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Summary. This paper aims at extending modular state space analysis to time
Petri nets. The basic model is time Petri nets, where the timing is a firing interval
attached to each transition. They are here extended to allow for modules. A state
is composed by both a marking and a clock valuation function. The state spaces
of time Petri nets are in general infinite even if the net is bounded, because the
transitions fire in a continuous time domain. For the analysis some techniques are
necessary to reduce the state space to a finite one. In this paper, we consider state
spaces obtained by restricting the behaviour of time Petri nets so that transitions
fire only at integer times. A modular version of such a graph is proposed as well as
an algorithm for its construction.

1 Introduction

Time Petri nets (TPNs) have been widely used for the modeling and verifi-
cation of real-time systems [BD91]. The most classical method for analysing
TPNs, as for classical Petri nets and many other formal models, is state space
analysis. State space analysis is a useful approach for the automatic verifica-
tion of finite state systems. Unfortunately, it suffers from the so-called state
explosion problem: the number of states can grow exponentially with the size
of the system. One approach to confine this problem is that of modular anal-
ysis, which takes advantage of the modular structure of a system specification.

Some extensions have been proposed to enrich time Petri nets with mod-
ule constructs such as Communicating Time Petri Nets (CmTPN) [BV95],
Compositional Time Petri net [Wan98] and Time Petri net systems [BB98].
The Compositional TPN and the communicating TPN consist of two basic
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elements: component TPN models and inter-component connections. Their
analysis is based on an incremental approach. The analysis technique of the
first model, based on reduction rules, requires to construct a timing order of
the components and assumes that the underlying dependency graph is acyclic.
But, from our point of view, this constraint may be too restrictive. For the sec-
ond model, the component of each module is analysed under the assumption of
a required interface which closes the modules with a set of timing restrictions
providing a partial specification for the expected environment. But defining
these interfaces is not straightforward.

A time Petri net system is a set of time Petri nets which can communicate
through algebraic expressions. But there is no adequate analysis technique
exploiting this modularisation.

This paper proposes the extension of modular Petri nets [CP00, LP04] to
deal with timing issues. The main advantage of this modular Petri net model
is its capability to decide behavioural properties from a modular state space.
We aim at taking advantage of this characteristic to deal with real-time sys-
tems.

In this paper, we consider a variant of discrete-time model as a first step
to deal with modularisation. In the discrete-time model, the time at which
each transition fires is an integer. The main advantage is that its state space
generation is very simple. Even if this model is not as accurate as the contin-
uous one, qualitative and quantitative analysis can be performed [YO95].

The paper is organized as follows. In the next section, we recall the time
Petri net model definition. In section 3, we introduce modular time Petri nets.
Then, in the following two sections, we develop the modular discrete pseudo-
state graph and an abstract algorithm for its construction. In section 6, we
present some experimental results obtained by applying the time modular
technique to a case study, and compare them to the flat state graph. Sec-
tion 7 concludes this paper and gives directions for future work.

Note that a similar work [LP05] has been conducted on Timed Petri Nets
which use global clocks instead of transition firing intervals. It leads to mod-
ular state spaces which are not finite but are built using a time limit. Hence,
the model considered here is different and our modular discrete pseudo-state
graphs are finite provided the net is bounded.

2 Time Petri Nets

Several timed extensions of Petri nets have been proposed, such as time Petri
nets [MF76], timed Petri nets [Ram74, Sif77]. Among these, Time Petri nets
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(TPNs) are most widely used for real-time system specification and verifica-
tion. It has been shown in [BD91] that TPNs are sufficient to express most
useful temporal constraints and are also more expressive than Ramchandani’s
Timed Petri nets.

First, we recall the definition of Time Petri Nets. The definitions here are
mainly based on [PZ91, PZ98].

Definition 1 (Time Petri Net).
A Time Petri Net is a 5-tuple TN = 〈P, T,W,M0, Is〉 where:

1. P and T are non-empty finite sets of places and transitions, respectively.
These sets are disjoint: T ∩ P = ∅;

2. W : (P × T ) ∪ (T × P ) −→ N is the arc-weight function;
3. M0 : P −→ N is the initial marking;
4. Is : T −→ Q+ × (Q+ ∪ {∞}) is the static interval function, where Q+

is the set of non-negative rational numbers. The Is function associates
with each transition t a temporal static interval [smin(t), smax(t)], where
smin(t) and smax(t) are called the static minimal firing time and the
static maximal firing time, respectively.

A marking is a function M : P −→ N where M(p) denotes the number
of tokens at place p. The pre- and post-sets of a transition t are given by
•t = {p ∈ P/W (p, t) ≥ 0} and t• = {p ∈ P/W (t, p) ≥ 0}.

The firing of a transition depends on both enabling and timing conditions.

Definition 2 (Enabling).
A transition t is enabled in a marking M iff ∀p ∈ P,M(p) ≥ W (p, t).

We denote by enabled(M) the set of all transitions enabled in marking M .
A transition t enabled in marking M is firable in the associated untimed Petri
net but not necessarily in the time Petri net. This is denoted by M [t〉u.

When firing a transition t, the transitions in conflict with t will first be
disabled and may be re-enabled immediately in the new marking.

Definition 3 (Conflict).
Two transitions t1 and t2 are in conflict in M iff t1 and t2 are enabled in M
and ∃p ∈ •t1 ∩

•t2,M(p) < W (p, t1) + W (p, t2).

As the firing of a transition is also conditioned by time, the TPN state must
contain temporal information in addition to the marking. Two characterisa-
tions of TPN states are possible: clock state and interval state. The TPN clock
state consists of a marking and a clock valuation function [PZ91]. Whereas
the TPN interval state is a pair of marking and a firing interval [BD91]. In
this paper we adopt the clock characterisation of states. In fact, we use a no-
tion of pseudo-state as an abstraction (a cover) of clock state. The distinction
between clock-state and clock pseudo-state is not in their definition but in
their associated firing rules.



4 S. Mazouz and L. Petrucci

Definition 4 (Pseudo-State).
A pseudo-state of a Time Petri Net is a pair Z = (M,J), where M is a
marking and J : T −→ Q+ ∪ {#} is a clock valuation function where the
symbol # is not in Q+.

When a transition t becomes enabled, its clock is set to 0. Its evolution
depends mainly on whether its static maximal firing time smax(t) is equal or
not to ∞. When smax(t) < ∞, the clock can go on until smax(t) whereas it
is stopped at smin(t) if smax(t) = ∞. The transition t can fire if its clock is
greater than or equal to its static minimal firing time smin(t). But in the first
case, when the clock reaches smax(t), transition t must be fired immediately,
without any delay. When a transition is disabled, its clock is set to #, showing
that the clock does not operate. The set of all pseudo-states is denoted by Z.

Let T1 ⊆ T be a subset of transitions, J and J1 clock valuation functions
over T and T1, respectively. We define the clock valuation function J ′ =
J [T1/J1] as follows :

J ′(t) = J [T1/J1](t) =

{

J1(t) if t ∈ T1

J(t) otherwise

Let J be a clock valuation function and dh a (non-negative) rational num-
ber, J + dh is the clock valuation function obtained from J by increasing all
the clocks of enabled transitions by the same delay dh.

The initial pseudo-state is Z0 = (M0, J0) where ∀t ∈ enabled(M0), J0(t) =
0 and J0(t) = # otherwise. The pseudo-states of a TPN evolve, either due to
time progressions or transitions firings.

Definition 5 (Behaviour). Two kinds of firings are possible:

• In pseudo-state Z = (M,J), a time delay dh ∈ Q+ can elapse, iff ∀t ∈
enabled(M), J(t) + dh ≤ smax(t). This leads to a new pseudo-state Z ′ =
(M ′, J ′) where:
1. M ′ = M

2. ∀t ∈ T, J ′(t) =























# if t /∈ enabled(M ′)
J(t) + dh if (t ∈ enabled(M ′) ∧ smax(t) < ∞)

∨(t ∈ enabled(M ′) ∧ smax(t) = ∞
∧J(t) + dh ≤ smin(t))

smin(t) otherwise

This kind of progression, when time elapses, is denoted by Z
dh
−→ Z ′.

• In pseudo-state Z = (M,J), a transition tf can fire iff it is both enabled
and J(tf ) ≥ smin(tf ). In this case, the firing of transition tf yields a new
pseudo-state Z ′ = (M ′, J ′) defined as follows:
1. ∀p ∈ P,M ′(p) = M(p) − W (p, tf ) + W (tf , p)

2. ∀t ∈ T, J ′(t) =















# if t /∈ enabled(M ′)
J(t) if t ∈ enabled(M) ∧ t ∈ enabled(M ′)

and t is not in conflict with tf in M
0 otherwise (t is newly enabled in M ′)
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This kind of progression, by transition firing, is denoted by Z
tf
−→ Z ′.

For simplicity, we assume that no transition can be concurrently enabled
with itself. Note that when a transition tf fires, transitions in conflict with
tf are temporarily disabled. If they are enabled in the new marking, this is a
new enabling and therefore their associated clock valuation becomes 0.

If Z
dh
−→ Z ′ and Z ′ t

−→ Z ′′, we write Z[dh.t〉Z ′′ or simply Z[t〉Z ′′ without
indication about the time elapsed before t fires.

Let Z be a pseudo-state and σ = t1t2 . . . tn a finite sequence of transi-
tions. Sequence σ is firable from Z, denoted by Z[σ〉, whenever there ex-
ists a finite sequence of pseudo-states Z1, Z2, . . .Zn such that Z = Z1 and
∀i = 1..n : Zi[ti〉Zi+1. Hence, Zn+1 is reachable from Z by firing σ, denoted
by Z[σ〉Zn+1.

The firing rules above define a reachability relation among pseudo-states
of a time Petri net. However, due to time density this set is in general infinite,
even if it is bounded. Its analysis by enumerative techniques requires some
state space contractions (state class graph, strong state class graph, atomic
state class graph) [BD91, Dia01]. In this paper, we consider a discrete-time
model [PZ98] as a first step to deal with modularisation.

Definition 6 (Discrete pseudo-state). A pseudo-state Z = (M,J) is
called a discrete pseudo-state iff ∀t ∈ enabled(M), J(t) ∈ N. By [Z〉 we denote
the set of all discrete pseudo-states reachable from Z.

Definition 7 (Discrete pseudo-state graph). Let TN = 〈P, T,W,M0, Is)
be a Time Petri Net. Its discrete pseudo-state graph is GI = (NI , AI) where
:

1. NI is the set of all reachable discrete pseudo-states

2. AI = {(Z, t, Z ′) ∈ NI × T × NI /Z
t
−→ Z ′} ∪ {(Z, 1, Z ′)/Z

1
−→ Z ′}.

The discrete pseudo-state graph is finite if the time Petri net is bounded.
Such a graph preserves qualitative properties such as liveness, boundedness,
linear temporal properties, as well as quantitative properties which are im-
portant for most real-time systems [PZ98, YO95].

Example 1. The discrete pseudo-state graph of the TPN given in figure 1 is
depicted in figure 2 (where . . . denotes ∞). The transition firings are repre-
sented by −→ and time progressions by 99K. In pseudo-state 2, tb1 is the only
firable transition. As its static maximal firing time is equal to ∞, it may fire
at any time. This fact is represented in the pseudo-state space by a unit time
progression arc to state 2.
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b3a3

b2a2

b1

ta1 [0,0]

tb2 [0,1]ta2 [0,1] syn [0,1]

tb1 [0,...[

Fig. 1. Time Petri net N1
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Fig. 2. Discrete pseudo-state graph of TPN N1

3 Modular Time Petri Nets

In this section, we define the modular time Petri net model. A modular time
Petri net is composed of a finite set of modules. Each module is a time
Petri net. The communication between modules is based on transition fusion
sets and synchronisation rules. These rules, taken from Time Stream Petri
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Nets [DS95], are introduced in order to solve temporal composition problems
inside transition fusion sets.

Definition 8 (Modular Time Petri Net).
A Modular Time Petri Net (MTPN) is a triple MTN = (S,TF ,Syn), where
:

1. S is a finite set of modules such that:
a) Each module s∈S is a Time Petri Net s = 〈Ps, Ts,Ws,M0s, Is〉.
b) The sets of nodes corresponding to different modules are pair-wise

disjoint : ∀s1, s2 ∈ S, s1 6= s2 ⇒ (Ps1
∪ Ts1

) ∩ (Ps2
∪ Ts2

) = ∅.

c) P =
⋃

s∈S

Ps and T =
⋃

s∈S

Ts are the sets of all places and all transitions

of all modules.
d) For a node x ∈ (T ∪ P ), S(x) denotes the module to which x belongs.

We define ∀p ∈ P : M0(p) = M0S(p)(p) and ∀t ∈ T : I(t) = IS(t)(t).

2. TF ⊆ 2T is a finite set of non-empty transition fusion sets.
3. Syn : TF −→ {”or”, ”strong − or”, ”weak − and”, ”pure − and”} is the

fusion temporal synchronisation function. The semantics of these synchro-
nisation rules is illustrated in figure 3.

Let tf = {t1, t2, t3} be a fused transition
Is(t1) = [a1, b1], Is(t2) = [a2, b2], and Is(t3) = [a3, b3]

a1 b1

a2 b2

a3 b3

pure-and

weak-and

strong-or

or

Fig. 3. Semantics of Synchronisation

For the sake of simplicity, we consider only the pure-and synchronisation
rule. In the following, TF also denotes ∪tf∈TF tf . The set IT = T \TF contains
all internal transitions, i.e. non-fused transitions and IT* is a set of all finite
sequences of internal transitions. ITs is its restriction to module s.

Example 2. The system modeled by the time Petri net N1 in figure 1 can
be described in a modular way as shown in figure 4. It is composed of two
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modules, namely A and B, which share transition syn, corresponding to a syn-
chronous action. Note that the transitions to be fused have the same name. In
this example, there is only one transition fusion set. The two transitions fused
together have different temporal static intervals in their respective modules.

a1

b3a3

b2a2

b1

ta1 [0,0]

tb2 [0,1]ta2 [0,1] syn [0,1]

tb1 [0,...[

syn [0,3]

Module A Module B

Fig. 4. Time Petri net N1, composed of 2 modules

Since there are both fusion transitions and internal transitions in a mod-
ular net, we introduce a notion of transition group as a uniform way to refer
to them.

Definition 9 (Transition group).
A transition group tg ⊆ T is a set of transitions such that it consists of a
single non-fused transition t ∈ IT = T \TF or is equal to a transition fusion
set tf ∈ TF. The set of transition groups is denoted by TG.

Next, we extend the arc-weight function W and the static interval function
I to transition groups:

1. ∀p ∈ P,∀tg ∈ TG : (W (p, tg) =
∑

t∈tg

W (p, t)) ∧ (W (tg, p) =
∑

t∈tg

W (t, p)).

2. The static temporal interval of a transition group tg is computed with
respect to its temporal synchronisation rule. As mentioned above, we con-
sider only the pure-and rule. Hence, ∀tg ∈ TG,∀t ∈ tg : (smin(tg) =
max
t∈tg

smin(t)) ∧ (smax(tg) = min
t∈tg

smax(t)).
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Definition 10 (Enabling).
A transition group tg is enabled in a marking M , denoted by M [tg〉, iff:
∀p ∈ P,W (p, tg) ≤ M(p).

A pseudo-state of a modular time Petri net is defined in a similar manner
as for time Petri nets. Hence, it is a pair of marking and clock valuation
function that associates with each enabled transition group its local time and
# with each disabled transition group. The firing rules are also similar where
transition is replaced by transition group.

A modular time Petri net can be unfolded into an equivalent time Petri
net.

Definition 11 (Equivalent Time Petri Net).
Let MTN = (S,TF ,Syn) be a modular time Petri net. Its equivalent time

Petri net is TN⋄ = (P ⋄, T ⋄,W ⋄,M⋄

0 , I⋄) where:

1. P ⋄ = P
2. T ⋄ = TG
3. ∀(x⋄, y⋄) ∈ (P ⋄ × T ⋄) ∪ (T ⋄ × P ⋄),W ⋄(x⋄, y⋄) = W (x⋄, y⋄)
4. ∀p⋄ ∈ P ⋄,M⋄

0 (p⋄) = M0(p
⋄)

5. ∀t⋄ ∈ T ⋄, I⋄(t⋄) = I(t⋄)

The set of places is preserved as well as their initial marking. The equiv-
alent time Petri net has one transition per transition group. The weight as-
sociated with a pair (place, transition group) or (transition group, place) and
the static temporal interval of a transition group are unchanged.

The following property states that a modular time Petri net and its equiv-
alent time Petri net have the same behaviour.

Proposition 1. Let MTN be a modular time Petri net and TN⋄ its equiva-
lent time Petri net. Then, the following properties hold:

1. Z0 = Z⋄

0 and Z = Z⋄

2. ∀Z1, Z2 ∈ Z,∀x ∈ TG ∪ N : Z1
x
−→MTN Z2 ⇔ Z1

x
−→TN⋄ Z2

Proof:

Follows from definitions 8, 11 and 5. 3

4 Modular Time Pseudo-State Graphs

In the following, we formally define modular discrete pseudo-state graphs.
Let σ be a finite sequence of internal transitions, Z a state and tf a fused

transition. We introduce the following notations:
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1. [[Z〉 = {Z ′/∃σ ∈ IT ∗, Z[σ〉Z ′}
is the set of all pseudo-states reachable from Z by a sequence (possibly
empty) of internal transitions only (Z ∈ [[Z〉). Note that a delay can occur
before each transition in σ, but not after. Hence, the sequence always ends
with an internal transition.

2. [[Z⌋ = {Z ′/∃dh ∈ N,∃Z ′′ ∈ [[Z〉 : Z ′′ dh
−→ Z ′}

is the set of all pseudo-states reachable from Z by a sequence (possibly
empty) of internal transitions possibly followed by progressions of time.
Note that [[Z〉 ⊆ [[Z⌋.

3. Among the pseudo-states in sets [[Z〉 and [[Z⌋, we distinguish those where
at least one fused transition is enabled. These subsets are denoted by
[[Z〉TF and [[Z⌋TF , respectively.

The set of transitions is augmented with an abstract transition denoted
i, which represents an internal evolution of the net leading to a pseudo-state
where at least one fused transition is enabled even if it is not firable. These
states are relevant because time progression must be handled in a global man-
ner. In the sequel, we refer to this kind of sequence as maximal sequence.
Hence, we have chosen to represent explicitly this kind of evolution even if
we can capture this information on the arcs as in [CP00]. The restriction of
a pseudo-state Z = (M,J) to a module s is denoted by Zs = (Ms, Js) where
Ms (respectively Js) is the restriction of M (respectively J) to places (re-
spectively internal transitions) of module s. For a local pseudo-state Zs in a
module s, [Z〉s denotes the set of all local pseudo-states reachable from Zs by
occurrences of local transitions of module s only.

Definition 12 (Modular Pseudo-State Graph). Let MTN = (S,TF ,Syn)
be a modular time Petri net. The modular pseudo-state graph of MTN is a
pair MPSG = ((PSGs)s∈S , SG) where:

1. PSGs = (Vs, As) is the local pseudo-state graph of module s defined by:
a) Vs = ∪v∈(VSG)s

[v〉s

b) As ={(Z, ts, Z
′) ∈ Vs × ITs × Vs/Z

ts−→ Z ′}

∪{(Z, 1, Z ′) ∈ Vs × {1} × Vs/Z
1
−→ Z ′}

2. SG = (VSG, ASG) is the synchronisation graph of MTN:
a) VSG can be defined inductively as follows:

i. Z0 ∈ VSG

ii. if Z ∈ VSG and Z
tf
−→ Z ′ then Z ′ ∈ VSG

iii. if Z ∈ VSG, ∃tf ∈ TF enabled in Z and Z
1
−→ Z ′ then Z ′ ∈ VSG

iv. if Z ∈ VSG and Z ′ ∈ [[Z〉TF then Z ′ ∈ VSG

b) ASG ={(Z, tf , Z ′) ∈ VSG × TF × VSG/Z
tf
−→ Z ′}

∪{(Z, 1, Z ′) ∈ VSG × {1} × VSG/∃tf ∈ TF enabled in Z ∧ Z
1
−→ Z ′}

∪{(Z, i, Z ′)/Z ′ ∈ [[Z〉TF}.
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Explanation:

A modular state space is composed of one local pseudo-state graph per module
and a synchronisation graph.

(1) The local pseudo-state graph of a module represents its internal activity
independently of the other modules.
(1a) The set of nodes of the pseudo-state graph of a module s contains all

pseudo-states locally reachable from any node of the synchronisation
graph.

(1b) The arcs of the pseudo-state graph of a module correspond to internal
firable transitions or local time progression of the module.

(2) The synchronisation graph captures the communication between modules.
(2a) The nodes of the synchronisation graph contains in addition of the

initial pseudo-state all pseudo-states reachable by:
(2(a)ii) a fused transition from another pseudo-state
(2(a)iii) time progression from another pseudo-state where at least one

fused transition is enabled
(2(a)iv) a sequence of internal transitions from another pseudo-state.

Those states have at least one enabled fused transition.
(2b) The arcs of the synchronisation graph represent the occurrences of

a fused transition, of time progression and of internal evolution.

To prove that the modular state graph captures the behaviour of the Time
Petri net, we first define the unfolding of a modular pseudo-state graph into
an ordinary one. A global pseudo-state can be viewed as the product of local
pseudo-states plus temporal information concerning the fused transitions. For
this purpose, we define the following notations :

1. Let Ms be a marking of module s, M∗

s denotes the marking of the full
system where all places of all other modules are empty.

2. Let JF be a clock valuation function mapping from TF . Firing an internal
transition ts in a marking M can modify the marking and consequently
enable or disable fused transitions. The new clock valuation function of
fused transitions J ′

F# is then (M ′ being the new marking):

∀tf ∈ TF , J ′

F#(tf ) =















JF (tf ) if tf ∈ enabled(M)
and tf is not in conflict with ts

# if tf /∈ enabled(M ′)
0 otherwise (tf is newly enabled)

Definition 13 (Unfolded pseudo-state graph). Let MTN = (S,TF ,Syn)
be a modular time Petri net and MPSG = ((PSGs)s∈S , SG) its modular
pseudo-state graph. The unfolded pseudo-state graph of MPSG is PSG =
(V,A) where:
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1. V =
⋃

v∈VSG

[[v⌋

2. A ={(Z, tf , Z ′) ∈ ASG}

∪
⋃

Z∈V,s∈S,

(Zs,t,Z′
s)∈As

{(Z, t, Z ′)/M ′ = M − M⋄

s + M ′

s
⋄

∧J ′ = J [ITs/J ′

s,TF/J ′

F#]}

∪
⋃

Z∈V

{(Z, 1, Z ′)/(Z ∈ VSG ∧ (Z, 1, Z ′) ∈ ASG)

∨[(∀tf ∈ TF , tf /∈ enabled(M))
∧J ′

F = JF ∧ (∀s ∈ S, (Zs, 1, Z ′

s) ∈ As))]}

Explanation:

(1) The unfolded graph contains all the pseudo-states reachable by internal
transitions and time delays, from any of the nodes in the synchronisation
graph.

(2) An arc of synchronisation graph labeled by a fused transition or 1 (repre-
senting time progression) is also an arc of the equivalent state graph. For
each pseudo-state, if a local transition is firable, there is a corresponding
arc in the unfolded graph. The marking and clock valuations are changed
for the module concerned as specified in its local pseudo-state graph. The
clock valuations of fused transitions are modified as specified previously.
The firing of an internal transition cannot affect the internal transitions
of other modules. For each pseudo-state without any enabled fused tran-
sition, if local time progression can occur for each module, there is a cor-
responding time progression arc in the unfolded graph. The pseudo-state
for each module is changed as specified in its local pseudo-state graph.
The clock valuations of fused transitions are unchanged, i.e. equal to #.

The following theorem states that the equivalent ordinary pseudo-state graph
of MPSG and the pseudo-state graph of the equivalent time Petri net of MTN
are the same.

Theorem 1. Let MTN be a modular time Petri net, MPSG its modular
pseudo-state graph and TN its equivalent time Petri net. Let PSGMPSG be
the unfolded pseudo-state graph of MPSG and PSGTN the pseudo-state graph
of TN :

PSGMPSG and PSGTN are isomorphic.

Proof:

Let MTN = (S,TF ) be a modular time Petri net, PMSG = ((PSGs)s∈S ,SG)
its modular pseudo-state graph and TN its equivalent time Petri net. Let
PSGMPSG = (VMPSG , AMPSG) be the unfolded pseudo-state graph of MPSG
and PSGTN = (VTN , ATN ) the pseudo-state graph of TN .
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To prove that PSGMPSG and PSGTN are isomorphic, we must find a bijec-
tive function f mapping from VMPSG to VTN such that: ∀Z,Z ′ ∈ VMPSG ,∀x ∈
TG ∪ {1}, (Z, x, Z ′) ∈ AMPSG iff (f(Z), x, f(Z ′)) ∈ ATN . We can first prove
VTN = VMPSG and then we can take the identity as function f . We can
proceed by double inclusion.

1. (⊆) Let Z ∈ VTN . We prove that Z ∈ VMPSG .
We proceed by induction on the structure of VTN . The base case is trivial.
Let Z ∈ VTN (with Z 6= Z0)). Two cases are possible for the induction:

a) ∃Z ′ ∈ VTN ,∃t ∈ TG , Z ′ t
−→TN Z.

From proposition 1, Z ′ t
−→TN Z ⇔ Z ′ t

−→MTN Z.
By induction, Z ′ ∈ VMPSG and thus Z ∈ VMPSG .

b) ∃Z ′ ∈ VTN , Z ′ →TN Z. This case is similar to the previous one.
2. (⊇) Let Z ∈ VMPSG . We prove that Z ∈ VTN :

Z ∈ VMPSG

⇔ ∃Z ′ ∈ VSG , Z ∈ [[Z ′⌋ (definition 13)
⇔ ∃Z ′ ∈ VSG ,∃σ ∈ IT ∗,∃dh ∈ N : Z ′[σ.dh〉MTNZ.
It is trivial that VSG ⊆ VMPSG (all nodes of the synchronisation graph
are in the unfolded pseudo-state graph of MPSG). We must prove that
VSG ⊆ VTN (all nodes of synchronisation graph are also in the pseudo-
state graph of TN ).
We can proceed by induction on the structure of VSG that VSG ⊆
VTN . It follows that VMPSG ⊆ VTN . From proposition 1, we have
Z ′[σ.dh〉MTNZ ⇔ Z ′[σ.dh〉TNZ and from definition 7, we can conclude
that Z ∈ VTN .

Now, me must prove the property for the arcs:

∀Z,Z ′ ∈ VMPSG ,∀x ∈ TG∪{1} : (Z, x, Z ′) ∈ AMPSG iff (f(Z), x, f(Z ′)) ∈ ATN

1. (⇒) Let Z,Z ′ ∈ VMPSG and x ∈ TG∪ {1} such that (Z, x, Z ′) ∈ AMPSG .
We prove that (Z, x, Z ′) ∈ ATN .
a) x ∈ TF (x is a fused transition)

x ∈ TF and (Z, x, Z ′) ∈ AMPSG

⇔ x ∈ TF and (Z, x, Z ′) ∈ ASG (definition 13)

⇔ x ∈ TF and Z
x
−→MTN Z ′ (definition 12)

⇔ x ∈ TF and Z
x
−→TN Z ′ (proposition 1)

⇔ x ∈ TF and (Z, x, Z ′) ∈ ATN (definition 7)
b) x = 1 (time progression). There are two subcases:

i. Z ∈ VPSG and (Z, 1, Z ′) ∈ AMPSG (there is at least one enabled
fused transition).
As Z ∈ VPSG , it follows from definitions 13, 12, 7 and proposition 1
that (Z, 1, Z ′) ∈ ATN .

ii. Z /∈ VSG and (Z, 1, Z ′) ∈ AMPSG (there is no enabled fused tran-
sition)
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⇔6 ∃tf ∈ TF , tf ∈ enabled(Z), and ∀s ∈ S, (Zs, 1, Z ′

s) ∈ As

⇔ enabled(Z) = ∪s∈Senabled(Zs), J
′

F = JF = #,∀s ∈ S, (Zs →MTN

Z ′

s)
⇒ Z →MTN Z ′

⇒ Z →TN Z ′

⇒ (Z, 1, Z ′) ∈ ATN

c) x = {ts} with ts ∈ IT (x is an internal transition)
⇒ ∃s ∈ S, (Zs, ts, Z

′

s) ∈ As and Z ′ = (M−M⋄

s +M ′⋄

s , J [IT s/J ′

s,TF/JF#])

⇒ Z
ts−→MTN Z ′

⇒ Z
ts−→TN Z ′

⇒ (Z, ts, Z
′) ∈ ATN

2. (⇐) Let Z,Z ′ ∈ VTN (= VMPSG) and x ∈ TG ∪ {1} such that (Z, x, Z ′) ∈
ATN . We prove that (Z, x, Z ′) ∈ AMPSG .
a) x ∈ TF (x is a fused transition). This case has already been handled

in (1a).

b) x = 1 (time progression). The case where Z ∈ VSG has been handled
previously. The case where Z /∈ VSG remains.
Z /∈ VSG and (Z, 1, Z ′) ∈ ATN

⇒ Z /∈ VSG and Z →TN Z ′

⇒ Z /∈ VSG and Z →MTN Z ′

⇒ There is no fused transition enabled at Z, JF = J ′

F and ∀s ∈
S, (Zs, 1, Z ′

s) ∈ As ⇒ (Z, 1, Z ′) ∈ AMPSG .
c) x = ts with ts ∈ IT . This case can be handled in a similar manner.

3

5 Algorithm for Modular Time Petri Nets

In this section, we present an algorithm that constructs a modular discrete
pseudo-state graph for a given modular Time Petri net. Before giving the
construction algorithm, we start with an informal explanation on an example.

Example 3. Figures 5, 6 and 7 show the steps of the modular state space gen-
eration for the net N1 in figure 4.

The construction starts by initialising the synchronisation graph with the
first node corresponding to the initial state Z0. In the first step, the local
graphs contain all locally reachable pseudo-states of each module, from the
initial state. Note that for each module, the local valuation clock of internal
transitions is computed relative to the static firing intervals of its enabled
internal transitions only, even if the marking enables fused transitions. For
example, in state A2 no internal transition is enabled so time can progress
indefinitely. The fused transition syn is locally enabled but it may or may not
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be globally enabled since its enabling depends on both modules A and B.

In a second step, we find from the graphs of the modules the global states
which enable at least one fused transition. These states are added to the syn-
chronisation graph, linked to the previous state by an abstract transition i.
The valuation clock of enabled fused transitions is computed from local valu-
ation clocks attached to participating modules. Note that once a fused tran-
sition is locally enabled its local valuation clock is activated. This temporal
information represents time elapsed since the module is ready to participate
to a fused transition. In fact, a fused transition is really enabled if it is lo-
cally enabled in all participating modules. In this example, the combination
of states A2 = (a2,# #) and B2 = (b2,# #) enables the fused transition syn.
Its valuation clock is set to 0 because it becomes enabled.

Hence, we add node (A2B2, 0) to the synchronisation graph, linked to the
initial node by an arc labeled i. In this state, syn can be fired either im-
mediately or after one time unit, leading to state (a3b3,# 0 # 0 #). The
corresponding nodes are added to the synchronisation graph and the new lo-
cal nodes to the local graphs. Thus, state A3 = (a3,# 0) and all states locally
reachable from there are added to the local graph of module A. Transition
ta2 is enabled and can be fired yielding to an existing state A2 or time can
progress leading to a new state A4 = (a3,# 1). A similar construction is ap-
plied to module B.

Then, in a third step, state (A2B2, 0) is locally reachable from state
(A3B3,#) and we link them by an arc labeled i. Nothing new can then be
added and the graph construction is finished.

A1=(a1, 0 #) (A1B1, #)

A2=(a2, # #) B2=(b2, # #)

Module A Module B Synchronisation 
Graph

ta1 tb1

B1=(b1, 0 #)

Fig. 5. After the first step of the modular generation
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A1=(a1, 0 #) (A1B1, #)

Module B

A3=(a3, # 0) A4=(a3, # 1)

ta1 tb1

ta2 ta2

B3=(b3, # 0) B4=(b3, # 1)

tb2 tb2

(A2B2, 0)

(A2B2, 1) (A3B3, #)

i

syn

syn

Module A Synchronisation Graph

A2=(a2, # #) B2=(b2, # #)

B1=(b1, 0 #)

Fig. 6. After the second step of the modular generation

A1=(a1, 0 #) (A1B1, #)

A3=(a3, # 0) A4=(a3, # 1)

ta1

ta2 ta2

(A2B2, 0)

(A2B2, 1) (A3B3, #)

i

syn

syn

Module A Synchronisation Graph

i

A2=(a2, # #)

Module B

tb1

B3=(b3, # 0) B4=(b3, # 1)

tb2 tb2

B2=(b2, # #)

B1=(b1, 0 #)

Fig. 7. After the third step of the modular generation

5.1 Modular state space generation algorithm

We now define an abstract algorithm to construct modular pseudo-state
graphs. This algorithm does not represent abstract transition in the synchro-
nisation graph and this information is captured on arcs as in [CP00]. The func-
tions Node.Add(Z) and Arc.Add(Z, a, Z ′) are similar to those in [CP00].
Function Node.Add(Z) adds a node labelled by Z to the graph and to the
set Waiting , provided it does not already exist. Similarly, Arc.Add(Z, a, Z ′)
adds an arc to the graph. Function LocalNextI(Z) constructs the different
local state spaces stepwise and produces the set of all pseudo-states reachable
from Z by a sequence of internal transitions (or none). It may be followed
by a fused transition (either immediately or after a delay). This function uses
two other ones: Explore-Internal(s, current-waitings) and Explore-

Succ(s, succ-waitings). The first one explores for each module the local
pseudo-states reachable from any pseudo-state of its set current-waitings

before time is advanced and returns a set of pairs: the first element is the local
pseudo-state reachable from current-waitings pseudo-state and the second
is the fused transition which is locally firable at this reachable pseudo-state.
The second function gives the set of all local temporal successor pseudo-states
of any succ-waitings pseudo-state after one time unit. This set will be ex-
amined in the next step of the loop as the current-waitings set. Variable
succ-waitings contains local successor pseudo-states of any pseudo-state of
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current-waitings. Node.Add (at the local level) uses an extended pseudo-
state Zes which is a pair of local pseudo-state and local valuation clocks
of fused transitions. It adds the argument to both current-waitings and
succ-waitings, and also adds a node labelled by the first element only to
the local pseudo-state graph. LocalNextI(Z) terminates when stability is
reached: no new pseudo-state is found. Set succ-waiting+ contains the lo-
cal pseudo-states reachable by a non-empty sequence of internal transitions.
Hence it is a subset of succ-waiting.

1: Set waiting ←− ∅
2: Node.Add(Z0)
3: repeat

4: Select Z ∈ waiting ;
5: Next-i ←− LocalNextI(Z);
6: for all Z′ ∈ Next-i do

7: for all tf ∈ TF do

8: if Z′ tf
−→ Z” then

9: Node.Add(Z”)
10: Arc.Add(Z, (Z′, tf ), Z”)
11: end if

12: end for

13: if Z′ −→ Z” and ∃tf ∈ TF, Z′[tf 〉u then

14: Node.Add(Z”)
15: Arc.Add(Z, (Z′, 1), Z”)
16: end if

17: end for

18: until stable (waiting=∅)

Fig. 8. Algorithm MSS() (modular state space generation)

5.2 Correctness

The correctness of the algorithm is mainly based on the correctness of function
LocalNextI(Z). Indeed, this function returns a set of global pseudo-states
reachable from Z by a maximal sequence of internal transitions: [[Z〉TF . Com-
puting this set from local pseudo-states only can lead to non-reachable global
pseudo-states. The main problem is to find correct valuation clocks of fused
transitions. For this purpose, an extended local pseudo-state is used where lo-
cal valuation clocks of fused transitions are associated with local pseudo-state.
Once a fused transition tf is locally enabled in a module s, its local clock is ini-
tialised and increases when time progresses. It represents time elapsed since
module s is ready to participate to fused transition tf . The different local
clocks of a fused transition are consistent since the time progression is applied
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unit by unit for all modules. From local extended pseudo-states of modules
(Zes)s∈S , we can compute a global pseudo-state Z ′. We can deduce that a
fused transition tf is globally enabled in Z’ when it is locally enabled in all
participating modules and in this case its global clock is set to the local clock
associated with tf in the last module ready to participate to it. Since time
progresses in modules independently of time constraints of fused transitions,
we have to exclude from the global pseudo-states obtained those where for a
fused transition tf the valuation clock is greater than its maximal firing time.
We also exclude those where no fused transition is enabled because we are in-
terested in maximal sequences only. Finally, we must verify that there exists
a non-empty sequence of internal transitions yielding to Z ′ since time is at
least increased by a unit. All these conditions guarantee that Z ′ is reachable
from Z by a maximal sequence of internal transitions ending with an internal
transition.

The algorithm MSS() uses a set Waiting of global pseudo-states from
which it may be possible to reach states by a maximal sequence of internal
transitions, where at least a fused transition is enabled. Function Local-

NextI(Z) computes this set for each state Z of Waiting . If from Z, we can
reach a state Z ′ where a fused transition is enabled, its successors are built
and added to set Waiting provided that they do not already exist. Each state
handled is removed from Waiting . Hence, the termination of the algorithm
MSS() depends on the termination of LocalNextI(Z). This function termi-
nates when there is no new pseudo-state in any module.

6 Experimental results

In order to show the benefits of our approach, we implemented a prototype
tool. In this paper, we consider the example of a timed version of the railroad
crossing problem from [Pet05]. The railroad crossing system (RCS) operates
a gate. The area of crossing lies within a region of interest. When a train
enters or leaves this region, the RCS is notified. The gate is modelled in
figure 10(a), each train is described by a net presented in figure 10(c), while
the whole system is synchronised through the controller shown in figure 10(b).
The transitions with the same name are to be fused. The static interval firing
times of transitions are given in table 1.

The results of the experiments are given in table 2. The first two columns
give the size (number of nodes and arcs) of the flat pseudo-state graph whereas
the next two columns give the size of the modular discrete pseudo-state graph.

The experimental results show that the more trains, the more significant
the reduction is. Indeed, much interleaving is avoided when building the mod-
ular pseudo-state space. Note that in this system communication does not
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1: Set current-Next-i ←− Z
2: for all s ∈ S do

3: current-waitings ←− ∅
4: Node.Add(Zs)
5: end for

6: repeat

7: for all s ∈ S do

8: trysyns ←− Explore-Internal(s,current-waitings)
9: end for

10: set-of-pairs= {(Z, Z′)/Z 6= Z′, Z′ =
Q

s∈S,Z′
es∈succ-waitings

Z′

es :

(∃s ∈ S, Z′

es ∈ succ-waiting+
s ),

(∃tf ∈ TF , (tf ∩ Ts) 6= ∅ ⇒ (tf, Z′

s) ∈ trysyns)}
11: for all (Z, Z′) ∈ set-of-pairs do

12: current-Next-i ← current-Next-i ∪{Z′}
13: end for

14: {Time progression}
15: for all s ∈ S do

16: current-waitings = Explore-Succ(s,succ-waitings)
17: end for

18: until stable
19: return current-Next-i

Fig. 9. Algorithm LocalNextI(Z)

lower

down

raise

up

get_down

get_up

close

open

(a) Gate

lower

order_upwait4train

order_down

raise

approach_n

approach_1 .
.
.

exit_n

exit_1 .
.
.

(b) Controller

pass_i

after_i

far_i

before_i
approach_i

exit_i

(c) Train i
Fig. 10. The railway crossing system

involve all modules. Thus, the algorithm can be optimised so that the syn-
chronisation graph does not explicit equivalent occurrences of fused transitions
having different states for modules which do not participate in the synchro-
nisation [LP04]. We could also use the notion of strongly connected compo-
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Module Transition smin(t) smax(t)

Gate lower 0 ∞
raise 0 ∞
close 1 2
open 1 2

Controller lower 0 0
raise 0 0

approach-i 0 ∞
exit-i 0 ∞

train-i approach-i 0 ∞
exit-i 0 0
pass-i 3 5

Table 1. Static Interval Firing Times

nents as a compact representation to reduce the size of the synchronisation
graph [CP00].

Trains VFSG AFSG VMSG AMSG

1 33 51 33 43
2 150 278 142 269
3 358 690 274 533
4 687 1287 453 891

Table 2. Modular discrete graph and flat graph

7 Conclusion and Future Work

In this paper, we have extended the definition of modular Petri nets to time
Petri nets in order to take advantage of the modular structure of real-time
system specifications. We have restricted the time domain to integral time to
examine whether the modular approach can be translated to time Petri nets
and still be beneficial. A fundamental hypothesis on the modular Time Petri
net model is that time is synchronic, i.e. time progresses at the same pace for
all modules. A modular pseudo-state graph was defined, composed of one lo-
cal pseudo-state graph per module and a synchronisation graph. It maintains
both global and local temporal information. The local temporal information
is relevant when there is no enabled fused transition. The main problem was
to find the reachable global pseudo-states which enable fused transitions from



Modular Discrete Pseudo-State Graphs for Time Petri Nets 21

the graphs of modules.

An algorithm to generate a modular pseudo-state graph was given and a
prototype tool supporting this approach was implemented. Preliminary ex-
perimental results have been presented and demonstrate the benefits of the
approach. It will be important to perform further experiments to see whether
this benefit carries over to more realistic case studies. Verifying properties
on the modular pseudo-state graph without unfolding to an ordinary pseudo-
state graph is still an important issue. Extending this approach to dense time
constitutes a further challenge.
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