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Abstract. This paper presents CNDFS, a tight integration of two earlier multi-
core nested depth-first search (NDFS) algorithms for LTL model checking.
CNDFS combines the different strengths and avoids some weaknesses of its pre-
decessors. We compare CNDFS to an earlier ad-hoc combination of those two al-
gorithms and show several benefits: It has shorter and simpler code and a simpler
correctness proof. It exhibits more robust performance with similar scalability,
while at the same time reducing memory requirements.

The algorithm has been implemented in the multi-core backend of the
LTSMIN model checker, which is now benchmarked for the first time on a 48 core
machine (previously 16). The experiments demonstrate better scalability than
other parallel LTL model checking algorithms, but we also investigate appar-
ent bottlenecks. Finally, we noticed that the multi-core NDFS algorithms pro-
duce shorter counterexamples, surprisingly often shorter than their BFS-based
counterparts.

1 Introduction

Model checking is a resource demanding task that can be performed by a systematic ex-
ploration of a huge directed graph representing the dynamic behaviour of the analysed
system. Although memory is usually the major bottleneck, execution times can also
often exceed acceptable limits. For instance the exploration of a 109 states graph at a
high exploration rate of 105 states per second would take more than a day. This remains
acceptable but becomes problematic when increasing the number of system configu-
rations and properties analysed. Hence, model checking has gained a renewed interest
with the advent of multi-core architectures that can help tackle this time explosion.

Some properties like safety properties rely on a complete enumeration of system
states and can thus be easily parallelised since they do not ask for a specific search or-
der. However, the problem is harder when it comes to the verification of Linear Time
temporal Logic (LTL) properties. LTL model checking can be reduced to a cycle detec-
tion problem and state-of-the-art algorithms [8,9,11] proceed depth-first since cycles are
more easily discovered using this search order. However, this characteristic also makes
them unsuitable for parallel architectures since DFS is inherently sequential [20].

One approach to address this issue is to sacrifice the optimal linear complexity pro-
vided by DFS algorithms and switch to BFS-like algorithms, which are highly scalable
both theoretically and experimentally. We compare our approach to the best representa-
tive of that family. More recently, two algorithms (LNDFS from [13] and ENDFS from
[10]) adapted the well known Nested DFS (NDFS) algorithm [8] to multi-core architec-
tures. They share the principle of launching multiple instances of NDFS that synchronise
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themselves to avoid useless state revisits. Although they are heuristic algorithms in the
sense that, in the worst case, they reduce to spawn multiple unsynchronised instances
of NDFS, the experiments reported in [13,14] show good practical speedups.

The contribution of this paper is an improvement to both the LNDFS and ENDFS

algorithms, called CNDFS. This new algorithm is both much simpler and uses less
memory, making it more compatible with lossy compression techniques such as tree
compression [17] that can compress large states down to two integers. We also pursue a
thorough experimental evaluation of this algorithm on the models of the BEEM database
[18] with an implementation of this algorithm on top of the LTSMIN toolset [16]. The
outcome of these experiments is threefold. Firstly, CNDFS exhibits a similar speedup
to its predecessors, but achieves this more robustly, with smoother speedup lines, while
using less memory. Second, it combines nicely with heuristics limiting the amount of
redundant work performed by individual threads. Finally, in the presence of bugs, it re-
ports counterexamples that are usually much shorter than those reported by NDFS and,
more importantly, this length tends to decrease as more working threads get involved
in the verification. This property is quite appreciable from a user perspective as it eases
the task of error correction.

The outline of this paper is the following. In Section 2 we formally express the LTL
model checking problem and review existing (sequential and parallel) algorithms that
address it. CNDFS, our new algorithm, is introduced and formally proven in Section 3.
Our experimental evaluation of this algorithm is summarised in Section 4. Finally, Sec-
tion 5 concludes our paper and explores some research perspectives to this work.

2 Background

We give in this section the few ingredients that are required for the understanding of
this paper and briefly review existing works in the field of explicit parallel LTL model
checking based on the automata theoretic approach.

2.1 The Automata Theoretic Approach to LTL Model Checking

LTL model checking is usually performed following the automata-based approach orig-
inating from [22] that proceeds in several steps. In this paper we focus only on the last
step of the process that can be reduced to a graph problem: given a graph representing
the synchronised product of the Büchi property automaton and the state space of the
system, find a cycle containing an accepting state. Any such identified cycle determines
an infinite execution of the system violating the LTL formula. In this paper we will only
reason on automaton graphs that result from the product of a Büchi property automaton
and a system graph describing the dynamic behaviour of the modelled system.

Definition 1 (Automaton graph). An automaton graph is a tuple G = (S ,T ,A ,s0),
where S is a finite set of states; T ⊆ S × S is a set of transitions; A ⊆ S is the set of
accepting states; and s0 ∈ S is an initial state.

Notations. Let (S ,T ,A ,s0) be an automaton graph. For s ∈ S the set of its successor
states is denoted by succ(s) = {s′ ∈ S | (s,s′)∈ T }. (s,s′)∈ T is also denoted by s → s′.
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s →+ s′ (s →∗ s′) denotes the (reflexive) transitive closure of T , i.e. the fact that s′ is
reachable from s. A path is a state sequence s1, . . . ,sn with si → si+1, ∀i∈{1, . . . ,n−1},
a cycle is a path s1, . . . ,sn with s1 = sn and a cycle C ≡ s1, . . . ,sn is an accepting cycle
if C ∩A �= /0. An accepting run is an accepting cycle reachable from the initial state:
s0, . . . ,si, . . . ,sn where si = sn. The LTL model checking problem consists of finding
an accepting run in an automaton graph. An LTL model checking algorithm proceeds
on-the-fly if it can report an accepting run without visiting all transitions.

2.2 Sequential LTL Model Checking Algorithms

Alg. 1 NDFS [8] as presented in [21].
1: dfsBlue(s0)
2: procedure dfsBlue(s) is
3: s.cyan := true
4: for all s′ in succ(s) do
5: if ¬s′.blue then dfsBlue(s′)
6: if s ∈ A then dfsRed(s)
7: s.cyan := false
8: s.blue := true
9: procedure dfsRed(s) is

10: s.red := true
11: for all s′ in succ(s) do
12: if s′.cyan then exit(cycle)
13: if ¬s′.red then dfsRed(s′)

NDFS [8] was the first LTL model
checking algorithm proposed. It en-
joys several nice properties: an optimal
linear complexity, the on-the-fly discov-
ery of accepting cycles and a low mem-
ory consumption (2 bits per state). Two
variations of Tarjan’s algorithm for SCC
decomposition [9,11] have also been
proposed with similar characteristics but
we focus here on NDFS as our new algo-
rithm is a direct descendant of this one.

The pseudo-code of this algorithm is
given by Alg. 1. The algorithm performs
a first level DFS (the blue DFS) to dis-
cover accepting states. When such a state is backtracked from, a second level DFS (the
red DFS) is launched to see whether this accepting state (now called the seed) is reach-
able from itself and is thus part of an accepting cycle. It is sufficient to find a path back
to the stack of the blue DFS [21], hence the cyan colour in Alg. 1. Correctness depends
on the fact that different invocations of the red DFS happen in post-order. The algorithm
works in linear time: each state is visited at most twice, since the result of a red DFS
can be reused in subsequent red DFSs; states retain their red colour.

2.3 Parallel LTL Model Checking Algorithms for Shared-Memory Architectures

In the field of parallel LTL model checking, the first algorithms designed targeted dis-
tributed memory architectures like clusters of machines. This family of algorithms in-
cludes MAP [6], OWCTY [7] and BLEDGE [2]. It is however well known that this kind
of message passing algorithm can be easily ported to shared-memory architectures like
multi-core computers although the specificities of these architectures must be consid-
ered to achieve good scalability [4]. Their common characteristic is to rely on some
form of breadth-first search (BFS) of the graph that has the advantage of being easily
parallelised, unlike depth-first search (DFS) [20]. They hence deliver excellent speed-
ups but sacrifice optimality and the ability to report accepting cycles on-the-fly. A com-
bination of OWCTY and MAP (OWCTY+MAP [3]) restores “on-the-flyness”, is linear-
time for the class of weak LTL properties, and maintains scalability.
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SWARM verification [12] consists of spawning multiple unsynchronised instances of
NDFS each exploring the graph in a random way. Accepting cycles are expected to be
reported faster thanks to randomised parallel search, but in the absence of such cycles
parallelisation does not help. This pragmatic strategy however targets graphs that are too
large in any case to be explored in reasonable time. The purpose is then to maximise
the graph coverage in a given time frame and thereby increase confidence in the model.

Two recent multi-core algorithms follow the principle of the SWARM technique but
deviate from it in that working threads executing NDFS are synchronised through the
sharing of some state attributes. In the first one, LNDFS [13], workers share the outcome
of the red (nested) search which can then also be used to prune the blue search. Since
the blue flags are not shared among threads, the red searches are still invoked in the
appropriate DFS postorder. The ENDFS algorithm [10] also allows the sharing of blue
flags, but a sequential emergency procedure is triggered if the appropriate invocation
order of the red DFS is not respected. Moreover, to maintain correctness, information
on a red DFS in progress cannot be transmitted in “real time” to other threads: the states
visited by a red DFS are only marked globally red after it has returned.

A thorough experimental comparison of ENDFS and LNDFS [14] led to the main
conclusion that ENDFS and LNDFS complement each other on a variety of models:
the larger amount of information shared by ENDFS can potentially yield a better work
distribution, but LNDFS is to be preferred when ENDFS threads often launch unfruitful
emergency procedures. Since this emergency procedure launches the sequential NDFS

algorithm, large portions of the graph may then be revisited, in the worst case by all
workers. Hence, a combination of ENDFS and LNDFS was proposed [14] to remedy
the downsides of the two algorithms. The principle of that parallel algorithm (called
NMCNDFS) is to run ENDFS but replace its sequential emergency procedure by a par-
allel LNDFS. Experiments show that this combination pays off: NMCNDFS is always
at least as fast as ENDFS or LNDFS.

While NMCNDFS combines the strengths of both earlier algorithms in terms of
performance, it also conjoins their memory usage. LNDFS requires 2P+ log2(P)+ 1
bits per state (2 local colours for all P workers, a synchronisation counter and a global
red bit) and ENDFS 4P+ 3 (2 local colours plus another 2 for the repair procedure and
3 global bits: {dangerous,red,blue}). Next to more than doubling the memory usage,
the conglomerated algorithm is long and complex.

3 A New Combination of Multi-Core NDFS

To mitigate the downsides of NMCNDFS, we present a new algorithm, CNDFS, shown
in Alg. 2. Like the previous multi-core algorithms, it is based on the principle of SWARM

worker threads (indicated by subscript p here), sharing information via colours stored in
the visited states, here: blue and red. After randomly (shuffleblue

p ) visiting all successors
(l.13–l.15), a state is marked blue at l.16 (meaning “globally visited”) and causing the
(other) blue DFS workers to lose the strict postorder property.

If the state s is accepting, as usual, a red DFS is launched at l.19 to find a cycle.
At this point, state s is called “the seed”. All states visited by dfsRedp are collected
in Rp. If no cycle is found in the red DFS, we can prove that none exists for the seed
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Alg. 2 CNDFS, a new multi-core algorithm for LTL model checking

1: procedure mcNdfs(s0,P) is
2: dfsBlue1(s0) || . . . || dfsBlueP(s0)
3: report no-cycle
4: procedure dfsRedp(s) is
5: Rp := Rp ∪{s}
6: for all s′ in shufflered

p (succ(s)) do
7: if s′.cyan[p] then
8: report cycle and terminate
9: if s′ �∈ Rp ∧¬s′.red then

10: dfsRedp(s′)

11: procedure dfsBluep(s) is
12: s.cyan[p] := true
13: for all s′ in shuffleblue

p (succ(s)) do
14: if ¬s′.cyan[p]∧¬s′.blue then
15: dfsBluep(s′)
16: s.blue := true
17: if s ∈ A then
18: Rp := /0
19: dfsRedp(s)
20: await ∀s′ ∈ Rp ∩A : s �= s′ ⇒ s′.red
21: for all s′ in Rp do s′.red := true
22: s.cyan[p] := false

(Prop. 1). Still, because the red DFS was not necessarily called in postorder, other (non-
seed, non-red) accepting states may be encountered for which we know nothing, except
the fact that they are out of order and reachable from the seed. These are handled after
completion of the red DFS at l.20 by simply waiting for them to become red.

Our proof shows that in this scenario there is always another worker which can colour
such a state red (Prop. 3). The intuition behind this is that there has to be another worker
to cause the out-of-order red search in the first place (by colouring blue) and, in the sec-
ond place, this worker can continue its execution because cyclic waiting configurations
can only happen for accepting cycles. These accepting cycles would however be en-
countered first, causing termination and a cycle report (l.8). After completion of the
waiting procedure, CNDFS marks all states in Rp globally red, pruning other red DFSs.

The crude waiting strategy requires some justification. After reassessing the ingredi-
ents of LNDFS and ENDFS, we found that ENDFS is most effective at parallelising the
blue DFS. This is absolutely necessary since the number of blue states (all reachable
states) typically exceeds the number of red states (visited by the red DFS). In ENDFS,
however, sharing the blue colour often led to the expensive (memory and performance
wise) sequential repair procedure [10]. We were unable to construct a correct algorithm
that colours both blue and red while backtracking from the respective DFS procedures.
Therefore, we now want to investigate whether the intermediate solution, using a wait
statement as a compromise, leaves enough parallelism to maintain scalability.

CNDFS only uses N+2 bits per state plus the sizes of R. In the theoretical worst case
(an accepting initial state), each worker p could collect all states in Rp. In our vast set
of experiments (cf. Sec. 4), however, we found that the set rarely contains more than
one state and never more than thousands, which is still negligible compared to |S |. Our
experiments also confirmed that memory usage is close to the expected amount.

Correctness Proving correctness comprises two parts: proving the consistency of the
algorithm, i.e. CNDFS reports a cycle iff an accepting cycle is reachable from s0, and
termination. The former turned out to be easier than for our previous parallel NDFS

algorithms. The wait condition in combination with the late red colouring forces the
accepting states to be processed in postorder. Stated differently: a worker makes the ef-
fects of its dfsRedp(s) globally visible (via the red colouring), only after all smaller
(in postorder) accepting states t have been processed by some dfsRedp′(t). This is
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expressed by Lemma 3. In Theorem 1, we finally show that, if the algorithm terminates
without reporting a cycle, all accepting states must be red and consequently cannot lie
on a cycle. Proof of termination was already discussed briefly and is detailed in Prop. 3.

In the following proofs, the graph colouring and the process counter of Alg. 2 are
viewed as state properties of the execution. When writing dfsBluep(s)@19, we refer to
the point in the execution at which a worker p is about to call dfsRed on a state s at l.19,
within the execution of dfsBluep(s). Graph colourings are denoted as follows: s ∈ Red
means that the red flag of s is set to true and similarly s ∈ Blue means that the blue
flag is set. For local flags we use s ∈ Cyanp. Also, we use the modal operator s ∈ �X ,
to express ∀s′ ∈ succ(s):s′ ∈ X . We show that our propositions hold in the initial state
(∀s ∈ S : s �∈ Red∧ s �∈ Blue∧∀p ∈ {1 . . .P} : s �∈ Cyanp) and inductively that they are
maintained by execution of each statement in the algorithm, considering only lines that
can influence the truth value of the proposition. Here an important assumption is that
all lines of Alg. 2 are executed atomically.

Lemma 1. Red states have red successors: Red ⊆�Red.

Proof. Initially, there are no red states, hence the lemma holds.
States are coloured red when dfsBluep@21 and are never uncoloured red. The set of

states Rp that is coloured at l.21 contains all states reachable from the seed s, but not yet
red, since dfsRedp(s) performed a DFS from s over all non-red states. For the red states
reachable from s, the induction hypothesis can be applied, hence there are no non-red
states reachable from s that are not in Rp. ��
Lemma 2. At l.20, the set Rp invariably contains (1) the seed s, (2) all non-red states
reachable from s and also (3) all states in the set are reachable from the seed s:
dfsBluep(s)@20 ⇒ (s ∈ Rp∧ (∀s′ �∈ Red : s →∗ s′ ⇒ s′ ∈ Rp)∧ (∀s′′ ∈ Rp ⇒ s →∗ s′′)).

Proof. At l.5, we have s ∈ Rp. For the rest, see proof of Lemma 1. ��
Lemma 3. The only accepting state that can be coloured red at l.21 (for the first time)
is the current seed s itself: dfsBluep(s)@21 ⇒ (Rp ∩A)\Red ⊆ {s}.

Proof. Assume dfsBluep(s)@21 and ∃a ∈ (A \ {s}) : a ∈ Rp. We show that a ∈ Red.
By Lemma 2, Rp contains at least s and the non-red states reachable from s. After

l.20, all non-seed accepting states in Rp are red: (Rp ∩ (A \ {s})) ⊆ Red. Since, a ∈
Rp ∩ (A \ {s}), we have: a ∈ Red. ��
Proposition 1. The initial invocation of dfsRedp(s) at l.19 of Alg. 2 reports a cycle if
and only if the seed s belongs to a cycle.

Proof. ⇔ is split into two cases: Case ⇒: Every state s′ ∈ Cyanp can reach the seed
from dfsBluep(s)@19 by properties of the DFS stack. Similarly, when dfsRedp(s

′′)@8,
s′′ is reachable from the seed s. Therefore, there is a cycle: s′′ → s′ →∗ s →∗ s′′.

Case ⇐: assume dfsRedp(s) at l.19 finishes normally (without cycle report), while s
lies on a cycle C. We show this leads to a contradiction. Since dfsRed avoids only red
states (l.9), there would have to be some r ∈ C∩Red obstructing the search. The state
r can only be coloured red at l.21 by a worker. W.l.o.g. we investigate the first worker
dfsRedp′ to have coloured r red. p′ started for an s′ ∈ A (dfsBluep′(s

′)@l.19).
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Since r is not yet red, by Lemma 1 C ∩ Red = /0. Before r is coloured red, it is
first stored in Rp′ . By Lemma 2, we also have C ⊆ Rp′ . Either s′ ∈ C, then the cycle
through s′ would have been detected since s′ ∈ Cyanp′ . Or else s′ �∈C, and then we have
{s} ⊆ (Rp′ \Red) when dfsBluep′(s

′)@21, contradicting Lemma 3. ��
Proposition 2. Red states never lie on an accepting cycle.

Proof. Initially, there are no red states, hence the proposition holds.
When dfsBluep(s)@21, the set of states Rp is coloured red. The only accepting state

to be colored red is the seed s (Lemma 3). By Prop. 1, this state s does not lie on an
accepting cycle. Hence, Prop. 2 is preserved. ��
Lemma 4. Blue states have blue or cyan successors: Blue ⊆⋃

p�(Blue∪Cyanp).

Proof. Initially there are no blue states, hence the lemma holds.
Only at l.16, states are coloured blue, after each successor t has been skipped at l.14

(t ∈ Cyan∪Blue), or processed by dfsBluep at l.15 (leading to t ∈ Blue). States can be
uncoloured cyan (l.22), but only after they have been coloured blue (l.16). ��
Lemma 5. A blue accepting state, that is not also Cyanp for some worker p, must be
red: ∀a ∈ (Blue∩A) : (∀p ∈ {1 . . .P} : a �∈ Cyanp)⇒ a ∈ Red.

Proof. Assume s ∈ (A ∩Blue) and ∀p ∈ {1 . . .P} : s �∈ Cyanp. We show that s ∈ Red.
State s can only be coloured blue when dfsBluep(s)@16. There, it still retains its

cyan colouring from l.12, it only loses this colour at l.22. But, since s ∈ A , l.21 was
reached and there a ∈ Rp by Lemma 2. Hence, s ∈ Red at l.22. ��
Proposition 3. Algorithm 1 always terminates with a report.

Proof. The individual DFSs cannot proceed indefinitely due to a growing set of red and
blue states. So eventually a cycle (l.8) or no cycle is reported (l.3). However, progress
may also halt due to the wait statement at l.20. We now assume towards a contradiction
that a worker p is waiting indefinitely for a state a ∈ A to become red: dfsBluep(s)@20,
s �= a and a ∈ Rp. We will show that either a will be coloured red eventually, or a cycle
would have been detected, contradicting the assumption that p keeps waiting.

By Lemma 2, a is reachable from s: s →+ a. And by l.16, s ∈ Blue. Induction on the
path s →∗ a, using Lemma 4, tells us that: either all states are blue (1) or there is a cyan
state on this path (2):

1. a ∈ Blue∧∀p ∈ {1 . . .P} : a �∈ Cyanp: by Lemma 5, a ∈ Red, which contradicts the
assumption that p is waiting for a to become red.

2. ∃c ∈ Cyanp′ : s →+ c →∗ a, then depending on the identity of worker p′, we have:

A) p = p′: but then dfsRedp(s) would have terminated on cycle detection (C ≡
s →+ c →+ s), except when dfsRedp did not reach c in presence of a red state
lying on C. However, this would contradict Prop. 2.

B) p �= p′: we show that either p′ is executing or going to execute dfsRedp′(a).
To eventually colour state a red, worker p′ must not end up itself in a waiting
state: dfsBluep′(a

′)@20. First, consider the case a′ �= a. We also have a′ ∈Rp: If
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a′ ∈ Red, then by Prop. 2 all its reachable states are red and it cannot be waiting
for a non-red reachable accepting state (Lemma 2). Therefore, a′ �∈ Red and
since also s→+ c→∗ a′ (stack Cyanp), we have: a′ ∈Rp (Lemma 2). Therefore,
we can assume w.l.o.g. that a = a′ and only consider dfsBluep′(a)@20. We can
repeat the reasoning process of this proof, with p ≡ p′ and s ≡ a. But since
there are finitely many workers, the chain of processes waiting for each other
eventually terminates, except the hypothetical configuration of a cyclic waiting
dependency, which we consider finally.

To exclude cyclic dependencies, assume n ≥ 2 workers are simultaneously waiting
for each other’s seed to be coloured red at l.20. We have: dfsBlue1(s1)@20 ∧ . . .∧
dfsBluen(sn)@20∧s2 ∈R1∧. . .∧s1 ∈Rn. This is only possible if s1 →+ sn∧. . .∧sn →+

s1, hence there is a cycle: s1 →+ . . . →+ sn →+ s1. However, this contradicts that the
red DFSs (which terminate anyway) would have detected this cycle (Prop. 1). ��
Theorem 1. Alg. 2 reports an accepting cycle if and only if one is reachable from s0.

Proof. By Prop. 3, the algorithm is guaranteed to terminate with some report, forming
the basis for two cases: Case ⇒: dfsRedp(s)@8 implies a cycle (Prop. 1).

Case ⇐: At l.3, we have s0 ∈ Blue and Cyan = /0 by properties of DFS. Now, by
Lemma 4, we have: ∀s ∈ G : s0 →∗ s ⇒ s ∈ Blue. Hence, all reachable accepting states
must be red by Lemma 5 and do not lie on cycles by Prop. 2. ��

4 Experimental Evaluation

Our previously reported experiments [15,14,13] were performed on 16-core machines.
Meanwhile, in accordance with Moore’s law applied to parallelism, we obtained ac-
cess to a 48-core machine (a four-way AMD OpteronTM 6168). The added parallelism
puts extra stress on the scalability of our algorithms and therefore also forces a repeat
of some of our previous reachability experiments [15]. We investigated the cause for
the performance difference between various algorithms: NMCNDFS [14], CNDFS (this
paper), OWCTY+MAP [5] (the best representant of parallel BFS-based algorithms [13])
and reachability from [15]. Work duplication due to overlapping stacks can cause slow-
downs for all multi-core NDFS variants, as can long await cycles in CNDFS. We intro-
duced counters to measure and study these effects. Initially, we focus on models without
cycles, the hardest case for these algorithms. Later we move on to show that CNDFS ex-
hibits the same on-the-fly performance as existing multi-core NDFS variants [14].

We have used models from the BEEM database [18].1 From each type of model, we
selected the variants with more than 9 million states. Our CNDFS algorithm is imple-
mented in the multi-core backend of the LTSMIN model checking tool set [16], based
on a dedicated scalable lock-free hash table and an off-the-shelf load balancer [15].
For a fair comparison with previous algorithms, we also implemented some NDFS opti-
mizations [13, Sec. 4.4], all-red and early cycle detection. All-red colours a state s red,
if all its successors are red after l.15 of Alg. 2; correctness follows from Prop. 2. Early
cycle detection detects certain accepting cycles already in the blue search.

1 All results are available at http://fmt.cs.utwente.nl/tools/ltsmin/atva-2012/.

http://fmt.cs.utwente.nl/tools/ltsmin/atva-2012/
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LTSMIN 1.92 was compiled with GCC 4.4.2 (with optimisation -O2) and ran with:
dve22lts-mc --threads=N -s28 --state=table --strategy=name, where name
can be cndfs or endfs,lndfs, representing the different algorithms [14]. We used Di-
VinE 2.5.2 [5] as OWCTY+MAP implementation, compiled and run with equivalent pa-
rameters. Since LTSMIN reuses its next-state function, both tools are comparable [15].

4.1 Models without Accepting Cycles

In [14], we showed that NMCNDFS was the best scaling LTL model checking algo-
rithm on 16 core machines. Hence, we started comparing plain CNDFS and NMCNDFS.
Table 1 shows the average runtime of both algorithms over five runs on all benchmarks,
for 1, 8, 16 and 48 cores. The performance of CNDFS is on par with that of NMCNDFS,
which is impressive considering the crude waiting strategy of the algorithm.

We confirmed that the time spent at the await statement (l.20 in Alg. 2) is indeed
less than 0.01 sec on runs with 48 cores for all models in the BEEM database. This is
caused by the all-red extension, which greatly reduces work in the red DFS. Without
all-red, we observed high waiting times causing speeddowns with more than 8 cores.

Additionally, we made a comparison of absolute speedups so as to investigate the
properties of the different algorithms (Fig. 1–6). For CNDFS and NMCNDFS, we in-
cluded the standard deviation of the 5 runs as error bars. As the base case for the speedup
of the LTL algorithms we used CNDFS: Sn = T CNDFS

1 /T algo
n , for reachability we used

its own base case. We included reachability from [15] to serve as a reference point for
CNDFS. We were primarily interested to see whether the scalability of CNDFS keeps
up with our parallel reachability implementation. After all, sequential NDFS visits each
state at most twice; once in the blue DFS and possibly once in the red DFS.

Table 1. Runtimes (sec) with NMCNDFS and CNDFS for all models

States
NMCNDFS CNDFS

1 8 16 48 1 8 16 48
anderson.6.prop2 2.9E+7 144.0 46.5 31.3 23.7 146.6 47.2 31.7 23.6
anderson.6.prop4 3.6E+7 172.9 54.1 35.8 27.1 172.9 54.3 36.2 27.3
bakery.9.prop2 1.1E+8 378.9 62.4 35.5 18.9 368.9 64.6 36.9 19.9
bopdp.4.prop3 2.4E+7 74.7 11.1 6.4 3.3 74.9 11.0 6.4 3.3
elevator.5.prop3 2.1E+8 1,387.0 272.7 154.6 67.3 1,390.8 273.3 154.2 71.2
elevator2.3.prop4 1.5E+7 134.6 25.7 15.5 8.7 136.9 25.5 15.8 8.7
lamport.7.prop4 7.4E+7 299.2 61.9 35.5 23.5 297.7 60.8 35.9 22.9
leader election.6.prop2 3.6E+7 1,495.2 189.5 194.5 31.9 1,501.9 190.1 94.5 32.2
leader filters.6.prop2 2.1E+8 444.2 59.5 30.4 12.4 439.0 59.5 31.0 12.8
leader filters.7.prop2 2.6E+7 73.5 9.7 6.4 2.3 73.3 9.4 5.0 2.3
lup.4.prop2 9.1E+6 19.6 4.7 2.9 2.2 19.5 4.7 2.9 2.1
mcs.5.prop4 1.2E+8 538.3 147.0 89.9 58.2 540.3 146.5 90.2 57.1
peterson.5.prop4 2.6E+8 1,186.0 229.4 135.3 84.9 1,146.5 226.2 133.0 83.6
rether.7.prop5 9.5E+6 43.0 6.2 3.8 2.7 43.6 6.3 3.9 2.6
synapse.7.prop3 1.5E+7 37.3 5.6 3.3 2.0 37.1 5.5 3.3 1.9

2 http://fmt.cs.utwente.nl/tools/ltsmin/ next branch, v.1.9 is due Aug. 2012.

http://fmt.cs.utwente.nl/tools/ltsmin/
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Fig. 1. Speedups of anderson.6.prop4 Fig. 2. Speedups of bobp.4.prop3

Fig. 3. Speedups of elevator.5.prop3 Fig. 4. Speedups of leader flt.6.prop2

Fig. 5. Speedups of rether.7.prop5 Fig. 6. Speedups of synapse.7.prop3
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We notice that NMCNDFS and CNDFS are always faster than OWCTY+MAP. The
error bars show less robust runtimes for NMCNDFS as they fluctuate greatly (e.g.
leader filters). Upon investigation it turned out that NMCNDFS sometimes
launches a repair search even though we also fitted its ENDFS search with all-red.
When only few workers enter this repair search, it cannot be parallelized. In these cases,
CNDFS turns to waiting, a much better strategy, since in total it waits less than 0.01 sec.
Also, reachability scales sometimes twice as good as CNDFS; anderson even scales 5
times better.

We investigated why the speedup of CNDFS differs from reachability. We measured
the total amount of work performed by all workers. In particular, we counted for each
benchmark the state count |G |, and the numbers Bn and Rn, the total number of blue and
red colourings in a run with n cores. Next, we estimate the duplicate work compared
to reachability as Dn := (Rn + Bn)/|G |. We view the reachability speedups Sreach

n as
ideal (under the plausible assumption that maximal speedup is limited mostly by the
memory bandwidth). Hence we can calculate the expected speedup Ealg

n := Sreach
n /Dalg

n

for alg ∈ {fsh,cndfs} where fsh is CNDFS with heuristics (see below).
Table 2 compares these estimated speedups E48 with the actual speedups S48. Note

that the estimated speedups for CNDFS Ecndfs
48 correspond nicely with the measured

speedups Scndfs
48 for many benchmarks. Hence, we conclude that the variation in speedup

is mainly caused by the degree of work duplication.
To combat work duplication, we reuse the “fresh successor heuristics” [14]. If possi-

ble, this randomly selects a successor that has not yet been visited before. It is available
in the LTSMIN toolset (--permutation=dynamic). As a consequence, workers tend to
be directed towards different regions of the state space, reducing work duplication.

These results are also shown in Table 2: Dfsh
48 , Efsh

48 and Sfsh
48 together with the mea-

sured amount of blue and red colourings: Bfsh
48 and Rfsh

48 . The heuristic approach shows
quite some improvement, sometimes halving work duplication and doubling speedup

Table 2. Expected and actual speedups for CNDFS according to speedup model

|G | Bfsh
48 Rfsh

48 Sreach
48 Dfsh

48 Efsh
48 Sfsh

48 Dcndfs
48 Ecndfs

48 Scndfs
48

anderson.6.prop2 3E+7 1E+8 4E+3 30.6 3.6 8.6 6.4 4.7 6.6 4.6
anderson.6.prop4 4E+7 1E+8 3E+3 31.9 3.1 10.2 6.4 4.0 8.0 5.0
bakery.9.prop2 1E+8 2E+8 4E+5 28.0 1.4 20.5 19.2 1.6 17.2 14.3
bopdp.4.prop3 2E+7 3E+7 6E+5 26.2 1.3 20.0 22.8 1.8 14.6 15.5
elevator.5.prop3 2E+8 4E+8 2E+3 39.5 1.9 21.0 19.5 3.2 12.5 9.0
elevator2.3.prop4 1E+7 3E+7 2E+6 33.2 2.0 16.3 15.8 5.3 6.3 8.0
lamport.7.prop4 7E+7 1E+8 6E+4 30.5 1.7 17.6 13.3 1.9 15.8 10.4
leader el.6.prop2 4E+7 4E+7 4E+4 40.5 1.0 40.4 46.6 1.0 40.3 39.5
leader filt.6.prop2 2E+8 2E+8 7E+5 31.9 1.0 31.6 34.4 1.0 30.7 29.9
leader filt.7.prop2 3E+7 3E+7 1E+5 27.6 1.0 27.4 31.9 1.0 26.9 27.8
lup.4.prop2 9E+6 2E+7 4E+3 17.7 2.5 7.1 9.7 4.6 3.8 6.3
mcs.5.prop4 1E+8 3E+8 1E+4 34.4 2.2 15.7 9.5 2.7 12.6 7.3
peterson.5.prop4 3E+8 4E+8 8E+5 34.1 1.6 20.9 13.9 1.9 18.3 11.0
rether.7.prop5 1E+7 2E+7 1E+5 22.3 1.9 11.9 16.5 2.4 9.2 14.3
synapse.7.prop3 2E+7 2E+7 1E+2 20.4 1.1 17.9 19.2 1.2 17.0 18.6
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(see elevator). Still we see duplications as high as 3.6 (see anderson). Note that the
earlier speedups in Fig. 1–6 already include the benchmarks with this heuristic.

Fig. 7. Work duplication per core per model

We expect that in the near future, the
number of cores in many-core systems
will still grow. Will this increase work
duplication and put a limit on speedup
of CNDFS? To give an indication, we
plotted the increase of work duplica-
tion with a growing number of cores
with fresh successor heuristics (Fig. 7).
The increase is sub-linear, so we ex-
pect that speedups will be maintained
on larger many-core systems with sim-
ilar architecture and scaling bandwidth
characteristics.

Finally, we note that the size of the
input has a small yet significant effect on the amount of work duplication; models with
higher state count have less duplication.

4.2 Models with Accepting Cycles

In [14], we experimented thoroughly to investigate the “on-the-flyness” of SWARM

NDFS and LNDFS. We noticed that the benefits of independent SWARM verification
is limited, on average only yielding a speedup of 2-8 on 16 core machines. LNDFS

however yielded speedups from 4 to 14. Combined with the fresh successor heuristic

Table 3. On-the-fly behavior of parallel LTL algorithms

1 core 48 core OWCTY+MAP

NDFS LNDFS CNDFS 1 core 48 core

model R
an

d.

R
an

d.

F
sh

R
an

d.

F
sh

.

S
ta

ti
c

R
an

d.

Runtimes (sec)

anderson.8.prop3 36.4 4.0 1.2 4.1 0.2 2858.8 1433.2
bakery.7.prop3 3.2 0.4 0.2 0.3 0.2 2.2 5.2
bakery.8.prop4 15.7 0.6 0.3 0.6 0.3 73.4 14.3
elevator2.3.prop3 8.4 1.4 0.2 1.4 0.2 432.3 192.5
extinction.4.prop2 2.2 0.1 0.1 0.1 0.1 1.8 1.7
peterson.6.prop4 29.1 0.6 0.5 0.9 0.5 668.4 705.7
szymanski.5.prop4 1.7 1.4 0.1 1.3 0.2 2.1 376.4

Speedups

anderson.8.prop3 9.1 31.1 8.8 175.0 2.0
bakery.7.prop3 8.7 18.3 10.9 21.2 0.4
bakery.8.prop4 28.3 51.1 26.2 48.9 5.1
elevator2.3.prop3 6.0 51.5 5.9 52.1 2.2
extinction.4.prop2 30.4 32.1 18.5 28.8 1.0
peterson.6.prop4 46.1 59.8 33.0 62.4 0.9
szymanski.5.prop4 1.2 12.0 1.3 10.9 0.0
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speedups became often superlinear. This is not surprising [19], because we verified that
in those cases there are many cycles, distributed evenly over the state space.

We performed the same experiments again with CNDFS on a 48 core machine. The
results in Table 3 show that CNDFS exhibits the same desirable on-the-fly behaviour as
LNDFS, scaling up to 48 cores. We conclude that our new multi-core CNDFS algorithm
scales well also for models with bugs.

For completeness, we also included the runtimes and speedups with OWCTY+MAP in
the table. While the heuristic on-the-fly behavior seems to work well for some models,
for others it does not. It must however be mentioned that the on-the-fly capabilities
of this algorithm have recently been improved by changing its exploration order to be
more DFS-like [1]. In [1], performance is reported on par with the LNDFS algorithm.
Unfortunately, we do not have the means (a GPGPU) to reproduce any results here.

4.3 Counterexample Length

Lengthy counterexamples are hard to study even with good model checking tools.
Therefore, finding short counterexamples is quite an important property of model check-
ing algorithms. Strict BFS algorithms deliver minimal counterexamples, while DFS al-
gorithms can yield very long ones. Once the strict BFS/DFS order is loosened, these
properties can be expected to fade. This is exactly what both OWCTY+MAP and CNDFS

do. We studied the length of the counterexamples that these algorithms produce.
For this purpose, 45 models with counterexamples were selected from the BEEM

database, all algorithms run 5 times, and computed the average counterexample length
and standard deviation. The results are summarised in scatter plots with bars repre-
senting the standard deviation. Fig. 8 compares randomised sequential NDFS (vertical
axis) against sequential OWCTY+MAP (horizontal axis). Fig. 9 compares the results of
CNDFS with fresh successor heuristic (fsh) against OWCTY+MAP on 48 cores.

In the sequential case, most bars are above the equilibrium so, as expected, NDFS

produces long counterexamples of variable size compared to OWCTY+MAP (which we
could not randomise). The parallelism of a 48 core run, however, greatly stabilises and

Fig. 8. NDFS vs OWCTY+MAP (1 core) Fig. 9. Fsh vs OWCTY+MAP (48 cores)
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reduces counterexample lengths for CNDFS, while the randomness added by parallelism
introduces variable results for OWCTY+MAP (horizontal bars). In many cases, CNDFS

counterexamples become shorter than those of OWCTY+MAP, a surprising result con-
sidering the BFS-like order of this algorithm. The one extreme outlier in this case is the
plc.4 model. All our NDFS algorithms consistently find a counterexample of length
216, while OWCTY+MAP finds one of length 2!

5 Conclusion

We presented CNDFS, a new multi-core NDFS algorithm. It can detect accepting cycles
on-the-fly, and its worst case execution time is linear in the size of the input graph. We
showed that CNDFS is considerably simpler than its predecessor NMCNDFS, because
of the deep integration of ENDFS and LNDFS. Experiments show that CNDFS delivers
performance and scalability similar to its predecessors, but achieves this more robustly.
Hence CNDFS is currently the fastest multi-core LTL model checking algorithm in prac-
tice. Moreover, CNDFS halves the memory requirements per state per worker thread; an
important factor since the total number of cores keeps growing.

Experiments revealed that the main bottleneck for perfect scalability of CNDFS is
currently the work duplication due to overlapping stacks. Forcing workers to favour
“fresh” successor states already decreases duplication. The same experiments indicate
that work duplication grows only linearly in the number of cores, and decreases for
larger input sizes. From this we conjecture that CNDFS will scale even beyond 48 cores.

CNDFS shares global information only during or even after backtracking, which
leads to potential work duplication. In the worst case, every worker could visit the whole
graph, blocking any speedup. During our extensive experiments with the entire BEEM

database we have not found such cases. However, we did observe work duplication of
factor 3 on 48 cores, so there is room for improvement.

Designing a provably scalable, linear-time algorithm remains an open question. Such
an algorithm should cause negligible duplicate work and avoid synchronisation by await
statements. So far, we have not been able to come up with a correct algorithm without
await statements or a repair procedure. An improvement might be to invent a smart
work stealing scheme, in which workers can cooperate instead of waiting.

Finally, we demonstrated that counterexamples in CNDFS become shorter with more
parallelism, even shorter than counterexamples in parallel BFS-based OWCTY+MAP.
This is an interesting and desirable property for a model checking algorithm. It is in-
triguing that our parallel DFS based algorithm shows good scalability and short coun-
terexamples, usually attributed to BFS algorithms, while still maintaining the linear-
time and on-the-fly properties expected from a DFS algorithm.
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