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Möbius band

The surface we obtain after gluing two ends of a strip of paper after a half-twist
is a Möbius band.

A Möbius band has only one side.
Right and left on the band are not well defined.
Simplest example of a non-orientable surface.
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A "twist" in biology: Genome rearrangement

The DNA of some species only differ by their gene sequences.
The evolutionary distance between two species can be approximated by the
number of reversals needed to transform one gene sequence into another.
We use the similarity between reversals and Möbius band to solve two
problems.
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Surface

A surface is a topological space that locally looks like the plane or the
half plane.
The points that locally look like the half plane comprise the boundary of the
surface.

A surface is non-orientable if and only if it contains a Möbius band, otherwise
it is orientable.
Two surfaces are homeomorphic if one can be transformed continuously to
the other without cutting or gluing.
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Surface
We can obtain all surfaces by cutting disks from a sphere and attaching handles and
cross-caps.

A surface obtained by only attaching handles is orientable.

All surfaces can be classified by:
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Types of curves on a surface
Two curves are of the same type if there exists a homeomorphism of the surface that
maps one to the other.

→ A curve is separating if it cuts the surface
into two connected components.

→ A separating curve is contractible if it
separates a disk from the surface.

→ A curve is one-sided (two-sided)
if it has a neighborhood homeomorphic
to the Möbius band (annulus).

→ A curve on a non-orientable surface is
orienting if it cuts the surface into an
orientable one.
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A discrete model
Our surfaces are obtained by gluing polygonal disks.
This can be seen as an embedded graph on the surface: An injective map
G ↪→ S from a graph G to the surface S.

A graph embedding induces a discrete metric on the surface.
The length of a curve is the number of times it crosses the graph embedded.
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Computing a homeomorphism

Visualizing the homeomorphism between these surfaces is not easy.
A common approach is to cut both to a disk and put the disks in
correspondence.

Such a graph that cuts the surface into simpler pieces is called a
decomposition of the surface.

Question: How much can we control the length of a decomposition?
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Overview
1 Two technical tools:

A model to represent non-orientable embeddings: Cross-cap drawing
An algorithm in genome rearrangement: Signed reversal distance

2 A short topological decomposition for non-orientable surfaces
3 Degenerate crossing number and Mohar’s conjecture
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Two technical tools



1) Cross-cap drawings
One can represent a non-orientable embedding by a planar drawing.

A cross-cap drawing is a planar drawing with such transverse crossings at
cross-caps.

Theorem (Schaefer, Štefankovič ’22)

A graph G embedded on a non-orientable surface admits a cross-cap drawing in
which each edge enters each cross-cap at most twice.
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1) Cross-cap drawings
One can represent a non-orientable embedding by a planar drawing.

A cross-cap drawing is a planar drawing with such transverse crossings at
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This localization of cross-caps is not "canonical"!
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2) Genome rearrangement
The signed reversal distance between two signed permutations is the
minimum number of reversals to go from one to the other.
It is computable in polynomial time [Hannenhali-Pevzner ’99].
This has strong similarities with crosscap drawings.
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A short topological
decomposition for non-orientable

surfaces



Canonical decompositions
Orientable canonical decomposition: a one-vertex graph with the fixed
rotation system a1b1a1b1a2b2a2b2 . . .

Theorem (Lazarus, Pocchiola, Vegter, Verroust ’01)

Given a graph cellularly embedded on an orientable surface of genus g, there exists
an orientable canonical decomposition, so that each loop crosses each edge
of the graph at most 4 times (total length O(gn)).
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Canonical decompositions
Can I cut along the non-orientable canonical decomposition? the one vertex
graph with rotation system aabbcc · · ·
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Canonical decompositions
Can I cut along the non-orientable canonical decomposition? the one vertex
graph with rotation system aabbcc · · ·

Theorem (F., Hubard, de Mesmay ’21)

Given a graph cellularly embedded on a non-orientable surface, there exists a
non-orientable canonical decomposition such that each loop in the system
crosses each edge of the graph at most in 30 points (total length O(gn)).

Best previous bound is O(g2n) (Lazarus ’14).
We use a new approach combining the Schaefer, Štefankovič algorithm and the
Hannenhali-Pevzner algorithm.
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Other cutting shapes
A more general question on finding short decompositions:

Negami’s conjecture (’01)
Let G1 and G2 be two graphs cellularly embedded on a surface S of genus g. G1 and
G2 can be embedded on S simultaneously such that each pair of their edges
cross at most a constant number of times? (total of O(n1n2) crossings)

→ If true, any shape of decomposition can be computed with total length at most O(n1n2).

The length of canonical decompositions matches the bound in Negami’s conjecture.
Best known bound:

Theorem (Negami ’01)
Let G1 and G2 be two graphs cellularly embedded on a surface S of genus g. G1 and
G2 can be embedded on S simultaneously such that each pair of their edges
cross at most O(g) times (total length O(gn1n2)).
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Reduction to the one-vertex case
By contracting a spanning tree, our problem reduces to the case of one-vertex
graphs.

An embedding for a one-vertex graph, is entirely described by the
cyclic ordering of the edges around the vertex, and, in the non-orientable case,
the sidedness of the curves, an embedding scheme.
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1 → Two-sided
-1 → One-sided



Short non-orientable canonical decomposition/ A
different approach

Theorem (Schaefer-Štefankovič ’15)

A graph G embeddable on a non-orientable surface admits a cross-cap drawing in
which each edge enters each cross-cap at most twice.

If we can control the diameter of this cross-cap drawing, we can control the length of
the canonical system of loops.
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A graph G embeddable on a non-orientable surface admits a cross-cap drawing in
which each edge enters each cross-cap at most twice.

If we can control the diameter of this cross-cap drawing, we can control the length of
the canonical system of loops.

Niloufar Fuladi Cross-cap drawings and signed reversal distance 10th December 2024 15 / 24



Short non-orientable canonical decomposition/ A
different approach

Theorem (Schaefer-Štefankovič ’15)
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Sketch of the proof
The proof is by induction on the number of edges.

We build a system of short paths on top of this algorithm.
We have to deal with non-contractible separating loops:
To avoid cascading, we make sure to deal with all the separating loops at once, using
ideas from the Hannenhali-Pevzner algorithm.
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Other decompositions?

A similar approach lets us compute other short decompositions:
An alternative computation of a short orientable canonical decomposition.
Different short decompositions for non-orientable surfaces with rotation system:
a1a1 · · · akakb1c1b̄1c̄1 · · · bmcmb̄mc̄m.
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Degenerate crossing number



Crossing numbers for graphs
Pach and Tóth: The degenerate crossing number of G, dcr(G), is the
minimum number of edge-crossings taken over all proper drawings of G in the
plane in which multiple crossings at a point are counted as a single crossing.

Mohar: what if we allow self-crossings?

→ genus crossing number gcr(G)

For any graph G:

gcr(G) ≤ dcr(G)

Mohar’s Conjecture 1 (’07)

For every graph G, gcr(G)=dcr(G).
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From crossing numbers to non-orientable genus
The minimum cross-caps needed to draw a graph on a surface is called
non-orientable genus g(G) of the graph.

Theorem (Mohar ’07)
For any graph G, gcr(G) = non-orientable genus of G.

Cross-caps can be interpreted as multiple transverse crossings.

A cross-cap drawing is perfect if each edge enters each cross-cap at most once.

Mohar’s Conjecture 1 (’07)
For every graph G, dcr(G) = gcr(G) = g(G).
⇓
Every graph G admits a perfect cross-cap drawing with g(G) cross-caps.

Niloufar Fuladi Cross-cap drawings and signed reversal distance 10th December 2024 19 / 24



From crossing numbers to non-orientable genus
The minimum cross-caps needed to draw a graph on a surface is called
non-orientable genus g(G) of the graph.

Theorem (Mohar ’07)
For any graph G, gcr(G) = non-orientable genus of G.

Cross-caps can be interpreted as multiple transverse crossings.

A cross-cap drawing is perfect if each edge enters each cross-cap at most once.

Mohar’s Conjecture 1 (’07)
For every graph G, dcr(G) = gcr(G) = g(G).
⇓
Every graph G admits a perfect cross-cap drawing with g(G) cross-caps.

Niloufar Fuladi Cross-cap drawings and signed reversal distance 10th December 2024 19 / 24



The Conjectures
Mohar’s Conjecture 1 (’07)
Every graph G admits a perfect cross-cap drawing with g(G) cross-caps.

Mohar’s (stronger) Conjecture 2 (’07)
Every loopless graph embedded on a non-orientable surface admits
a perfect cross-cap drawing.

Mohar’s (even stronger) Conjecture 3 (’07)
Every graph embedded on a non-orientable surface in which loops are
non-separating admits a perfect cross-cap drawing.

→ We provide a
2-vertex counter
example.

→ Schaefer and
Štefankovič
disproved this.

Theorem (F., Hubard, de Mesmay ’23)
Apart from two exceptional families of graphs, all 2-vertex loopless graphs embedded on
non-orientable surfaces satisfy Conjecture 2.
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disproved this.

Theorem (F., Hubard, de Mesmay ’23)
Apart from two exceptional families of graphs, all 2-vertex loopless graphs embedded on
non-orientable surfaces satisfy Conjecture 2.

Niloufar Fuladi Cross-cap drawings and signed reversal distance 10th December 2024 20 / 24



The Conjectures
Mohar’s Conjecture 1 (’07)
Every graph G admits a perfect cross-cap drawing with g(G) cross-caps.

Mohar’s (stronger) Conjecture 2 (’07)
Every loopless graph embedded on a non-orientable surface admits
a perfect cross-cap drawing.

Mohar’s (even stronger) Conjecture 3 (’07)
Every graph embedded on a non-orientable surface in which loops are
non-separating admits a perfect cross-cap drawing.

→ We provide a
2-vertex counter
example.

→ Schaefer and
Štefankovič
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The counter example
Mohar’s (stronger) Conjecture 2 (’07)
Every loopless graph embedded on a non-orientable surface admits a perfect cross-cap
drawing.

Conjecture 2 does not hold:

Theorem (F., Hubard, de Mesmay ’23)
There exists a 2-vertex loopless graph embedded on a non-orientable surface that does
not admit a perfect cross-cap drawing.
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Signed reversals distance vs. Degenerate crossing
Our main technical tool is the Hannenhali-Pevzner algorithm.
The algorithm imposes an order on the cross-caps → each edge enters each
cross-cap at most once.

The Hannenhali-Pevzner algorithm focuses on handling the cases where the
minimum number of signed reversals/crosscaps is different from the
non-orientable genus.
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Our main technical tool is the Hannenhali-Pevzner algorithm.
The Hannenhali-Pevzner algorithm focuses on handling the cases where the
minimum number of signed reversals/crosscaps is different from the
non-orientable genus.

→ There are sub-words that cost them extra cross-caps called blocks.

We prove that almost all of these cases can be handled in a topological setting.
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Cross-cap drawings of 2-vertex schemes
Theorem (F., Hubard, de Mesmay ’23)

Apart from two exceptional families of graphs, all the 2-vertex loopless graphs
embedded on non-orientable surfaces admit a perfect cross-cap drawing.

Sketch of the proof:

→ reduce the scheme.

→ apply Hannenhali-Pevzner algorithm.

→ blow up the cross-caps.

→ complete the drawing.
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Cross-cap drawings of 2-vertex schemes
Theorem (F., Hubard, de Mesmay ’23)

Apart from two exceptional families of graphs, all the 2-vertex loopless graphs
embedded on non-orientable surfaces admit a perfect cross-cap drawing.

In particular under standard models of random maps, almost all 2-vertex
loopless embedded graphs satisfy Conjecture 2.
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Cross-cap drawings of 2-vertex schemes
Theorem (F., Hubard, de Mesmay ’23)

Apart from two exceptional families of graphs, all the 2-vertex loopless graphs
embedded on non-orientable surfaces admit a perfect cross-cap drawing.

This algorithm can be extended for loopless bipartite embedding schemes.
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Conclusion
Negami’s conjecture (’01)

Let G1 and G2 be two graphs cellularly embedded on a surface S of genus g. G1
and G2 can be embedded on S simultaneously such that each pair of their edges
cross at most a constant number of times? (total of O(n1n2) crossings)

→ Any shape of decomposition can be computed shortly.

Mohar’s Conjecture 1 (’07)

For every graph G, gcr(G) = dcr(G).

→ Allowing the graph to have more vertices,
increases the possibility of having a perfect
cross-cap drawing.
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