Jérémie BETTINELLI based on joint work with Grégory Miermont

Feb. 20, 2018

Plane maps

The Brownian map

plane map: finite connected graph embedded in the sphere faces: connected components of the complement

faces:

countries and bodies of water

connected graph no "enclaves"

Rooted maps

rooted map: map with one distinguished corner

Edge deformation

Gromov-Hausdorff topology: picture

The Brownian map

Gromov-Hausdorff topology: picture

The Brownian map 0000 + 00000

The Brownian map 0000 + 00000

The Brownian map 0000 + 00000

Gromov-Hausdorff topology: formal definition

- \Rightarrow [X, d]: isometry class of (X, d)
- $\Rightarrow \mathbb{M} := \{ [X, d], (X, d) \text{ compact metric space} \}$

$$d_{\mathsf{GH}}\left([X,d],[X',d']
ight) := \inf d_{\mathsf{Hausdorff}}\left(arphi(X),arphi'(X')
ight)$$

where the infimum is taken over all metric spaces (Z, δ) and isometric embeddings $\varphi : (X, d) \to (Z, \delta)$ and $\varphi' : (X', d') \to (Z, \delta)$.

 \diamond (M, d_{GH}) is a Polish space.

Scaling limit: the Brownian map

♦ am: finite metric space obtained by endowing the vertex-set of m with a times the graph metric (each edge has length a).

Theorem (Le Gall '11, Miermont '11)

The Brownian map

Let q_n be a uniform plane quadrangulation with n faces. The sequence $((8n/9)^{-1/4} \mathfrak{q}_n)_{n>1}$ converges weakly in the sense of the Gromov-Hausdorff topology toward a random compact metric space called the Brownian map.

Brownian disks Feb. 20, 2018 Jérémie BETTINELLI

Scaling limit: the Brownian map

 \Rightarrow am: finite metric space obtained by endowing the vertex-set of m with a times the graph metric (each edge has length a).

Theorem (Le Gall '11, Miermont '11)

The Brownian map 0000000

Let q_n be a uniform plane quadrangulation with n faces. The sequence $((8n/9)^{-1/4} \mathfrak{q}_n)_{n>1}$ converges weakly in the sense of the Gromov-Hausdorff topology toward a random compact metric space called the Brownian map.

Definition (Convergence for the Gromov–Hausdorff topology)

A sequence (\mathcal{X}_n) of compact metric spaces converges in the sense of the Gromov–Hausdorff topology toward a metric space \mathcal{X} if there exist isometric embeddings $\varphi_n: \mathcal{X}_n \to \mathcal{Z}$ and $\varphi: \mathcal{X} \to \mathcal{Z}$ into a common metric space \mathcal{Z} such that $\varphi_n(\mathcal{X}_n)$ converges toward $\varphi(\mathcal{X})$ in the sense of the Hausdorff topology.

Scaling limit: the Brownian map

 \Rightarrow am: finite metric space obtained by endowing the vertex-set of m with a times the graph metric (each edge has length a).

Theorem (Le Gall '11, Miermont '11)

The Brownian map

Let q_n be a uniform plane quadrangulation with n faces. The sequence $\left(\left(\frac{8n}{9} \right)^{-1/4} q_n \right)_{n \geq 1}$ converges weakly in the sense of the Gromov–Hausdorff topology toward a random compact metric space called the Brownian map.

This theorem has been proven independently by two different approaches by Miermont and by Le Gall.

Uniform plane quadrangulation with 50 000 faces

Earlier results

- Chassaing—Schaeffer '04
 - the scaling factor is n^{1/4}
 - scaling limit of functionals of random uniform quadrangulations (radius, profile)
- Marckert–Mokkadem '06
 - introduction of the Brownian map
- ♦ Le Gall '07

The Brownian map

- the sequence of rescaled quadrangulations is relatively compact
- any subsequential limit has the topology of the Brownian map
- any subsequential limit has Hausdorff dimension 4
- Le Gall-Paulin '08 & Miermont '08
 - the topology of any subsequential limit is that of the two-sphere
- Bouttier-Guitter '08
 - limiting joint distribution between three uniformly chosen vertices

Universality of the Brownian map

Many other natural models of plane maps converge to the Brownian map (up to a model-dependent scale constant): for well-chosen maps \mathfrak{m}_n ,

$$c n^{-1/4} \mathfrak{m}_n \xrightarrow[n \to \infty]{} Brownian map.$$

♦ Le Gall '11: uniform p-angulations for $p \in \{3, 4, 6, 8, 10, ...\}$ and Boltzmann bipartite maps with fixed number of vertices

Using Le Gall's method, many generalizations:

- ♦ Beltran and Le Gall '12: quadrangulations with no pendant edges
- Addario-Berry–Albenque '13: simple triangulations and simple quadrangulations
- ♦ B.–Jacob–Miermont '14: general maps with fixed number of edges
- Abraham '14: bipartite maps with fixed number of edges
- Marzouk '17: bipartite maps with prescribed degree sequence
- ♦ Albenque (in prep.): p-angulations for odd $p \ge 5$

Plane quadrangulations with a boundary

plane quadrangulations with a boundary: plane map whose faces have degree 4, except maybe the root face

the boundary is not in general a simple curve

Scaling limit: generic case

- ϕ g_n uniform among quadrangulations with a boundary having n internal faces and an external face of degree $2I_n$
- $\Rightarrow I_n/\sqrt{2n} \to L \in (0,\infty)$

Theorem (B.-Miermont '15)

The sequence $((8n/9)^{-1/4} \mathfrak{q}_n)_{n>1}$ converges weakly in the sense of the Gromov-Hausdorff topology toward a random compact metric space BD, called the Brownian disk of perimeter L.

Theorem (B. '11)

Let L > 0 be fixed. Almost surely, the space BD_L is homeomorphic to the closed unit disk of \mathbb{R}^2 . Moreover, almost surely, the Hausdorff dimension of BD₁ is 4, while that of its boundary ∂ BD₁ is 2.

40 000 faces and boundary length 1 000

Scaling limit: degenerate cases

- \Rightarrow q_n uniform among quadrangulations with a boundary having n internal faces and an external face of degree 21_n
- $\Rightarrow I_n/\sqrt{2n} \rightarrow 0$

Theorem (B. '11)

The sequence $((8n/9)^{-1/4} \mathfrak{q}_n)_{n>1}$ converges weakly in the sense of the Gromov-Hausdorff topology toward the Brownian map.

Scaling limit: degenerate cases

- \Rightarrow q_n uniform among quadrangulations with a boundary having n internal faces and an external face of degree $2I_n$
- $\Rightarrow I_n/\sqrt{2n} \rightarrow 0$

Theorem (B. '11)

The sequence $((8n/9)^{-1/4} \mathfrak{q}_n)_{n>1}$ converges weakly in the sense of the Gromov-Hausdorff topology toward the Brownian map.

$$\Rightarrow I_n/\sqrt{2n} \to \infty$$

Theorem (B. '11)

The sequence $((2\sigma_n)^{-1/2}q_n)_{n>1}$ converges weakly in the sense of the Gromov-Hausdorff topology toward the Brownian Continuum Random Tree (universal scaling limit of models of random trees).

Scaling limit: degenerate cases

$$\Rightarrow I_n/\sqrt{2n} \rightarrow 0$$

Theorem (B. '11)

The sequence $((8n/9)^{-1/4} \mathfrak{q}_n)_{n>1}$ converges weakly in the sense of the Gromov-Hausdorff topology toward the Brownian map.

$$\Rightarrow I_n/\sqrt{2n} \to \infty$$

Theorem (B. '11)

The sequence $((2\sigma_n)^{-1/2}q_n)_{n>1}$ converges weakly in the sense of the Gromov-Hausdorff topology toward the Brownian Continuum Random Tree (universal scaling limit of models of random trees).

to be compared with Bouttier-Guitter '09

10 000 faces and boundary length 2 000

Universality

Theorem (B.–Miermont '15)

Let $L \in (0, \infty)$ be fixed, $(I_n, n \ge 1)$ be a sequence of integers such that $I_n \sim L\sqrt{p(p-1)n}$ as $n \to \infty$, and \mathfrak{m}_n be uniformly distributed over the set of 2p-angulations with n internal faces and perimeter $2l_n$. Then $((4p(p-1)n/9)^{-1/4}\mathfrak{m}_n)_{n>1}$ converges weakly in the sense of the Gromov-Hausdorff topology toward BD₁.

Universality

Theorem (B.–Miermont '15)

Let $L \in (0, \infty)$ be fixed, $(I_n, n \ge 1)$ be a sequence of integers such that $I_n \sim L\sqrt{p(p-1)n}$ as $n \to \infty$, and \mathfrak{m}_n be uniformly distributed over the set of 2p-angulations with n internal faces and perimeter 2l_n. Then $((4p(p-1)n/9)^{-1/4}\mathfrak{m}_n)_{n>1}$ converges weakly in the sense of the Gromov-Hausdorff topology toward BD₁.

Theorem (B.–Miermont '15)

Let \mathfrak{m}_n be a uniform random bipartite map with n edges and with perimeter $2I_n$, where $I_n \sim 3L_1/n/2$ for some L > 0. Then $((2n)^{-1/4}\mathfrak{m}_n)_{n>1}$ converges weakly in the sense of the Gromov-Hausdorff topology toward BD1.

Universality

Theorem (B.-Miermont '15)

Let $L \in (0, \infty)$ be fixed, $(I_n, n \ge 1)$ be a sequence of integers such that $I_n \sim L\sqrt{p(p-1)n}$ as $n \to \infty$, and \mathfrak{m}_n be uniformly distributed over the set of 2p-angulations with n internal faces and perimeter $2l_n$. Then $((4p(p-1)n/9)^{-1/4}\mathfrak{m}_n)_{n>1}$ converges weakly in the sense of the Gromov-Hausdorff topology toward BD₁.

Theorem (B.–Miermont '15)

Let \mathfrak{m}_n be a uniform random bipartite map with n edges and with perimeter $2I_n$, where $I_n \sim 3L\sqrt{n/2}$ for some L > 0. Then $((2n)^{-1/4}\mathfrak{m}_n)_{n>1}$ converges weakly in the sense of the Gromov-Hausdorff topology toward BD1.

More universality results for bipartite Boltzmann maps conditionned on their number of vertices, faces or edges.

Take a labeled forest.

- Take a labeled forest.
- Add a vertex v[•]
 inside the unique
 face.

- Take a labeled forest.
- Add a vertex v[•]
 inside the unique face.
 - Link every corner to the first subsequent corner having a strictly smaller label.

- Take a labeled forest.
- Add a vertex v[•]
 inside the unique face.
 - Link every corner to the first subsequent corner having a strictly smaller label.

- Take a labeled forest.
- ♦ Add a vertex v[•] inside the unique face.
 - Link every corner to the first subsequent corner having a strictly smaller label.

- Take a labeled forest.
- ♦ Add a vertex v[•] inside the unique face.
 - Link every corner to the first subsequent corner having a strictly smaller label.

- Take a labeled forest.
- ♦ Add a vertex v[•] inside the unique face.
 - Link every corner to the first subsequent corner having a strictly smaller label.

- Take a labeled forest.
- ♦ Add a vertex v[•] inside the unique face.
 - Link every corner to the first subsequent corner having a strictly smaller label.

- Take a labeled forest.
- ♦ Add a vertex v[•] inside the unique face.
 - Link every corner to the first subsequent corner having a strictly smaller label.

- Take a labeled forest.
- ♦ Add a vertex v[•] inside the unique face.
 - Link every corner to the first subsequent corner having a strictly smaller label.

- Take a labeled forest.
- ♦ Add a vertex v[•] inside the unique face.
 - Link every corner to the first subsequent corner having a strictly smaller label.

- Take a labeled forest.
- ♦ Add a vertex v[•] inside the unique face.
 - Link every corner to the first subsequent corner having a strictly smaller label.

- Take a labeled forest.
- ♦ Add a vertex v[•] inside the unique face.
 - Link every corner to the first subsequent corner having a strictly smaller label.

- Take a labeled forest.
- ♦ Add a vertex v[•] inside the unique face.
 - Link every corner to the first subsequent corner having a strictly smaller label.

- Take a labeled forest.
- ♦ Add a vertex v[•] inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.

- Take a labeled forest.
- ♦ Add a vertex v[•] inside the unique face.
 - Link every corner to the first subsequent corner having a strictly smaller label.

- Take a labeled forest.
- ♦ Add a vertex v[•] inside the unique face.
 - Link every corner to the first subsequent corner having a strictly smaller label.

- Take a labeled forest.
- ♦ Add a vertex v[•] inside the unique face.
 - Link every corner to the first subsequent corner having a strictly smaller label.

- Take a labeled forest.
- ♦ Add a vertex v[•] inside the unique face.
 - Link every corner to the first subsequent corner having a strictly smaller label.

- Take a labeled forest.
- ♦ Add a vertex v[•] inside the unique face.
 - Link every corner to the first subsequent corner having a strictly smaller label.

- Take a labeled forest.
- ♦ Add a vertex v[•] inside the unique face.
 - Link every corner to the first subsequent corner having a strictly smaller label.

Take a labeled forest.

Map encoding **♦**♦♦♦

- ♦ Add a vertex v[•] inside the unique face.
 - Link every corner to the first subsequent corner having a strictly smaller label.
- Remove the initial edges.

Key facts

Theorem (Bouttier–Di Francesco–Guitter (generalization of Cori–Vauquelin–Schaeffer))

The previous construction yields a bijection between the following:

- ♦ labeled forests with n edges and I trees;
- pointed quadrangulations with a boundary having n internal faces and boundary length 2I such that the root vertex is farther away from the distinguished vertex than the previous vertex in clockwise order around the boundary.

Lemma

The labels of the forest become the distances in the map to the distinguished vertex v^{\bullet} .

Jérémie BETTINELLI Brownian disks Feb. 20, 2018

Proceed tree by tree.

- Proceed tree by tree.
 - Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.
- Proceed as before.

- Proceed tree by tree.
 - Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.
 - Proceed as before.

- Proceed tree by tree.
 - Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.
 - Proceed as before.

- Proceed tree by tree.
 - Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.
 - Proceed as before.

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.
- Proceed as before.

- Proceed tree by tree.
 - Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.
 - Proceed as before.

- Proceed tree by tree.
 - Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.
 - Proceed as before.

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.
- Proceed as before.

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.
 - Proceed as before.

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.
 - Proceed as before.

- Proceed tree by tree.
 - Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.
 - Proceed as before.

- Proceed tree by tree.
 - Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.
 - Proceed as before.

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.
- Proceed as before.

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.
- Proceed as before.

Slices of the previous computer simulation

Case of the Brownian map (I = 1)

- Distinguishing a uniformly chosen vertex in a uniform quadrangulation gives a uniform pointed quadrangulation.
- ♦ A uniform pointed quadrangulation corresponds via the previous bijection to a uniform labeled tree.
- Relax the positivity constraints on the label by shifting them in such a way that the root vertex gets label 0.

Jérémie BETTINELLI Brownian disks Feb. 20, 2018

Case of the Brownian map (I = 1)

- Distinguishing a uniformly chosen vertex in a uniform quadrangulation gives a uniform pointed quadrangulation.
- ♦ A uniform pointed quadrangulation corresponds via the previous bijection to a uniform labeled tree.
- Relax the positivity constraints on the label by shifting them in such a way that the root vertex gets label 0.
- \diamond After proper rescaling (\sqrt{n} for tree length and $n^{1/4}$ for labels), the resulting labeled tree converges in a natural sense (encoding by contour and label functions) to $(\mathcal{T}_{\mathbf{e}}, Z)$, where
 - T_a is Aldous's Brownian Continuum Random Tree (universal scaling limit of random tree models);
 - Z is a Brownian motion indexed by T.

Jérémie BETTINELLI Brownian disks Feb. 20, 2018

Construction of the Brownian map

Consider the CRT $\mathcal{T}_{\mathbf{e}}$, that is, the random real tree encoded by the normalized Brownian excursion.

Consider the CRT $\mathcal{T}_{\mathbf{e}}$, that is, the random real tree encoded by the normalized Brownian excursion.

 \diamond Put Brownian labels Z on $\mathcal{T}_{\mathbf{e}}$.

Construction of the Brownian map

Consider the CRT T_e, that is, the random real tree encoded by the normalized Brownian excursion.

- \diamond Put Brownian labels Z on $\mathcal{T}_{\mathbf{e}}$.
- ♦ Identify the points \underline{a} and \underline{b} whenever $Z_a = Z_b = \min_{[a,b]} Z$ or $Z_a = Z_b = \min_{[b,a]} Z$.

Construction of the Brownian map

Consider the CRT $\mathcal{T}_{\mathbf{e}}$, that is, the random real tree encoded by the normalized Brownian excursion.

- \diamond Put Brownian labels Z on $\mathcal{T}_{\mathbf{e}}$.
- Identify the points a and b whenever $Z_a = Z_b = \min_{[a,b]} Z$ or $Z_a = Z_b = \min_{[b,a]} Z$.

Construction of the Brownian map

Consider the CRT T_e, that is, the random real tree encoded by the normalized Brownian excursion.

- \diamond Put Brownian labels Z on $\mathcal{T}_{\mathbf{e}}$.
- ♦ Identify the points \underline{a} and \underline{b} whenever $Z_a = Z_b = \min_{[a,b]} Z$ or $Z_a = Z_b = \min_{[b,a]} Z$.

Same construction as before but only identify points a and b if

$$Z_a = Z_b = \min_{\mathcal{I}} Z$$

where \mathcal{I} is the "interval" among $\{[a,b],[b,a]\}$ that do not contain the root of the tree (equivalence class of 0).

 Alternatively, consider the Brownian map.

- Alternatively, consider the Brownian map.
- \diamond Consider its root ρ (the image of the root of the CRT $\mathcal{T}_{\mathbf{e}}$) and the image of the (a.s. unique) point with minimum label

 $X^{\bullet} := \operatorname{argmin} Z$.

- Alternatively, consider the Brownian map.
- \diamond Consider its root ρ (the image of the root of the CRT $\mathcal{T}_{\mathbf{e}}$) and the image of the (a.s. unique) point with minimum label

 $X^{\bullet} := \operatorname{argmin} Z$.

Consider the (a.s. unique) geodesic linking them.

- Alternatively, consider the Brownian map.
- \diamond Consider its root ρ (the image of the root of the CRT $\mathcal{T}_{\mathbf{e}}$) and the image of the (a.s. unique) point with minimum label
 - $X^{\bullet} := \operatorname{argmin} Z$.
- Consider the (a.s. unique) geodesic linking them.
- Slit it open.

- A uniform quadrangulation with a boundary corresponds to a uniform labeled forest
- The boundary of the quadrangulation corresponds to the floor of the forest (the set of tree roots).
- In the scaling limit,
 - the labels of this floor constitute a Brownian bridge;
 - the labeled trees converge to a Poisson point process of Brownian CRTs with Brownian labels.
- A Brownian disk is obtained by gluing the corresponding slices.

Caveat

There is an infinite number of slices... Fortunately, they accumulate near the boundary and we can show that a geodesic between two typical points stays away from the boundary, thus visits a finite number of slices.

Future work and open questions

- Orientable compact surfaces with a boundary
 - bijective encoding known (Chapuy–Marcus–Schaeffer '08 & Bouttier–Di Francesco–Guitter '04)
 - subsequential limits of rescaled quadrangulations exist (B. '14)
 - study of the geodesics toward the root (B. '14)
 - uniqueness of the limit (in progress with G. Miermont)
- Nonorientable compact surfaces
 - bijective encoding recently found (Chapuy–Dołęga '15 & B. '15)
 - subsequential limits of rescaled quadrangulations exist for surfaces without boundary (Chapuy–Dołęga '15)
 - uniqueness of the limit (project with G. Chapuy and M. Dołęga)
- Universality of the previous objects (different faces, simple boundary components, girth constraints...)
- Metric gluing of such objects (e.g. two disks along their boundary)
- \diamond Infinite genus: let the number of faces and the genus tend to ∞ in the proper regime

The Brownian map

Map encoding

- ♦ B: set of bipartite plane maps (maps with faces of even degrees)
- $\Rightarrow q = (q_1, q_2, \dots) \neq (0, 0, \dots)$: sequence of non-negative weights

The Boltzmann measure is defined on **B** by

$$W(\{\mathfrak{m}\}) = \prod_{f ext{ internal face}} q_{\deg(f)/2}$$
 .

Boltzmann random maps

- ♦ B: set of bipartite plane maps (maps with faces of even degrees)
- $q = (q_1, q_2, ...) \neq (0, 0, ...)$: sequence of non-negative weights

The Boltzmann measure is defined on **B** by

$$W(\{\mathfrak{m}\}) = \prod_{f ext{ internal face}} q_{\deg(f)/2}$$
 .

- ♦ B_I: set of bipartite plane maps with perimeter (root face degree) 2I
- \Rightarrow **B**_{l,n}^V: maps of **B**_l with n+1 vertices
- \Rightarrow **B**_{I,n}: maps of **B**_I with *n* edges
- \Rightarrow **B**_{l,n}^F: maps of **B**_l with *n* internal faces

Whenever $0 < W(\mathbf{B}_{l,n}^{\mathbf{S}}) < \infty$, we may define the probability distribution

$$\mathbb{W}_{l,n}^{\mathbf{S}}(\cdot) := W(\cdot \,|\, \mathbf{B}_{l,n}^{\mathbf{S}}) = \frac{W(\cdot \cap \mathbf{B}_{l,n}^{\mathbf{S}})}{W(\mathbf{B}_{l,n}^{\mathbf{S}})} \,.$$

Admissible, regular critical weight sequences

$$f_q(x) := \sum_{k>0} x^k \binom{2k+1}{k} q_{k+1}, \qquad x \ge 0.$$

- \Rightarrow q is admissible if $f_q(z) = 1 \frac{1}{z}$ admits a solution z > 1.
- \Rightarrow q is regular critical if moreover the solution z to the above equation satisfies $z^2 f_a'(z) = 1$ and if there exists $\varepsilon > 0$ such that $f_{\alpha}(z+\varepsilon)<\infty$.

Convergence of Boltzmann maps

Let q be a regular critical weight sequence and S denote one of the symbols V, E, F. We define an explicit quantity $\sigma_{\rm S}$ whose precise expression will not be needed here.

Let L > 0 and $(l_k, n_k)_{k > 0}$ be a sequence such that $W(\mathbf{B}_{l_k, n_k}^{\mathbf{S}}) > 0$ and l_k , $n_k \to \infty$ with $l_k \sim L\sigma_{\mathbf{S}}\sqrt{n_k}$ as $k \to \infty$. Then $W(\mathbf{B}_{l_k,n_k}^{\mathbf{S}}) < \infty$.

Theorem (B.–Miermont '15)

For $k \geq 0$, denote by \mathfrak{m}_k a random map with distribution $\mathbb{W}^{\mathbf{S}}_{l_k,n_k}$. Then

$$\left(\frac{4\sigma_{\mathbf{S}}^2}{9}\,n_k\right)^{-1/4}\mathfrak{m}_k\xrightarrow[k\to\infty]{(d)}\mathsf{BD}_L$$

in distribution for the Gromov-Hausdorff topology.

Application 1: uniform 2p-angulations

Let $p \ge 2$. The weight sequence

$$q:=\frac{(p-1)^{p-1}}{p^p\binom{2p-1}{p}}\delta_p$$

is regular critical and $\mathbb{W}_{l,n}^{\mathsf{F}}$ is the uniform distribution on the set of 2p-angulations with n faces and perimeter 2l.

Corollary

Let $L \in (0, \infty)$ be fixed, $(I_n, n \ge 1)$ be a sequence of integers such that $I_n \sim L\sqrt{p(p-1)n}$ as $n \to \infty$, and \mathfrak{m}_n be uniformly distributed over the set of 2p-angulations with n internal faces and perimeter $2l_n$. Then

$$\left(\frac{9}{4p(p-1)n}\right)^{1/4}\mathfrak{m}_n\xrightarrow[n\to\infty]{(d)}\mathsf{BD}_L$$

in distribution for the Gromov-Hausdorff topology.

Application 2: uniform bipartite maps

Let $q_k = 8^k$, $k \ge 1$. The weight sequence q is regular critical and $\mathbb{W}_{l,n}^{\mathsf{E}}$ is the uniform distribution over bipartite maps with n edges and perimeter 21. (Recall that $\sum_{f \text{ face}} \deg(f)/2 = \text{number of edges.}$)

Corollary

Let \mathfrak{m}_n be a uniform random bipartite map with n edges and with perimeter $2I_n$, where $I_n \sim 3L\sqrt{n/2}$ for some L > 0. Then

$$(2n)^{-1/4}\mathfrak{m}_n \xrightarrow[n\to\infty]{} \mathsf{BD}_L$$

in distribution for the Gromov-Hausdorff topology.

- ♦ B_i: set of bipartite plane maps with perimeter 2i
- \Rightarrow q: regular critical weight sequence (imply that $W(\mathbf{B}_l) < \infty$)

Theorem (B.-Miermont '15)

For $l \in \mathbb{N}$, let \mathfrak{m}_l be distributed according to $W(\cdot | \mathbf{B}_l)$. The sequence $((2I/3)^{-1/2}\mathfrak{m}_I)_{I>1}$ converges weakly in the sense of the Gromov-Hausdorff topology toward a random compact metric space called the free Brownian disk.

Free Brownian disk

- ♦ B_i: set of bipartite plane maps with perimeter 2i
- ϕ q: regular critical weight sequence (imply that $W(\mathbf{B}_l) < \infty$)

Theorem (B.-Miermont '15)

For $l \in \mathbb{N}$, let \mathfrak{m}_l be distributed according to $W(\cdot | \mathbf{B}_l)$. The sequence $((2I/3)^{-1/2}\mathfrak{m}_I)_{I>1}$ converges weakly in the sense of the Gromov-Hausdorff topology toward a random compact metric space called the free Brownian disk.

 \diamond The free Brownian disk is distributed as $\mathcal{A}^{1/4}$ BD $_{A^{-1/2}}$ where \mathcal{A} has distribution given by

$$\frac{1}{\sqrt{2\pi A^5}} \exp\left(-\frac{1}{2A}\right) dA \mathbf{1}_{\{A>0\}}.$$

Free Brownian disk

- ♦ B_i: set of bipartite plane maps with perimeter 2i
- ϕ q: regular critical weight sequence (imply that $W(\mathbf{B}_l) < \infty$)

Theorem (B.-Miermont '15)

For $l \in \mathbb{N}$, let \mathfrak{m}_l be distributed according to $W(\cdot | \mathbf{B}_l)$. The sequence $((2I/3)^{-1/2}\mathfrak{m}_I)_{I>1}$ converges weakly in the sense of the Gromov-Hausdorff topology toward a random compact metric space called the free Brownian disk.

 \diamond The free Brownian disk is distributed as $\mathcal{A}^{1/4}$ BD $_{A^{-1/2}}$ where \mathcal{A} has distribution given by

$$\frac{1}{\sqrt{2\pi A^5}} \exp\left(-\frac{1}{2A}\right) dA \mathbf{1}_{\{A>0\}}.$$

♦ The scaling is universal: it does not involve q whatsoever!