedded on *S* **simultaneously** such that each pair of their edges cross at most a constant number of times? (total of $O(n_1 n_2)$ crossings)

If true, any shape of decomposition can be computed with total length at most $O(n_1 n_2)$.

Other cutting shapes

A more general question on finding short decompositions:

Negami's conjecture ('01)

Let G_1 and G_2 be two graphs cellularly embedded on a surface S of genus g . G_1 and *G*² can be embedded on *S* **simultaneously** such that each pair of their edges cross at most a constant number of times? (total of $O(n_1 n_2)$ crossings)

- If true, any shape of decomposition can be computed with total length at most $O(n_1 n_2)$.
- \blacksquare The length of canonical decompositions matches the bound in Negami's conjecture.

Other cutting shapes

A more general question on finding short decompositions:

Negami's conjecture ('01)

Let G_1 and G_2 be two graphs cellularly embedded on a surface S of genus g . G_1 and *G*² can be embedded on *S* **simultaneously** such that each pair of their edges cross at most a constant number of times? (total of $O(n_1 n_2)$ crossings)

 \rightarrow If true, any shape of decomposition can be computed with total length at most $O(n_1 n_2)$.

 \blacksquare The length of canonical decompositions matches the bound in Negami's conjecture. Best known bound:

Theorem (Negami '01)

*Let G*¹ *and G*² *be two graphs cellularly embedded on a surface S of genus g. G*¹ *and G*² *can be embedded on S simultaneously such that each pair of their edges cross at most* $O(q)$ *times (total length* $O(qn_1n_2)$ *).*

Reduction to the one-vertex case

By contracting a **spanning tree**, our problem reduces to the case of one-vertex graphs.

- An embedding for a one-vertex graph, is entirely described by the cyclic ordering of the edges around the vertex, and, in the non-orientable case, the sidedness of the curves, an **embedding scheme**.
	- $1 \rightarrow Two-sided$ $-1 \rightarrow$ One-sided

Theorem (Schaefer-Štefankovič '15)

Theorem (Schaefer-Štefankovič '15)

Theorem (Schaefer-Štefankovič '15)

Theorem (Schaefer-Štefankovič '15)

Theorem (Schaefer-Štefankovič '15)

A graph G embeddable on a non-orientable surface admits a cross-cap drawing in which each edge enters each cross-cap at most twice.

If we can control the diameter of this cross-cap drawing, we can control the length of \mathbf{r} the canonical system of loops.

Niloufar Fuladi [Cross-cap drawings and signed reversal distance](#page-0-0) 10th December 2024 15 / 24

 \blacksquare The proof is by induction on the number of edges.

 \blacksquare The proof is by induction on the number of edges.

 \blacksquare We build a system of short paths on top of this algorithm.

- \blacksquare The proof is by induction on the number of edges.
- We build a system of short paths on top of this algorithm.
- We have to deal with non-contractible separating loops:

- \blacksquare The proof is by induction on the number of edges.
- \blacksquare We build a system of short paths on top of this algorithm.
- We have to deal with non-contractible separating loops:

 \blacksquare To avoid cascading, we make sure to deal with all the separating loops at once, using ideas from the Hannenhali-Pevzner algorithm.

Other decompositions?

A similar approach lets us compute other short decompositions:

- An alternative computation of a short orientable canonical decomposition.
- Different short decompositions for non-orientable surfaces with rotation system: $a_1a_1 \cdots a_ka_kb_1c_1\overline{b}_1\overline{c}_1 \cdots b_m c_m\overline{b}_m\overline{c}_m$.

[Degenerate crossing number](#page-62-0)

Pach and Tóth: The **degenerate crossing number** of *G*, **dcr(***G***)**, is the minimum number of edge-crossings taken over all proper drawings of *G* in the plane in which multiple crossings at a point are counted as a single crossing.

■ Pach and Tóth: The **degenerate crossing number** of *G*, **dcr**(*G*), is the minimum number of edge-crossings taken over all proper drawings of *G* in the plane in which multiple crossings at a point are counted as a single crossing.

Pach and Tóth: The **degenerate crossing number** of *G*, **dcr(***G***)**, is the minimum number of edge-crossings taken over all proper drawings of *G* in the plane in which multiple crossings at a point are counted as a single crossing.

Mohar: what if we allow self-crossings? \rightarrow **genus crossing number gcr(** G **)**

Pach and Tóth: The **degenerate crossing number** of *G*, **dcr(***G***)**, is the minimum number of edge-crossings taken over all proper drawings of *G* in the plane in which multiple crossings at a point are counted as a single crossing.

Mohar: what if we allow self-crossings? \rightarrow **genus crossing number gcr(** G **)** For any graph *G*:

 $\text{gcr}(G) < \text{dcr}(G)$

Pach and Tóth: The **degenerate crossing number** of *G*, **dcr(***G***)**, is the minimum number of edge-crossings taken over all proper drawings of *G* in the plane in which multiple crossings at a point are counted as a single crossing.

Mohar: what if we allow self-crossings? \rightarrow **genus crossing number gcr(** G **)** For any graph *G*:

 $\text{gcr}(G) \leq \text{dcr}(G)$

Mohar's Conjecture 1 ('07)

For every graph *G*, gcr(*G*)=dcr(*G*).

From crossing numbers to non-orientable genus

 \blacksquare The minimum cross-caps needed to draw a graph on a surface is called **non-orientable genus** *g*(*G*) of the graph.

Theorem (Mohar '07)

For any graph G, gcr(*G*) = *non-orientable genus of G.*

Cross-caps can be interpreted as multiple transverse crossings.

From crossing numbers to non-orientable genus

 \blacksquare The minimum cross-caps needed to draw a graph on a surface is called **non-orientable genus** *g*(*G*) of the graph.

Theorem (Mohar '07)

For any graph G, gcr(*G*) = *non-orientable genus of G.*

Cross-caps can be interpreted as multiple transverse crossings.

A cross-cap drawing is **perfect** if each edge enters each cross-cap **at most once**.

Mohar's Conjecture 1 ('07)

```
For every graph G, dcr(G) = gcr(G) = g(G).
```
⇓ Every graph *G* admits a **perfect** cross-cap drawing with *g*(*G*) cross-caps.

Niloufar Fuladi [Cross-cap drawings and signed reversal distance](#page-0-0) 10th December 2024 19 / 24

The Conjectures

Mohar's Conjecture 1 ('07)

Every graph *G* admits a **perfect** cross-cap drawing with *g*(*G*) cross-caps.

Mohar's (stronger) Conjecture 2 ('07)

Every loopless graph embedded on a non-orientable surface admits a **perfect** cross-cap drawing.

The Conjectures

Mohar's Conjecture 1 ('07)

Every graph *G* admits a **perfect** cross-cap drawing with *g*(*G*) cross-caps.

Mohar's (stronger) Conjecture 2 ('07)

Every loopless graph embedded on a non-orientable surface admits a **perfect** cross-cap drawing.

Mohar's (even stronger) Conjecture 3 ('07)

Every graph embedded on a non-orientable surface in which loops are non-separating admits a **perfect** cross-cap drawing.
The Conjectures

Mohar's Conjecture 1 ('07)

Every graph *G* admits a **perfect** cross-cap drawing with *g*(*G*) cross-caps.

Mohar's (stronger) Conjecture 2 ('07)

Every loopless graph embedded on a non-orientable surface admits a **perfect** cross-cap drawing.

Mohar's (even stronger) Conjecture 3 ('07)

Every graph embedded on a non-orientable surface in which loops are non-separating admits a **perfect** cross-cap drawing.

Conjecture 1 ⇑ Conjecture 2 ⇑ Conjecture 3

The Conjectures

Mohar's Conjecture 1 ('07)

Every graph *G* admits a **perfect** cross-cap drawing with *g*(*G*) cross-caps.

Mohar's (stronger) Conjecture 2 ('07)

Every loopless graph embedded on a non-orientable surface admits a **perfect** cross-cap drawing.

Mohar's (even stronger) Conjecture 3 ('07)

Every graph embedded on a non-orientable surface in which loops are non-separating admits a **perfect** cross-cap drawing.

Schaefer and Štefankovič disproved this.

The Conjectures

Mohar's Conjecture 1 ('07)

Every graph *G* admits a **perfect** cross-cap drawing with *g*(*G*) cross-caps.

Mohar's (stronger) Conjecture 2 ('07)

Every loopless graph embedded on a non-orientable surface admits a **perfect** cross-cap drawing.

Mohar's (even stronger) Conjecture 3 ('07)

Every graph embedded on a non-orientable surface in which loops are non-separating admits a **perfect** cross-cap drawing.

Theorem (F., Hubard, de Mesmay '23)

Apart from two exceptional families of graphs, all 2*-vertex loopless graphs embedded on non-orientable surfaces satisfy Conjecture 2.*

 \rightarrow We provide a 2-vertex counter example.

 \rightarrow Schaefer and Štefankovič disproved this.

The counter example

Mohar's (stronger) Conjecture 2 ('07)

Every loopless graph embedded on a non-orientable surface admits a **perfect** cross-cap drawing.

Conjecture 2 does not hold:

Theorem (F., Hubard, de Mesmay '23)

There exists a 2*-vertex loopless graph embedded on a non-orientable surface that does not admit a perfect cross-cap drawing.*

Signed reversals distance vs. Degenerate crossing

- Our main technical tool is the Hannenhali-Pevzner algorithm.
- **The algorithm imposes an order on the cross-caps** \rightarrow **each edge enters each** cross-cap at most once.

Signed reversals distance vs. Degenerate crossing

- Our main technical tool is the Hannenhali-Pevzner algorithm.
- \blacksquare The Hannenhali-Pevzner algorithm focuses on handling the cases where the minimum number of signed reversals/crosscaps is different from the non-orientable genus.
- There are sub-words that cost them extra cross-caps called **blocks**.

Signed reversals distance vs. Degenerate crossing

- Our main technical tool is the Hannenhali-Pevzner algorithm.
- \blacksquare The Hannenhali-Pevzner algorithm focuses on handling the cases where the minimum number of signed reversals/crosscaps is different from the non-orientable genus.
- There are sub-words that cost them extra cross-caps called **blocks**.
- We prove that almost all of these cases can be handled in a topological setting.

Theorem (F., Hubard, de Mesmay '23)

Apart from two exceptional families of graphs, all the 2*-vertex loopless graphs embedded on non-orientable surfaces admit a perfect cross-cap drawing.*

Sketch of the proof:

reduce the scheme.

Theorem (F., Hubard, de Mesmay '23)

Apart from two exceptional families of graphs, all the 2*-vertex loopless graphs embedded on non-orientable surfaces admit a perfect cross-cap drawing.*

Sketch of the proof:

reduce the scheme.

Theorem (F., Hubard, de Mesmay '23)

Apart from two exceptional families of graphs, all the 2*-vertex loopless graphs embedded on non-orientable surfaces admit a perfect cross-cap drawing.*

Sketch of the proof:

reduce the scheme.

Theorem (F., Hubard, de Mesmay '23)

Apart from two exceptional families of graphs, all the 2*-vertex loopless graphs embedded on non-orientable surfaces admit a perfect cross-cap drawing.*

- **reduce** the scheme.
- apply Hannenhali-Pevzner algorithm.

Theorem (F., Hubard, de Mesmay '23)

Apart from two exceptional families of graphs, all the 2*-vertex loopless graphs embedded on non-orientable surfaces admit a perfect cross-cap drawing.*

- **reduce** the scheme.
- apply Hannenhali-Pevzner algorithm.
- **blow up** the cross-caps.

Theorem (F., Hubard, de Mesmay '23)

Apart from two exceptional families of graphs, all the 2*-vertex loopless graphs embedded on non-orientable surfaces admit a perfect cross-cap drawing.*

- **reduce** the scheme.
- apply Hannenhali-Pevzner algorithm.
- **blow up** the cross-caps.
- complete the drawing.

Theorem (F., Hubard, de Mesmay '23)

Apart from two exceptional families of graphs, all the 2*-vertex loopless graphs embedded on non-orientable surfaces admit a perfect cross-cap drawing.*

- **reduce** the scheme.
- apply Hannenhali-Pevzner algorithm.
- **blow up** the cross-caps.
- complete the drawing.

Theorem (F., Hubard, de Mesmay '23)

Apart from two exceptional families of graphs, all the 2*-vertex loopless graphs embedded on non-orientable surfaces admit a perfect cross-cap drawing.*

In particular under standard models of random maps, almost all 2-vertex loopless embedded graphs satisfy Conjecture 2.

Theorem (F., Hubard, de Mesmay '23)

Apart from two exceptional families of graphs, all the 2*-vertex loopless graphs embedded on non-orientable surfaces admit a perfect cross-cap drawing.*

Theorem (F., Hubard, de Mesmay '23)

Apart from two exceptional families of graphs, all the 2*-vertex loopless graphs embedded on non-orientable surfaces admit a perfect cross-cap drawing.*

Theorem (F., Hubard, de Mesmay '23)

Apart from two exceptional families of graphs, all the 2*-vertex loopless graphs embedded on non-orientable surfaces admit a perfect cross-cap drawing.*

Theorem (F., Hubard, de Mesmay '23)

Apart from two exceptional families of graphs, all the 2*-vertex loopless graphs embedded on non-orientable surfaces admit a perfect cross-cap drawing.*

Theorem (F., Hubard, de Mesmay '23)

Apart from two exceptional families of graphs, all the 2*-vertex loopless graphs embedded on non-orientable surfaces admit a perfect cross-cap drawing.*

Negami's conjecture ('01)

Let G_1 and G_2 be two graphs cellularly embedded on a surface S of genus g . G_1 and *G*² can be embedded on *S* **simultaneously** such that each pair of their edges cross at most a constant number of times? (total of $O(n_1 n_2)$ crossings)

Any shape of decomposition can be computed shortly.

Negami's conjecture ('01)

Let G_1 and G_2 be two graphs cellularly embedded on a surface S of genus g . G_1 and *G*² can be embedded on *S* **simultaneously** such that each pair of their edges cross at most a constant number of times? (total of $O(n_1 n_2)$) crossings)

Any shape of decomposition can be computed shortly.

Mohar's Conjecture 1 ('07)

For every graph *G*, $\text{gcr}(G) = \text{dcr}(G)$.

 \rightarrow Allowing the graph to have more vertices, increases the possibility of having a **perfect** cross-cap drawing.

Negami's conjecture ('01)

Let G_1 and G_2 be two graphs cellularly embedded on a surface S of genus g . G_1 and *G*² can be embedded on *S* **simultaneously** such that each pair of their edges cross at most a constant number of times? (total of $O(n_1 n_2)$) crossings)

Any shape of decomposition can be computed shortly.

Mohar's Conjecture 1 ('07)

For every graph *G*, $\text{gcr}(G) = \text{dcr}(G)$.

 \rightarrow Allowing the graph to have more vertices, increases the possibility of having a **perfect** cross-cap drawing.

Negami's conjecture ('01)

Let G_1 and G_2 be two graphs cellularly embedded on a surface S of genus g . G_1 and *G*² can be embedded on *S* **simultaneously** such that each pair of their edges cross at most a constant number of times? (total of $O(n_1 n_2)$) crossings)

Any shape of decomposition can be computed shortly.

Mohar's Conjecture 1 ('07)

For every graph G , $\text{gcr}(G) = \text{dcr}(G)$.

 \rightarrow Allowing the graph to have more vertices, increases the possibility of having a **perfect** cross-cap drawing.

