
The Petri Net Markup Language:
Concepts, Technology, and Tools

Jonathan Billington1, Søren Christensen2, Kees van Hee3,
Ekkart Kindler4, Olaf Kummer5, Laure Petrucci6,

Reinier Post3, Christian Stehno7, and Michael Weber8

1 University of South Australia, Computer Systems Engineering Centre,
j.billington@unisa.edu.au

2 University of Aarhus, Department of Computer Science,
schristensen@daimi.au.dk

3 Technische Universiteit Eindhoven, Department of Math. and Computer Science
{k.m.v.hee,r.d.j.post}@tue.nl

4 University of Paderborn, Department of Computer Science,
kindler@upb.de

5 CoreMedia AG, Germany,
olaf.kummer@coremedia.com

6 Laboratoire Spécification et Vérification, CNRS UMR 8643, ENS de Cachan,
petrucci@lsv.ens-cachan.fr

7 Carl von Ossietzky University Oldenburg, Department of Computing Science,
stehno@informatik.uni-oldenburg.de

8 Humboldt-Universität zu Berlin, Computer Science Department,
mweber@informatik.hu-berlin.de

Abstract. The Petri Net Markup Language (PNML) is an XML-based
interchange format for Petri nets. In order to support different versions
of Petri nets and, in particular, future versions of Petri nets, PNML al-
lows the definition of Petri net types. Due to this flexibility, PNML is
a starting point for a standard interchange format for Petri nets. This
paper discusses the design principles, the basic concepts, and the un-
derlying XML technology of PNML. The main purpose of this paper is
to disseminate the ideas of PNML and to stimulate discussion on and
contributions to a standard Petri net interchange format.

1 Introduction

It has been recognised in the Petri net community for over a decade [29, 18, 2,
19, 15] that it is useful to be able to transfer Petri net models between tools
that may exist in different countries throughout the world. This would allow
Petri Net tool users in geographically distributed locations to take advantage of
newly developed facilities on other tools, for example, for analysis, simulation
or implementation. The Petri net community would be able to exchange Petri
net models that are of mutual interest, perhaps for teaching a course, or in a
global development project where teams in different countries exchange design
information. It would allow a library of Petri net models to be created that could

be accessed worldwide via the Internet and edited, simulated and analysed on
different tools. This idea can be extended to the transfer of analysis results.
For example, one may wish to develop Petri net models with a tool, obtain the
occurrence graph with another Petri net tool, and model check it on a third one.

To facilitate the transfer of Petri nets it is useful to develop a standard
transfer format. This was recognised in the initial proposal to establish an In-
ternational standard for High-level Petri nets in 1995 [12]. Three years ago, an
initiative was taken to discuss the development of a standard interchange format
for Petri nets by holding a workshop [1] as part of the Petri net conference in
Aarhus, Denmark. The principles and objectives of such an interchange format
were discussed and different proposals for XML-based interchange formats were
presented. Since then, there have been several other meetings and discussions on
such a format including standards meetings at the last two Petri net conferences,
resulting in a mailing list being established to promote further discussion1. Still,
there is no well-accepted interchange format for Petri nets to date.

The Petri Net Markup Language (PNML) [15] was one of the proposals for
an interchange format at the first workshop. Though not generally accepted yet,
it is currently supported by a couple of tools. Moreover, it is flexible enough
to integrate different types of Petri nets and is open for future extensions. This
makes it a good starting point for a future standard interchange format.

In this paper, we present the concepts of PNML, its realization in XML tech-
nology as well as some tools supporting its use. The purpose of this paper is
to focus and promote the development of a standard interchange format. It will
serve as a starting point for international standardization within the joint tech-
nical committee of the International Organization for Standardization and the
International Electrotechnical Commission (ISO/IEC) and should stimulate the
discussion of its concepts and its realization. A recent new work item proposal
[14] on Petri Net techniques was accepted in 2002. It proposes the development
of a 3 part standard for High-level Petri nets. Part 2 of this standard (ISO/IEC
15909-2) will develop the transfer format. (Part 1 [13] is concerned with basic
concepts, definitions and graphical notation and Part 3 is reserved for extensions,
such as the inclusion of time and modularity constructs.)

Though the basic concepts of PNML have been stable from its very beginning,
there have been different extensions and minor changes. The current version is
PNML 1.3, which will be discussed in this paper. However, due to its size, we
cannot give here a complete description of PNML 1.3 and its realization in XML.
For further technical details and examples, we refer the reader to the PNML

homepage [24]. Here, we concentrate on the principles and concepts of PNML

(Sect. 2) and its realization (Sect. 3).
One of the main guiding principles of PNML is extensibility to allow for the

incorporation of future versions of Petri nets. To this end, PNML includes the
definition of different Petri Net Types. In order to guarantee some compatibil-
ity between different Petri net types, PNML suggests an evolving Conventions
Document, which maintains the syntax (and to some extent the semantics) of all

1 See http://www.informatik.hu-berlin.de/top/PNX/ for details.

available features for defining Petri net types. In Sect. 4, we discuss the structure
of the Conventions Document and some of the features covered in its present
version. The graphical features of PNML are considered in Sect. 5, where we give
a transformation to Scalable Vector Graphics (SVG [11]) in order to provide a
reference for the graphical appearance of a PNML file. In Sect. 6, we present
some of the tools available for PNML and, in particular, tools that provide some
support in reading and writing PNML files. Section 7 briefly discusses the is-
sues of modularity, and the transfer of analysis results. Finally we provide some
conclusions and suggestions for future work.

2 Concepts

In this section, the idea, the design principles and the concepts of PNML are
explained. PNML is designed to be a Petri net interchange format that is inde-
pendent of specific tools and platforms. Moreover, the interchange format needs
to support different dialects of Petri nets and must be extensible. More recently,
the ideas to support the exchange of analysis information was added to this list.

An early proposal [3] for a standard Petri net transfer syntax appeared in
1988. The Abstract Petri Net Notation [2] is a more recent (1995) proposal for
such an interchange format. It tries to capture different versions of Petri nets
within a single format and provides limited features to extend it. PNML goes
one step further by providing an explicit concept for defining new features and
new Petri net types.

2.1 Design Principles

Starting from the above ideas, the design of PNML was governed by the principles
of flexibility and compatibility and the need for it to be unambiguous.

Flexibility means that PNML should be able to represent any kind of Petri net
with its specific extensions and features. PNML should not restrict the features
of some kinds of Petri nets, nor force us to ignore or to abstract from specific
information of a Petri net when converting it to PNML. In order to achieve this
flexibility, PNML considers a Petri net as a labelled graph, where all additional
information can be stored in labels that can be attached to the net itself, to the
nodes of the net or to its arcs.

Ambiguity is removed from the format by ensuring that the original Petri
net and its particular type can be uniquely determined from its PNML represen-
tation. To this end, PNML supports the definition of different Petri net types.
A Petri net type definition (PNTD) determines the legal labels for a particu-
lar Petri net type. By assigning a fixed type to each Petri net, the description
becomes unambiguous.

Compatibility means that as much information as possible can be exchanged
between different types of Petri nets. In order to achieve compatibility, PNML

comes with conventions on how to define a label with a particular meaning. In a
Conventions Document, the syntax as well as the intended meaning of all kinds

of extensions are predefined. When defining a new Petri net type, the labels can
be chosen from this Conventions Document. When a new Petri net type complies
with these conventions for defining its own labels, the meaning of its labels is
well-defined. This allows other Petri net tools to interpret the net even if they
do not know the new Petri net type itself.

2.2 PNML Structure

The different parts of PNML and their relationships are shown in Fig. 1. The meta
model defines the basic structure of a PNML file; the type definition interface
allows the definition of new Petri net types that restrict the legal files of the
meta model; and the feature definition interface allows the definition of new
features for Petri nets. These three parts are fixed once and for all. Another part
of PNML, the Conventions Document, evolves. It contains the definition of a set
of standard features of Petri nets, which are defined according to the feature
definition interface. Moreover, there will be several Standard Petri Net Types,
using some features from the Conventions Document and possibly others. New
features can be added to the Conventions Document and new Petri net types
to the standard types when they are of common interest. Due to their evolving
nature, these documents are best published and maintained via a web site.

PNML
Types &
Features

PNML
Files

Definition

Petri Net
Type

PNML
Technology

Conventions
Document

Petri Net
File

Petri Net
File

Petri Net
File

...

Feature Definition Interface Type Definition Interface

Meta Model

Fig. 1. Overview of the parts of PNML

2.3 Meta Model

Figure 2 shows the meta model of PNML in UML notation. We start with a
discussion of the meta model of basic PNML, which consists of the classes with

thick outlines. The other classes belong to structured PNML and will be explained
later in this section.

PetriNetFile PetriNet ToolInfo

LabelObject
id
graphics

value

*

tool
versiontype

id

*
*

*

*

*
*

Node Arc
target

RefNode

source

Place RefPlace RefTrans Transition
/repr

*

1

1

1ref

/repr

Page
1

1

Attribute Annotation

graphics

Fig. 2. The PNML meta model

Petri nets and objects. A file that meets the requirements of PNML is called
a Petri net file; it may contain several Petri nets. Each Petri net consists of
objects, which, basically, represent the graph structure of the Petri net2. Each
object within a Petri net file has a unique identifier, which can be used to refer
to this object. In basic PNML, an object is a place, a transition or an arc. For
convenience, a place or a transition is called a node.

Labels. In order to assign further meaning to an object, each object may have
labels. Typically, a label represents the name of a node, the initial marking of
a place, the guard of a transition, or the inscription of an arc. In addition, the
Petri net itself may have some labels. For example, the declarations of functions
and variables that are used in the arc inscriptions could be labels of a high-level
Petri net. The legal labels and the legal combinations of labels are defined by
2 Note that the PNML meta model allows arcs between nodes of the same kind. The

reason is that there are Petri net types with such arcs. Since Petri net types only
restrict the meta model, the meta model should not forbid such arcs.

the Petri net type. The type of a Petri net is defined by a reference to a unique
Petri net type definition (PNTD), which will be discussed in Sect. 3.2.

Two kinds of labels are distinguished: annotations and attributes. An anno-
tation comprises information that is typically displayed as text near the corre-
sponding object. Examples are names, initial markings, arc inscriptions, tran-
sition guards, and timing or stochastic information. In contrast, an attribute
specifies a graphical property of an object such as colour, style, form or line
thickness. For example, an attribute arc type could have domain normal, read,
inhibitor, reset. Another example is an attribute for classifying the nodes of
a net as proposed by Mailund and Mortensen [20]. PNML does not define how
this is done, although the Conventions Document may provide directions.

Graphical information. Each object and each annotation is equipped with
graphical information. For a node, this includes its position; for an arc, it includes
a list of positions that define intermediate points of the arc; for an annotation,
it includes its relative position with respect to the corresponding object3. There
can be additional information concerning size, colour, and shape of nodes or arcs,
or concerning colour, font, and font size of labels (see Sect. 3 and 5 for details).

Tool specific information. For some tools, it might be necessary to store tool
specific information, which is not supposed to be used by other tools. In order to
store this information, each object and each label may be equipped with such tool
specific information. Its format depends on the tool and is not specified by PNML.
PNML provides a mechanism for clearly marking tool specific information along
with the name and the version of the tool adding this information. Therefore,
other tools can easily ignore it, and adding tool specific information will never
compromise a Petri net file.

Pages and reference nodes. Up to now, only basic PNML has been discussed.
For structuring a Petri net, there is the more advanced structured PNML. Struc-
tured PNML allows us to separate different parts of a net into separate pages as
known from several Petri net tools (e. g. Design/CPN [10]). A page is an object
that may consist of other objects – it may even consist of other pages. An arc,
however, may connect nodes on the same page only4. A reference node, which
can be either a reference transition or a reference place represents an appearance
of a node. It can refer to any node on any page of the Petri net as long as there
are no cyclic references; this guarantees that, ultimately, each reference node
refers to exactly one place or transition of the Petri net.

Reference nodes may have labels but these labels can only specify informa-
tion about their appearance. They cannot specify any information about the
referenced node itself, which already has its own labels for this purpose.
3 For an annotation of the net itself, the position is absolute.
4 The reason is that an arc cannot be drawn from one sheet of paper to another when

printing the different pages.

Basic PNML is PNML without pages or reference nodes. A fixed transforma-
tion can “flatten” any PNML net to a semantically equivalent basic PNML net.
To do so, the reference nodes are merged with the nodes they refer to and page
borders are ignored (see [17] for details). This transformation can be achieved by
a simple XSLT stylesheet [6]. By applying this stylesheet, a tool supporting only
basic PNML can be used for arbitrary PNML nets5. A more powerful structuring
mechanism, modular PNML [17], allows different PNML documents to reference
each other. Modular PNML will be briefly discussed in Sect. 7.

2.4 Discussion of the Use of PNML

In this section, we briefly discuss the use of Petri net types and the definition
of Petri net features to achieve our design goals. Every Petri net file has a
unique type, which is a reference (a URI – Uniform Resource Identifier) to the
corresponding Petri net type definition. This way, the syntax is unambiguously
defined by the PNML meta model and the type definition. To be interpreted
unambiguously, each Petri net type definition must have a formal semantics
that is known by each tool that uses it.

The description of the semantics of Petri net features and Petri net types is
not formalized yet. A formalism for defining the semantics of features and for
combining the semantics of features to a semantics of a Petri net type is far from
trivial. Working out such a formalism is a long-term project. The concepts of
PNML provide a starting point for this work.

But what about compatibility? There are times when it would be very useful
to be able to import a net, even when the semantics of the Petri net type is
unknown. For example, when we have a hard copy of a net describing a complex
system in a net dialect that our own tool does not support, but we wish to input
the net. Manual input of the net would be very time consuming. A transferred
file would go a long way to alleviating this problem. In this case, a tool might
try to extract as much information as possible from the net type by guessing the
meaning of some labels from their names, which may result in wrong interpreta-
tions. In order to allow the tool some more “educated guesses” on the meaning
of labels, PNML provides the features definition interface. Each feature fixes the
syntax for the corresponding labels along with a description of their semantics.
Standard features defined according to this interface will be maintained in the
Conventions Document. A new Petri net type definition may choose its features
from these conventions by a reference to the Conventions Document (see Sect. 3.2
for details). If the Petri net type chooses all its features from the Conventions
Document, a tool not knowing the new type, but knowing the feature from the
Conventions Document, knows the meaning of the corresponding labels. Then
it can try to extract all the relevant information and convert the net to a Petri
net type it knows – possibly losing some information of the original net.
5 It is also possible to use basic PNML with extra information to represent the page

structure, and a pair of XSLT sheets for the conversion. This allows the page structure
to be preserved even after processing a net with a tool that only supports basic
PNML, if that tool supports the extra information.

3 PNML Technology

In this section, we will discuss how the concepts of PNML can be implemented in
XML. Though the use of XML has some disadvantages6, the advantages of XML

clearly prevail. Aside from its popularity, it is platform independent, and there
are many tools available for reading, writing and validating XML documents.

There are different XML technologies that could be used for implementing
PNML. RELAX NG [7] was chosen for defining the structure of a PNML docu-
ment, because it was one of the first technologies7 with a module concept and
a validator supporting it. This module concept was necessary for clearly sepa-
rating the PNML meta model from the type definitions (PNTDs). Today, there
is also tool support for XML Schema [26]. So PNML could be easily realized in
XML Schema8.

3.1 PNML Meta Model

The PNML meta model is translated into XML syntax in a straightforward man-
ner. Technically, the syntax of PNML 1.3 is defined by a RELAX NG grammar,
which can be found on the PNML web site [24].

PNML elements. Here, not the full grammar, but a more compact translation
is presented: basically, each concrete class9 of the PNML meta model is translated
into an XML element. This translation along with the attributes and their data
types is given in Tab. 1. These XML elements are the keywords of PNML and
are called PNML elements for short. For each PNML element, the aggregations
of the meta model define in which elements it may occur as a child element. We
have omitted the Graphics class from the meta model shown in Fig. 2 so as not
to clutter the diagram. The classes with associated graphical information are
instead indicated by an attribute “graphics”.

The data type ID in Tab. 1 describes a set of unique identifiers within the
PNML document. The data type IDRef describes the same set, now as references
to the elements of ID. The set of references is restricted to a denoted subset. For
instance, a reference place transitively refers with its attribute ref to a place of
the same net.

Labels. There are no PNML elements for labels because the meta model does
not define any concrete ones. Concrete labels are defined by the Petri net types.
An XML element that is not defined by the meta model (i. e. not occurring in

6 One disadvantage is storage waste. But, this can be easily avoided by using a com-
pressed XML format, which is supported by most XML APIs.

7 RELAX NG replaces TREX (Tree Regular Expressions for XML) [5], which was used
when first defining PNML.

8 There are converters providing translation between several XML schema languages.
9 A class in a UML diagram is concrete if its name is not displayed in italics.

Table 1. Translation of the PNML meta model into PNML elements

Class XML element XML Attributes

PetriNetFile <pnml>

PetriNet <net> id: ID
type: anyURI

Place <place> id: ID
Transition <transition> id: ID
Arc <arc> id: ID

source: IDRef (Node)
target: IDRef (Node)

Page <page> id: ID
RefPlace <referencePlace> id: ID

ref: IDRef (Place or RefPlace)
RefTrans <referenceTransition> id: ID

ref: IDRef (Transition or RefTrans)
ToolInfo <toolspecific> tool: string

version: string
Graphics <graphics>

Tab. 1) is considered as a label of the PNML element in which it occurs. For
example, an <initialMarking> element could be a label for a place, which repre-
sents its initial marking. Likewise <name> could represent the name of an object,
and <inscription> an arc inscription. A legal element for a label may consist of
further elements. The value of a label appears as a string in a <text> element.
Furthermore, the value may be represented as an XML tree in a <structure>

element10. An optional PNML <graphics> element defines its graphical appear-
ance, and further optional PNML <toolspecific> elements may add tool specific
information to the label.

Graphics. PNML elements and labels include graphical information. The struc-
ture of the PNML <graphics> element depends on the element in which it ap-
pears. Table 2 shows the elements which may occur in the substructure of a
<graphics> element. The <position> element defines an absolute position and
is required for each node, whereas the <offset> element defines a relative posi-
tion and is required for each annotation. The other sub-elements of <graphics>
are optional. For an arc, the (possibly empty) sequence of <position> elements
defines its intermediate points. Each absolute or relative position refers to Carte-
sian coordinates (x, y). As for many graphical tools, the x-axis runs from left
to right and the y-axis from top to bottom. More details on the effect of the
graphical features can be found in Sect. 5.1.

10 In order to be compatible with earlier versions of PNML, the text element <value>

may occur alternatively to the <text> <structure> pair.

2ready

Fig. 3. A simple P/T-system

Listing 1. PNML code of the example net in Fig. 3

<pnml xmlns="http://www.example.org/pnml">

<net id="n1" type="http://www.example.org/pnml/PTNet">

<name>

<text>An example P/T-net</text>

5 </name>

<place id="p1">

<graphics>

<position x="20" y="20"/>

</graphics>

10 <name>

<text>ready</text>

<graphics>

<offset x="-10" y="-8"/>

</graphics>

15 </name>

<initialMarking>

<text>3</text>

</initialMarking>

</place>

20 <transition id="t1">

<graphics>

<position x="60" y="20"/>

</graphics>

<toolspecific tool="PN4all" version="0.1">

25 <hidden/>

</toolspecific>

</transition>

<arc id="a1" source="p1" target="t1">

<graphics>

30 <position x="30" y="5"/>

<position x="60" y="5"/>

</graphics>

<inscription>

<text>2</text>

35 <graphics>

<offset x="15" y="-2"/>

</graphics>

</inscription>

</arc>

40 </net>

</pnml>

Table 2. Elements in the <graphics> element depending of the parent element

Parent element class Sub-elements of <graphics>

Node, Page <position> (required)
<dimension>

<fill>

<line>

Arc <position> (zero or more)
<line>

Annotation <offset> (required)
<fill>

<line>

Listing 2. Label definition

<define name="PTMarking"

xmlns:pnml="http://www.informatik.hu-berlin.de/top/pnml">

<element name="initialMarking">

<interleave>

5 <element name="text">

<data type="nonNegativeInteger"

datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes"/>

</element>

<ref name="pnml:StandardAnnotationContent"/>

10 </interleave>

</element>

</define>

Example. In order to illustrate the structure of a PNML file, we consider the
simple example net shown in Fig. 3. Listing 1 shows the corresponding PNML

code. It is a straightforward translation, where we have labels for the names of
objects, for the initial markings, and for arc inscriptions. Note that we assume
that the dashed outline of the transition results from the tool specific information
<hidden> from an imaginary tool PN4all.

3.2 Petri Net Types

When defining a Petri net type, we firstly need to explain how labels are defined.

Label definition. Listing 2 shows the RELAX NG definition of the la-
bel <initialMarking>, which represents the initial marking of a place of a
P/T-system (cf. List. 1). Its value (in a <text> element) should be a natu-
ral number, which is formalized by referring to the corresponding data type

Listing 3. PNTD for P/T-Systems

<grammar ns="http://www.example.org/pnml"

xmlns="http://relaxng.org/ns/structure/1.0"

xmlns:conv="http://www.informatik.hu-berlin.de/top/pnml/conv">

<include href="http://www.informatik.hu-berlin.de/top/pnml/pnml.rng"/>

5 <include href="http://www.informatik.hu-berlin.de/top/pnml/conv.rng"/>

<define name="NetType" combine="replace">

<text>http://www.example.org/pnml/PTNet</text>

</define>

<define name="Net" combine="interleave">

10 <optional><ref name="conv:Name"/></optional>

</define>

<define name="Place" combine="interleave">

<interleave>

<optional><ref name="conv:PTMarking"/></optional>

15 <optional><ref name="conv:Name"/></optional>

</interleave>

</define>

<define name="Arc" combine="interleave">

<optional><ref name="conv:PTArcInscription"/></optional>

20 </define>

</grammar>

nonNegativeInteger of the data type system of XML Schema. Note that the
optional graphical and tool specific information do not occur in this label def-
inition; this is not necessary, because these standard elements for annotations
are inherited from the standard annotation of PNML. Such label definitions can
either be given explicitly for each Petri net type, or they can be included in the
Conventions Document, such that Petri net type definitions can refer to these
definitions. Some of the available labels in the Conventions Document will be
discussed in Sect. 4.

Petri Net Type Definitions (PNTDs) Listing 3 shows the Petri Net Type
Definition (PNTD) for P/T-Systems as a RELAX NG grammar. Firstly, it in-
cludes both the definitions for the meta model of PNML (pnml.rng) and the
definitions of the Conventions Document (conv.rng) (Sect. 4), which, in partic-
ular, contains the definition from List. 2, a similar definition for arc inscriptions
of P/T-systems, and a definition for names.

Secondly, the PNTD defines the legal labels for the whole net and the different
objects of the net. In our example, the net and the places may have an anno-
tation for names. Furthermore, the places are equipped with an initial marking
and the arcs are equipped with an arc inscription. Note that all labels are op-
tional in this type. The labels are associated with the net objects by giving a
reference to the corresponding definitions in the Conventions Document. Tech-

nically, the definition extends the original definition of the net, places and arcs
of the RELAX NG grammar for PNML.

3.3 High-level Petri Nets

One of the driving forces for developing PNML was the standardisation process
of high-level Petri nets [13]. This standard defines High-Level Petri Net Graphs
(HLPNGs) as a syntactic representation of high-level Petri nets. Here, we will
briefly sketch the idea of a PNTD for HLPNGs. Note that this definition is an
example for having a textual as well as a structural representation of the value
of a label.

The PNTD defines labels for the corresponding concepts of HLPNGs: signa-
tures, variables, initial markings, arc-inscriptions, and transition guards. Arc-
inscriptions and transition guards are terms over the signature and the variables
of the HLPNG. No concrete syntax is defined, but terms are defined in the usual
inductive manner, providing an abstract syntax.

In the PNTD for HLPNGs, the value of a label may be represented by using
a concrete or abstract syntax. The value in a concrete syntax is represented as
pure text within the label’s <text> element, the value in an abstract syntax is
represented within the label’s <structure> element. An XML substructure within
the <structure> element represents the inductive construction of a term from its
subterms. This way, we can exchange high-level nets between two tools that use
different concrete syntaxes, but have the same underlying structure (which is
fixed for HLPNGs). Tools are not required to export or import abstract syntax,
but if they do, interoperability with other tools is increased.

4 Conventions

The Conventions Document comprises the definitions of all standard labels, in
order to guarantee compatibility among different Petri net types.

Technically, the Conventions Document consists of a sequence of more or less
independent label definitions as discussed in Sect. 3.2. Each label definition in
the Conventions Document must be assigned a unique name. In our example
from List. 2, a label with name PTMarking has been defined. Note that it is not
necessarily the name of the corresponding XML element. In the example from
List. 2, the label PTMarking is defined as the XML element <initialMarking>.
For each label, the Conventions Document gives a reference to its meaning and
states in which PNML elements it may occur. The definitions in the Conventions
Document can be used by referring to the name of a label in the Conventions
Document as shown in List. 3.

Table 3 gives some examples of labels defined in the Conventions Document.
The first column gives the name of the label. The second column gives the
corresponding XML element. The third column gives the data type of the label.
If it is a simple data type, the value of the label must be text in the XML

element <text>. More complex data types (indicated by “structured” in Tab. 3),

Table 3. Content of the Conventions Document

Label name XML element Domain Meaning

Name <name> string user given identifier of an el-
ement describing its mean-
ing

PTMarking <initialMarking> nonNegativeInteger initial marking of places in
nets like P/T-nets

ENMarking <initialMarking> — initial marking of places in
nets like EN-systems

HLMarking <initialMarking> structured term describing the initial
marking of a place in a high-
level net schema

PTCapacity <capacity> nonNegativeInteger annotation describing the
capacity of a place in nets
similar to P/T-nets

HLSort <sort> structured description of the sort of to-
kens on a place in high-level
net schemas

are represented both as strings in the element <text> and as an XML tree in the
<structure> element of the annotation. The last column gives a short description
of the label’s meaning.

Note that different labels in the Conventions Document can be represented
by the same XML element. In the examples from Tab. 3, this applies to the labels
PTMarking, ENMarking, and HLMarking. This is not a problem since these labels
cannot be used within the same net anyway, and the name of the corresponding
label definition in the Conventions Document can be retrieved11 from the Petri
Net Type Definition.

In contrast to PNML technology, the Conventions Document is a “living doc-
ument”, which requires some maintenance and continuous standardization. This
requires both a maintenance policy and a team to maintain this Conventions
Document. One policy should be that changes are always upward and down-
ward compatible. This, basically, means that, once a label definition is in the
Conventions Document, it cannot be changed anymore. Therefore, a definition
should only be added to the Conventions Document when its definition is stable.

5 Layout

In this section, we discuss the graphical features of PNML and their effect on
the graphical presentation of a PNML document. Section 5.1 gives an informal
11 An alternative to this solution would be to use different namespaces. But, this would

result in quite complex definitions. Moreover, namespaces would be necessary even
for simple Petri net types such as P/T-Systems. In order to keep PNML for simple
Petri net types as simple as possible, the extensive use of namespaces is avoided.

overview of all graphical features. In Sect. 5.2, we discuss a precise description of
the graphical presentation of a PNML document, i.e. an XSLT transformation [6]
from PNML to the Scalable Vector Graphics (SVG) [11]. SVG is a standard for
two-dimensional vector graphics based on XML. In combination with a standard
SVG viewer, this XSLT transformation provides us with a standard viewer for
PNML documents.

5.1 Graphical Information in PNML

Table 4 lists the graphical elements that may occur in the PNML <graphics>

element along with their attributes. The domain of the attributes refers to the
data types of either XML Schema [26], or Cascading Stylesheets 2 (CSS2) [4], or
is given by an explicit enumeration of the legal values.

Table 4. PNML graphical elements

XML element Attribute Domain

<position> x decimal
y decimal

<offset> x decimal
y decimal

<dimension> x nonNegativeDecimal
y nonNegativeDecimal

<fill> color CSS2-color
image anyURI
gradient-color CSS2-color
gradient-rotation {vertical, horizontal, diagonal}

<line> shape {line, curve}
color CSS2-color
width nonNegativeDecimal
style {solid, dash, dot}

 family CSS2-font-family
style CSS2-font-style
weight CSS2-font-weight
size CSS2-font-size
decoration {underline, overline, line-through}
align {left, center, right}
rotation decimal

The <position> element defines the absolute position of a net node or a net
annotation, where the x-coordinate runs from left to right and the y-coordinate
from top to bottom. The <offset> element defines the position of an annotation
relative to the position of the object.

For an arc, there may be a (possibly empty) list of <position> elements. These
elements define intermediate points of the arc. Altogether, the arc is a path from

the source node of the arc to the destination node of the arc via the intermediate
points. Depending on the value of attribute shape of element <line>, the path is
displayed as a polygon or as a (quadratic) Bezier curve, where points act as line
connectors or Bezier control points.

The <dimension> element defines the height and the width of a node. Depend-
ing on the ratio of height and width, a place is displayed as an ellipse rather than
a circle.

The two elements <fill> and <line> define the interior and outline colours
of the corresponding element. The value assigned to a colour attribute must
be a RGB value or a predefined colour as defined by CSS2. When the at-
tribute gradient-color is defined, the fill colour continuously varies from color
to gradient-color. The additional attribute gradient-rotation defines the orien-
tation of the gradient. If the attribute image is defined, the node is displayed as
the image at the specified URI, which must be a graphics file in JPEG or PNG

format. In this case, all other attributes of <fill> and <line> are ignored.
For a label, the element defines the font used to display the text of the

label. The complete description of possible values of the different attributes can
be found in the CSS2 specification. Additionally, the align attribute defines the
justification of the text with respect to the label coordinates, and the rotation

attribute defines a clockwise rotation of the text.
Figure 4 shows an example of a PNML net, which uses most of the graphical

features of PNML.

Fig. 4. Example of PNML graphical features

5.2 Portable Visualization Scheme

In order to give a precise description of the graphical presentation of a PNML

document with all its graphical features, we define a translation to SVG. Petri net
tools that support PNML can visualise Petri nets using other means than SVG,
but the SVG translation can act as a reference model for such visualisations.
Technically, this translation is done by means of an XSLT stylesheet. The basic
idea of this transformation was already presented in [27]. A complete XSLT

stylesheet can be found on the PNML web pages [24].

Transformations for basic PNML. The overall idea of the translation from
PNML to SVG is to transform each PNML object to some SVG object, where the
attributes of the PNML element and its child elements are used to give the SVG

element the intended graphical appearance.
As expected, a place is transformed into an ellipse, while a transition is

transformed into a rectangle. Their position and size are calculated from the
<position> and <dimension> elements. Likewise, the other graphical attributes
from <fill> and <line> can be easily transformed to the corresponding SVG

attributes.
An annotation is transformed to SVG text such as name: someplace. The lo-

cation of this text is automatically computed from the attributes in <offset>

and the position of the corresponding object. For an arc, this reference posi-
tion is the centre of the first line segment. If there is no <offset> element, the
transformation uses some default value, while trying to avoid overlapping.

An arc is transformed into a SVG path from the source node to the target
node – possibly via some intermediate points – with the corresponding attributes
for its shape. The start and end points of a path may be decorated with some
graphical object corresponding to the nature of the arc (e.g. inhibitor). The
standard transformation supports arrow heads as decorations at the end, only.
The arrow head (or another decoration) should be exactly aligned with the
corresponding node. This requires computations using complex operations that
are neither available in XSLT nor in SVG – the current transformation uses
recursive approximation instead.

Transformations for structured PNML. Different pages of a net should
be written to different SVG files since SVG does not support multi-image files.
Unfortunately, XSLT does not support output to different files yet, but XSLT

2.0 will. Hence, a transformation of structured PNML to SVG will be supported
once XSLT 2.0 is available.

The transformations for reference places and reference transitions are similar
to those for places and transitions. In order to distinguish reference nodes from
other nodes, reference nodes are drawn slightly translucent and an additional
label gives the name of the referenced object.

Type specific transformations. Above, we have discussed a transformation
that works for all PNML documents, where all annotations are displayed as text.
For some Petri net types, one would like to have other graphical representations
for some annotations. This can be achieved with customized transformations.
The technical details of customized transformations are not yet fixed. Due to
the rule-based transformations of XSLT, equipping the Type Definition Interface
and the Feature Definition Interface of PNML with some information on their
graphical appearance seems to be feasible. Basically, each new feature can be
assigned its own transformation to SVG. Adding these transformations to the
standard ones for PNML gives us a customized transformation for this Petri net
type.

6 Tools and Reference Implementation

In this section, we describe how PNML can be used in Petri net tools, how
they implement PNML and how XML techniques can help to validate and to
parse PNML documents. Several Petri net tools inspired the development of
PNML. The Petri Net Kernel (Sect. 6.2) implements an object model of Petri
nets similar to PNML. Renew (Sect. 6.3) was the first tool that implemented a
version of PNML. PEP (Sect. 6.4) features a Petri net based collection of tools.
Design/CPN (Sect. 6.5) was one of the first Petri net tools that implemented an
XML based file format. Currently, there are several Petri net tools implementing
PNML as one (or as the only) file format (e. g. Renew [25], PNK [23], PEP [22],
VIPtool [9]).

6.1 XML Techniques

Implementing a new file format such as PNML for an existing tool requires
some extra work. Fortunately, there are different tools and Application Pro-
gramming Interfaces (APIs) for implementing parsers for XML documents on
different platforms and for different programming languages. Basically, there are
two techniques supporting the parsing of XML documents, SAX and DOM. SAX

is a lightweight, event-driven interface, which is well-suited for streaming large
XML documents with minor modifications. SAX is not well-suited for implement-
ing I/O-interfaces and, in particular, for implementing PNML. DOM (Document
Object Model) provides a parser for XML documents. Then, a program has full
access to the document and all its elements in a tree-like structure. Moreover, it
provides a powerful reference mechanism for accessing the elements of the XML

document.
The current version of PNML, the PNTDs, and the Conventions Document are

defined in the XML schema language RELAX NG [7]. There are several tools for
validating an XML document against a RELAX NG specification (e. g. Jing12).
Some special features of PNML, however, cannot be expressed in RELAX NG

yet. This concerns the correct use of a PNTD in a PNML document and the
correctness of references. For example, a reference place must refer to a place or
a reference place; it must not refer to a transition or to a reference transition.
Moreover, references must not be cyclic. Currently, we are developing a Jing-
based validator that takes the special features of PNML into account. See the
PNML Web pages [24] for more details.

Another task is the validation of the syntactical correctness of the string
values of labels. If the domain of a label is defined in a known data type system
(e. g. the RELAX NG internal system or the XML Schema Datatype Library), Jing
can validate these string values. Other more specific values must be validated by
external tools.

12 See URL http://www.thaiopensource.com/relaxng/jing.html for more details.

6.2 Petri Net Kernel

PNML has been strongly influenced by the development of the Petri Net Kernel
(PNK) [28, 23]. PNK is an infrastructure for building Petri net tools. Thus, it
provides methods to manage Petri nets of different types. PNK implements a
data model for Petri nets that is similar to that of PNML. Each place, transi-
tion, arc, or even the net may contain several labels according to the Petri net
type. Standard operations on labels (e. g. setting a value, storing a string as an
external representation of the label value, loading, etc.) are implemented in the
API of PNK. Label specific operations (e. g. parsing the string representing the
label value, operating on a label, etc.), however, are implemented by the label
developer.

PNK stores one or more Petri nets in a PNML file. It uses the string rep-
resentation of the current label values, which is stored in the <value> tag of
the appropriate PNML label. PNK is able to read a PNML file even if it does
not find a PNK implementation of the Petri net type. In this case, PNK assumes
that all labels are simple string labels without special semantics. Therefore, PNK

provides a universal editor for all Petri net types. Moreover, PNK provides an
API for loading a net and for accessing its objects, and thus can be seen as a
Document Object Model for PNML.

6.3 Renew

Renew [25] was one of the first Petri net tools to provide XML-based export and
import. While its main focus lies on reference nets (object-based Petri nets),
Renew was designed as a multi-formalism tool right from the start.

In order to keep the higher levels independent of the actual Petri net type,
inscriptions are always edited textually and interpreted by a configurable net
compiler later on. This approach was quite successful. As it is conceptually
almost identical to the label concept of PNML, it gives credibility to the claim
that labels are indeed expressive enough for practical purposes.

One special feature is that Renew distinguishes inscriptions syntactically,
whenever possible. For instance, whether a label is a place type or an initial
marking is not explicitly stored; that distinction is made by the compiler. If
we want to conform to the PNML standard more closely, the actual type of a
label must be computed at export time, so that the correct label element can be
created.

It was evaluated whether a simple DTD suffices for the description of the
format. A DTD that permitted all intended constructs was quickly given. But
it turned out that certain important constraints were not easily expressible, so
that they had to be checked by an external tool later on. This may be acceptable
or not, but it justifies the use of more powerful grammars for the definition of
PNML.

6.4 PEP

PEP [22] features a collection of tools and formalisms useful for the verification
and development of concurrent systems, combined beneath a graphical user in-
terface. PEP supports a number of different modelling languages, each of them
having a Petri net semantics. Simulation and verification is based on its Petri
net core. PEP uses stand-alone tools for most of the transformation and analy-
sis tasks available. This allows easy extensions by new modelling languages or
verification tools, but introduces a large number of interfaces for different file
types.

PEP uses a common I/O library for accessing Petri net files in different for-
mats. Thus, an extension to PNML files for all separate tools developed for PEP

was easy to integrate. Although the original PEP file formats for Petri nets were
not XML based, their structure was comparable to PNML. The implementation
was therefore straightforward, once the Petri net types and the API support (by
libxml2 library [30]) had been fixed.

Writing PNML files is supported by libxml2 with special output functions to
adhere to XML encoding. For reading PNML, the syntax tree of the document is
automatically generated. Further processing is based on user defined functions
which perform the gathering of the current node’s data and all of its subnodes.
Parts of this processing may be delegated to further functions, allowing reuse of
code for frequently used tags in PNML, e.g. <graphics>. Thus only one function
parseGraphics is needed, which is called for any <graphics> element found in
the input document. When a node is completely read, its data is stored in the
internal data structure of the program. To resolve references, e.g. start and end
coordinates of arcs, all possible reference targets are stored in a lookup table,
allowing random access to any such element.

A converter was implemented to simplify access for tools, which use their
own implementation of the original PEP file format. The converter is based on
the functions from PEP’s I/O library. The scripts which control these external
tools now also take care of appropriate conversions, if necessary.

6.5 Design/CPN and CPN Tools

Design/CPN [10] and CPN Tools [8] both support Coloured Petri nets. De-
sign/CPN has been available since 1989 and is being replaced by CPN Tools.
Both tools support an XML based file format. Design/CPN exports and imports
an external XML format, whereas CPN Tools has a native XML based file for-
mat. A DTD for both of these formats is publicly available. Petri net models are
transferred between the two tools using an external file format converter.

Coloured Petri nets are hierarchical and tokens are complex data values.
Arc inscriptions and guards comprise terms with variables, and the operations
involved and the types of variables are defined as annotations of the net. This
means that the XML format must be tailored to this information. CPN Tools
will support PNML with a PNTD for Coloured Petri nets, most likely using an
external converter.

7 Modularity and Analysis Issues

There are two other issues that are important to raise in this paper. They are
modular PNML, and the integration of analysis results (such as net properties or
occurrence graphs and related automata) with the net that is being analysed.

Modular PNML [17] allows Petri net modules to be defined where a mod-
ule’s interface definition is clearly separated from its implementation. This facil-
itates the modular construction of Petri nets from instances of the modules. Like
PNML itself, this module concept for PNML is independent of the Petri net type.
Moreover, a Petri net in modular PNML can be transformed into a Petri net in
structured PNML by a simple XSLT stylesheet (similar to the transformation
from structured PNML to basic PNML).

The second issue is properties and analysis results. For a net, we would like
to represent its properties and analysis results in a uniform way. This would
allow us to use different tools with different capabilities more efficiently, because
one tool could use the results of others. For example, the analysis of a high-level
Petri net might be too complex to perform. In this case, a way of obtaining
partial results consists of analysing the net’s skeleton (i.e. the Petri net obtained
by removing the terms). Sufficient conditions (e.g. for deadlock analysis) can
be checked by transferring the skeleton to a fast dedicated Petri net tool, and
returning the results. PNML provides a technical hook for this purpose: an el-
ement <properties> that could contain this additional information. A uniform
representation of Petri net properties and analysis results, however, is beyond
the scope of this paper. This is an interesting and important research direction.
The VeriTech project [16] and the Munich Model-Checking Kit [21] can serve as
guidelines for this work.

8 Conclusion

In this paper, we have presented the principles and concepts of PNML and have
sketched its realization with XML technology. We have discussed the need for the
format to be extensible, to cater for evolving Petri net dialects and to include
analysis results (such as occurrence graphs). This flexibility has been obtained
by considering the objects that we wish to transfer as labelled directed graphs.
We have introduced the notion of Petri net type definitions (PNTDs) to accom-
modate different Petri net dialects (and analysis results). PNTDs contain the set
of legal labels for a particular net type. The concept of a Conventions Document
that contains all the features for the various PNTDs and their semantics has
been suggested as a mechanism for increasing compatibility between different
type definitions and hence different tools. The paper does not address the diffi-
cult issue of providing a formal semantics for each feature and combining them
to provide a semantics for each Petri net type. This is seen as important future
work.

The work presented in this paper provides a starting point for experimenting
with using PNML to transfer Petri nets between tools. We encourage the Petri

net community to participate in these experiments and provide the full details
of PNML [24] for this purpose. The experience gained in experimenting with the
transfer format will lead to formulating a set of requirements and a relatively
mature baseline document needed for the development of an International Stan-
dard within the work of project ISO/IEC 15909. Although not addressing the
problem of combining features, the current Final Committee Draft of the Stan-
dard for High-level Petri Nets [13] does include an example of how the semantics
of a Petri net type (in this case High-level Petri Net Graphs) may be provided
(see clause 9). The work on semantics will need to be harmonised with ISO/IEC
15909.

Moreover, there are many other matters that will require significant future
work. These include: user definable defaults for the graphical information of
PNML elements; the realization of type specific graphical representations for
PNML elements; and the policy and procedures required for maintaining the
Conventions Document.

Acknowledgements. Many people from the Petri net community have contributed
to the concepts of PNML during discussions of earlier versions, by making proposals,
and by asking questions. Here is an incomplete list of those who contributed: Matthias
Jüngel, Jörg Desel, Erik Fischer, Giuliana Franceschinis, Nisse Husberg, Albert Koel-
mans, Kjeld Høyer Mortensen, Wolfgang Reisig, Stephan Roch, Karsten Schmidt, as
well as all former members of the DFG research group “Petri Net Technology”. Thanks
to all of them. Moreover, we would like to thank the DFG (German Research Council)
for supporting the work on PNML.

References

1. R. Bastide, J. Billington, E. Kindler, F. Kordon, and K. H. Mortensen, editors.
Meeting on XML/SGML based Interchange Formats for Petri Nets, Århus, Den-
mark, June 2000. 21st ICATPN.

2. F. Bause, P. Kemper, and P. Kritzinger. Abstract Petri net notation. Petri Net
Newsletter, 49:9–27, October 1995.

3. G. Berthelot, J. Vautherin, and G. Vidal-Naquet. A syntax for the description of
Petri nets. Petri Net Newsletter, 29:4–15, April 1988.

4. B. Bos, H. W. Lie, C. Lilley, and I. Jacobs (eds.). Cascading Style Sheets, level 2
– CSS2 Specification. URL http://www.w3.org/TR/CSS2, 1998.

5. J. Clark. TREX – tree regular expressions for XML. URL http://www.

thaiopensource.com/trex/. 2001/01/20.
6. J. Clark (ed.). XSL Transformations (XSLT) Version 1.0. URL http://www.w3.

org/TR/XSLT/xslt.html, 1999.
7. J. Clark and M. Murata (eds.). RELAX NG specification. URL http://www.

oasis-open.org/committees/relax-ng/. 2001/12/03.
8. CPN Tools. URL http://www.daimi.au.dk/CPNtools. 2001/09/11.
9. J. Desel, G. Juhás, R. Lorenz, and C. Neumair. Modelling and validation with

VipTool. In Conference on Business Process Management, Tool Presentation, 2003.
10. Design/CPN. URL http://www.daimi.au.dk/designCPN/. 2001/09/21.
11. J. Ferraiolo, F. Jun, and D. Jackson (eds.). Scalable Vector Graphics (SVG) 1.1

Specification. URL http://www.w3.org/TR/SVG11/, 2003.

12. ISO/IEC/JTC1/SC7. Subdivision of project 7.19 for a Petri net standard.
ISO/IEC/JTC1/SC7 N1441, October 1995.

13. ISO/IEC/JTC1/SC7. Software Engineering - High-Level Petri Nets - Concepts,
Definitions and Graphical Notation. ISO/IEC 15909-1, Final Committee Draft,
May 2002.

14. ISO/IEC/JTC1/SC7 WG19. New proposal for a standard on Petri net techniques.
ISO/IEC/JTC1/SC7 N2658, June 2002.

15. M. Jüngel, E. Kindler, and M. Weber. The Petri Net Markup Language. Petri Net
Newsletter, 59:24–29, 2000.

16. S. Katz and O. Grumberg. VeriTech: Translating among specifications and verifi-
cation tools. Technical report, The Technion, Haifa, Israel, March 1999.

17. E. Kindler and M. Weber. A universal module concept for Petri nets. An imple-
mentation-oriented approach. Informatik-Berichte 150, Humboldt-Universität zu
Berlin, June 2001.

18. A. M. Koelmans. PNIF language definition. Technical report, Computing Science
Department, University of Newcastle upon Tyne, UK, July 1995. version 2.2.

19. R. B. Lyngsø and T. Mailund. Textual interchange format for high-level Petri nets.
In Proc. Workshop on Practical use of Coloured Petri Nets and Design/CPN, pages
47–63, Department of Computer Science, University ofÅrhus, Denmark, 1998. PB-
532.

20. T. Mailund and K. H. Mortensen. Separation of style and content with XML in
an interchange format for high-level Petri nets. In Bastide et al. [1], pages 7–11.

21. The Model-Checking Kit. URL http://wwwbrauer.in.tum.de/gruppen/theorie/

KIT/. 2003/02/18.
22. The PEP Tool. URL http://parsys.informatik.uni-oldenburg.de/~pep/.

2002/07/29.
23. The Petri Net Kernel. URL http://www.informatik.hu-berlin.de/top/pnk/.

2001/11/09.
24. Petri Net Markup Language. URL http://www.informatik.hu-berlin.de/top/

pnml/. 2001/07/19.
25. Renew: The Reference Net Workshop. URL http://www.renew.de. 2002/03/04.
26. M. Sperberg-McQueen and H. Thompson (eds.). XML Schema. URL http://www.

w3.org/XML/Schema, April 2000. 2002-03-22.
27. C. Stehno. Petri Net Markup Language: Implementation and Application. In

J. Desel and M. Weske, editors, Promise 2002, Lecture Notes in Informatics P-21,
pages 18–30. Gesellschaft für Informatik, 2002.

28. M. Weber and E. Kindler. The Petri Net Kernel. In H. Ehrig, W. Reisig, G. Rozen-
berg, and H. Weber, editors, Petri Net Technology for Communication Based Sys-
tems, Lecture Notes in Computer Science 2472. Springer, Berlin Heidelberg, 2002.
To appear.

29. G. Wheeler. A textual syntax for describing Petri nets. Foresee design document,
Telecom Australia Research Laboratories, 1993. version 2.

30. The XML C library for Gnome. URL http://xmlsoft.org. 2003/01/23.

