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Abstract. In order to manage very large distributed databases such as
those used for banking and e-government applications, and thus to han-
dle sensitive data, an original peer-to-peer transaction protocol, called
NEO, was proposed. To ensure its effective operation, it is necessary to
check a set of critical properties. The most important ones are related
to availability of data that must be guaranteed by the system. Thus,
our objective aims at verifying critical properties of the NEO protocol
so as to guarantee such properties are satisfied. The model is obtained
by reverse-engineering from the source code and then formal verification
is performed. We focus in this article on the two phases of the NEO
protocol occurring at the initialisation of the system. The first one, the
election phase, aims at designating a special node that will pilot the over-
all system. The bootstrap protocol, triggered at the end of the election,
ensures that the system will enter its operational state in a coherent
way. Therefore, the correctness of these two phases is mandatory for the
reliability of the system.

1 Introduction

Nowadays, several complex software are developed to manage increasingly huge
distributed databases like those used for e-government, Internet based infor-
mation systems or commerce registries applications. The challenge with such
software is to guarantee the access to these databases, maintain them and en-
sure a mandatory high level of reliability. Moreover, the development of such
applications is a crucial problem which requires to elaborate reliable and safe
distributed database management software. Therefore, it is necessary to use for-
mal methods to specify the behaviour of such applications and to develop tools
to automatically check whether this behaviour satisfies the desired properties.

The Zope Object Database (ZODB) [3] is a popular object database which
is included as part of the Zope web application server. It is best known for its
use for a Central Bank, to manage the monetary of 80 million people in 8 coun-
tries [§]. It is also known for its use for accounting, ERP (Enterprise Resource
Planning), CRM (Customer Relationship Management), ECM (Enterprise Con-
tent Management) and knowledge management.
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However, the current Zope architecture does not apply for huge data collec-
tions yet. In order to overcome this limitation, a new peer-to-peer transaction
protocol, called NEO, was designed. This protocol also enjoys ensuring both
safety and reliability, which is not easy to achieve for distributed systems us-
ing traditional testing techniques. For this, the NEO protocol is based on the
following principles: a decentralised peer-to-peer architecture, a duplication of
data on different storage nodes, and fault tolerance. Thus, the NEO protocol
is a complex architecture implementing various protocol mechanisms where the
verification becomes a crucial problem. A description of the context and the
general functioning of the NEO protocol can be found in [4].

We distinguish two important phases in the NEO protocol execution, namely
the election phase and the bootstrap phase. In order to designate a primary mas-
ter that will pilot the overall system, the election phase is first triggered when
the cluster is started. After this phase, the bootstrap protocol is initiated. The
specification and verification are conducted, focused on the election and boot-
strap phases, the master nodes among which the primary master is designated,
and the storage nodes the database is distributed on.

The objective of our work is to analyse critical properties of the NEO protocol
so as to guarantee that such properties are satisfied. The model construction is
achieved by reverse-engineering, extracting coloured Petri net [I3] models from
the source code, and then verification is performed. In this paper, we focus on
the modelling as well as the verification of properties. This specification work
requires choices of adequate abstraction levels both for the modelling and the
verification stages. We revise the work presented in [6] on the election phase
and extend it to the bootstrap protocol. For the election phase, the following
properties are studied: (i) one and only one primary master is elected, (ii) all
nodes know the primary master’s identity and (iii) the election phase eventually
terminates. The following critical properties, regarding the bootstrap protocol,
are addressed: (i) all storage nodes eventually reach the final state, (ii) for any
system partltlon there exists at least one storage node which contains the objects
of this partltlo and (iii) at the end of the protocol, there is no empty storage
node (i.e. with no associated partition). More details of these properties are given
in Sections 4] and [ respectively. Various tools have been used in this project.
For modelling, we used Coloane [I] and CPN Tools [14], and for verification
Helena [9] and CPN Tools.

The rest of the paper is organised as follows. Section [2 recalls the general
functioning of the NEO protocol. In Section B, we present the tools we used
in order to model and to analyse the election and the bootstrap phases of the
protocol. Section [ presents the modelling and the formal analysis of the election
phase. Section [f] presents the bootstrap protocol model for which an analysis of
the desired properties is also explained. Finally, Section [6] concludes the paper
and gives some perspectives to this work.

! For the sake of readability, an element of the partition table is called a partition
hereafter (by abuse of language).
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2 The Neo System

This section informally describes the general functioning of the NEO system pro-
tocol implemented in Python. We first introduce the different kinds of network
nodes involved before detailing the different stages the system can go through.
The phases modelled in this article will be explained in greater details in Sec-
tions M and [Bl

2.1 Participating Nodes

Different kinds of nodes play dedicated
roles in the protocol, as depicted by the

architecture in Figure [Tt Secondary Masters
v A v
storage nodes handle the database it-
self. Since the database is distributed, B 1L
each storage node cares for a part of Prunar.\; Master
the database, according to a partition [Client Nodes [« . [Storage Nodes |
table. To avoid data loss in case of a
node failure, data is duplicated, and is \Adminism{tion Node |
thus handled by at least two storage
nodes. Fig. 1. The NEO-protocol topology

master nodes handle the transactions
requested by the client nodes and for-
ward them to the appropriate storage
nodes. A distinguished master node, called primary master, handles the oper-
ations. Secondary masters (i.e. the other master nodes) are ready to become
primary master in case of a failure of this node. They also inform other nodes
of the identity of the primary master (light grey arrows in Figure [IJ).

the administration node is used for manual setup if needed (dashed arrow
in Figure[I]).

client nodes correspond to the machines running applications concerned with
the database objects. Thus, they request either read or write operations.
They first ask the primary master which storage nodes are concerned with
their data, and can then contact them directly.

2.2 Lifecycle of the NEO System

At the system startup, the primary master is elected among all master nodes.
The primary master maintains the key information for the protocol to operate.
Among these, the partition table indicates which parts of the database are as-
signed to the different storage nodes. This allows for duplication which is vital
in case of a crash.

After the election of a primary master, the system goes through various stages
with the purpose of checking that all transactions were completely processed, and
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thus that the database is consistent across the different storage nodes. We will
refer to this second step as the bootstrap protocol.

Finally, the system enters its operational state. Clients can then access the
database through the elected primary master.

This repartition of roles raises several issues. The system topology is in con-
stant evolution: nodes can fail and become unavailable, they can restart, or new
nodes can be added. The failure of the primary master has dire consequences
since it affects the whole system. A new election must then take place among
the remaining secondary masters and the whole process starts again.

We focus in the next sections on the first two stages of this cycle that are
vital for the reliability of the system and the consistency of the database.

3 Tools

There now exists a profusion of state space analysis tools based on the Petri
nets formalism. In March 2011, the Petri net tools database [16] reported about
thirty Petri net tools able to perform model checking. Each is characterised by
the family of nets it supports (e.g. place-transition nets, coloured nets, algebraic
nets), the algorithms it employs (e.g. explicit vs. symbolic states), the state space
reduction techniques it implements (e.g. symmetry, partial order reductions), or
the kind of properties it can analyse (e.g. safety, liveness). Therefore, choosing
the adequate tool in a verification project is a very difficult task that can require
some expertise in the underlying principles of the tool. Rather than favouring a
single tool we actually picked out several ones during this project. We give below
an overview of these tools as well as the reasons that motivated our choices. In
Section we present the new composition tool we built so as to broaden the
interface facilities between the modelling and the verification tools we use.

3.1 Tools Used in the Context of the Neoppod Project
Four Petri net tools have been used so far in this project.

CPN-AMI [11] is a verification platform with structural analysis and model
checking facilities provided through different dedicated tools (e.g. Great-
SPN [2], Prod [17]).

Helena [9] is a high-level Petri net model checker that provides a high-level
language for net description and several state space reduction techniques
(e.g. static net reductions, partial order reduction [7]).

Coloane [1] is not stricto sensu a Petri net tool but a generic graphical editor
available as an Eclipse plugin. Coloane can produce nets in CPN-AMI and
Helena input formats. A composition tool for Coloane has been implemented
in the context of this project to facilitate our analysis. This tool will be
described in Section

CPN Tools [I4] is famous for its nice graphical interface, its high-level language,
based on SML, and its support of hierarchy [12] allowing the user for creating
nets in a modular way and with different abstraction levels.
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The first three tools have been used during the analysis of the election proto-
col while the bootstrap protocol has been modelled with CPN Tools. This choice
was mainly motivated by the complexity of the data structures handled during
these two steps. The election protocol relies on relatively simple structures (e.g.
lists) while the bootstrap protocol makes use of more elaborate ones (e.g. the
partition table) that were hard to abstract away without losing too much inter-
esting information. Therefore, we considered relevant to use CPN Tools for the
analysis of the bootstrap protocol to benefit from its rich language even though
this tool does not offer the same verification capabilities as CPN-AMI or He-
lena. At last, two reasons drove us for using both CPN-AMI and Helena for the
election protocol. First, these two tools do not implement the same algorithms
and reduction techniques. Second, the description language of Helena is richer
than that of symmetric nets [5] that is the underlying language of the CPN-AMI
platform. Therefore, Helena allowed us to keep a model closer to the protocol
concepts (as regards data types).

3.2 A New XML-Based Composition Tool

Although Coloane has a nice Eclipse based interface it still suffers from a draw-
back in that it does not support any kind of hierarchy or modularity. Thus, we
chose to develop a composition tool that, given a set of XML Coloane files and
an XML file (provided by the user) describing a composition scheme, produces
the flattened net resulting from the composition and that can be used as input
to verification tools, e.g. Helena.

This tool supports various kinds of transformations inspired from [I12] such as
the place fusion merging instances of the same place located in different nets, or
the transition substitution that replaces an abstract transition with a given sub-
net describing the actual behaviour of the transition. However, the tool is still at
a prototype stage and some issues have not been tackled yet. For instance, places
can be fused in a bad way, and no guarantee can be made on the correctness of
the output net: this has to be made by the model designer.

To illustrate the essence of the tool we provide in Figure 2l a sample of the
composition file written during the analysis of the election protocol. Starting
from a set of subnets (declarations in lines 1l. 4-11) each describing a module of
the final net, the composition tool performs operations written in lines 1l. 13—22.
The first one (lines 1l. 13-15) substitutes abstract transition poll by the homonym
net in net electPrimary. The last operation to be performed (line 1. 22) merges
all places sharing the same name.

The tool provides some flexibility since some modules or the application of
some operations may be conditioned by the definition (or non-definition) of sym-
bols (see e.g. operations at lines 1. 16 or 1. 19 applied only if symbol faults is not
defined) at the tool invocation. Thus, the system modeller does not necessarily
have to change the net when analysing different configurations, as it may be
sufficient to call the tool with the appropriate symbols. Finally, let us point out
that this tool is totally independent from the language used for arc inscriptions:
we used it for both symmetric nets and Helena nets.
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<netcomposition>
<l—— definition of some nets —>

<subnet id="electPrimary"><fromfile>electPrim.xml</fromfile ></subnet>
5 <subnet id="poll"><fromnet>poll </fromnet></subnet>

6 <subnet id="secPoll"><fromnet>secpoll </fromnet></subnet>

7 <subnet id="primPoll"><fromnet>primpoll </fromnet></subnet>

8 <subnet id="sendAnnPs"><fromfile>sendAnnPs.xml</fromfile ></subnet>

9 <subnet id="sendAskPs"><fromfile>sendAskPs.xml</fromfile ></subnet>

10 <subnet id="crash" ifdef="faults"><fromnet>crash </fromnet></subnet>
11 <subnet id="reboot" ifdef="faults"><fromnet>reboot </fromnet></subnet>

12 <!—— operations to perform ——>
13 <substitutetrans>
14 <net>electPrimary </net><trans>poll </trans><subnet>poll </subnet>

15 </substitutetrans>

16 <deletetrans ifndef="faults">

17 <net>electPrimary </net><trans>crash </trans>
18 </deletetrans>

19 <deletetrans ifndef="faults">

20 <net>electPrimary </net><trans>primCrash</trans>
21 </deletetrans>
22 <fusehomonymplaces/>

23 </netcomposition>

Fig. 2. A sample of the composition file used for the election protocol model

4 Formal Analysis of the Election Protocol

Due to the critical aspect of the election protocol, we developed a detailed model
of this phase to be able to simulate it and perform state space analysis. Since
the protocol is designed to be (to some extent) fault tolerant, we proceeded by
injecting faults in a model designed on the basis of the ideal scenario where no
fault (e.g. a master node failure, a connection loss) can occur. We describe in
this section the modelling and analysis process we followed. As mentioned in Sec-
tion [l we extracted both symmetric and Helena nets from the election protocol.
However, due to space constraints we focus in this section on the symmetric net,
and we provide a sample of the Helena net in Section

4.1 Overview of the Election Protocol and Its Implementation

The goal of the election is to select among all alive masters the one with the
greatest uuid, a unique identifier chosen randomly by each node at its startup.

The election proceeds in two steps: a negotiation step performed by a master
node to discover if it is the primary master or not; followed by an announce-
ment step during which all masters discover the identity of the primary master
and check for its liveness.

The functioning of this protocol is illustrated by the message sequence chart
of Figure[3lthat describes a typical election scenario between three master nodes
M1, M2 and M3. We only depict the message exchanges from the perspective of
master M2 which is elected as the primary master. Of course masters M1 and M3
also have to ask for the same information. Initially, a master node only knows the
network addresses (IP address + port number) of its peers provided to it through
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a configuration file. It learns the  Master M1 Master M2 Master M3
uuids of all its peers during the "7 Agpim “7%"  Aqprim ™97
negotiation step. First it asks AnswerPrim(il)
the other nodes if they know AnswerPrim(nil)
a primary master by broadcast- Requestld Requestld
ing an AskPrim message. Other Acceptld(657)
masters answer with an Answer- Acceptld(132)
Prim message pOSSibly contain- AnnouncePrim(897) AnnouncePrim(897)
ing the uuid and the network Y
address of the elected primary AskPrim .
SKFT1ImM
master. In our example, these AnswerPrim(M2,897)
messages are empty since the N N S
election is still taking place. The nswerPrifn(M2,897)

purpose of this first exchange is
mainly related to fault tolerance
as explained below. Upon recep-
tion of the AnswerPrim message,
the master asks its peer its uuid
by sending a Requestld message
to it. The answer to this message is an Acceptld containing the uuid of the con-
tacted node. This process ends when the master has negotiated with all other
master nodes, i.e. it knows the uuid of all its peers. A master node which did
not receive any Acceptld message with a uuid greater than its own knows it is
itself the primary master.

During the announcement step, the primary master announces to its peers
that it is actually the primary master by broadcasting an AnnouncePrim message
containing its uuid. Secondary masters wait for this message that they interpret
as a confirmation of the existence of an alive primary master. All masters can
then exit the election protocol.

In case a master experiences a fault (e.g. master M1 in our example) it asks,
after its reboot, the identity of the primary master by broadcasting an askPrim
message. The answerPrim messages it will then receive will contain the identity
of this master and the awakened node will enter the secondary master state.

A message of type ReelectPrim may also be sent by a master if it detects
a problem during the election, e.g. two primary masters have been designated.
Upon its reception, a master will cancel its current work, and restart the election
process from the beginning. In a faultless scenario this situation should however
not occur.

This example also highlights the fact that entering the election phase is a local
decision made by a master at its startup or if it considers the primary as crashed.
Thus some master(s) may be in the election mode while others are executing the
normal protocol.

The implementation of the election protocol relies on a few data structures.
The most important ones are two sets belonging to the Master thread class
identifying, for a specific master m, all its peers it is not connected to and has to

Fig. 3. Message sequence chart describing an
election scenario followed by a crash and reboot
of master M1
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do so (m.unconnected), or is negotiating with (m.negotiating). The termination
of the negotiation step is conditioned by the emptiness of these two sets: at that
point, the node has contacted all its peers and received all their uuids. To have a
better understanding of the contents of these sets, it seems necessary to mention
the different events that have an impact on these two sets:

— initially, m puts in the m.unconnected set all masters it considers as alive ;

— when a connection of m is accepted by n, m moves n from m.unconnected to
m.negotiating ;

— as m receives an Acceptld message from n it discards n from m.negotiating ;

finally if m detects the crash of master n it deletes n from both sets.

4.2 Model Architecture

The model consists of 18 modules, each of them modelling a specific part of the
code. Among them, the most important ones are the three modules listed below.

electPrimary models the main method implementing the election protocol.

poll models the polling method used to wait for and handle incoming packets.

electionFailure models the handling of an exception raised when some synchro-
nisation fault is detected. The master raising this exception stops the current
election process and triggers a new one.

In some figures, there are abstract (or meta-) transitions (transitions secPoll,
poll, sendAskPs, sendAnnPs, primaryPoll in Figure [ all transitions except die in
Figure[12(a)] and all transitions in Figure[L3(b)) that are then substituted by our
composition tool with the appropriate concrete net (or subnet). Such subnets
always have two transitions start and end corresponding to the start and the
end of the activity. Guards are put in small notes linked to the corresponding
transition (see Figure [@). Some arc labels, markings or guards depend on the
parameters of our model although they are automatically generated by a pre-
processing of the net. The number of masters was set to 2 in the configuration
used for this paper. As usual, all instances of places with the same name are
merged.

4.3 Detailed Specification of Some Key Elements

General Declarations. Fig. [ gives the main colour classes we use for mod-
elling the election protocol. Class M ranging from 0 to MN (the number of master
nodes) is used to identify masters, with constant 0 specifying a null valud?.

The message values (e.g. AskP, RI) of the MSG_TYPE class correspond to
the messages (e.g. AskPrim, Requestld) introduced in Section .1l and Figure [3
Finally, items of class NEG specify the state of a negotiation between master m
and one of its peers p:

2 Note that we do not distinguish in our model the uuid from the network address.
It may however be worth modelling, in a future version, situations where a master
reboots and is assigned a greater new uuid, as it may impact the current election
process.
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1 parameter

2 MN = 2;

3 class

4 BOOL is [F, T];

5 M is 0 .. ;

6 MSG_TYPE is [AskP, AnsP, RI, AI, AnnP, RP];
7 NEG is [NONE, CO, DONE];

Fig. 4. Colour classes of the election model

NONE means that p has not been contacted: p € m.unconnected.
CO means that m has contacted p and is waiting for its uuid: p € m.negotiating.
DONE means that m knows the uuid of p: p ¢ m.negotiating U m.unconnected.

Figure Bl represents some places shared by all modules of our net together with
their colour class and initial marking. Place masterState models the current
knowledge that any master m has of the primary master. An invariant prop-
erty states that for any m € 1..MN there is a unique token (m,iam,pm) in this
place, where iam=F means “I am not the primary master” and iam=T means “I
am the primary master or I do not know a primary master yet”, and pm is the
uuid of the primary master (or 0 if it is not known yet).

Color domain Initial marking
@ masterstate <M,BOOL,M> <1,T,0>+<2,T,0>
@ negotiation <M ,M,NEG> <1,2,NONE>+<2,1 NONE>
@ network <M,M,MSG_TYPE,M>
© electionlnit <M> <l>+<2>

O electedPrimary ~ <M>
@ clectedsecondary <M>

Fig. 5. Global places shared by all modules of the election model

Tokens in place negotiation specify the content of sets unconnected and nego-
tiating for all masters. For any pair of masters (m,n) with m # n, there is always
a unique token (m,n,neg) that specifies the current status of the negotiation
between m and n as specified above in the description of class NEG.

For each message sent and not processed yet there is a token (r,s,t,d) in place
network where r is the receiver, s the sender, t € MSG_TYPE the type of the
message, and d the uuid encapsulated in the message (meaningful only if t =
AnsP, i.e. AnswerPrim).

Last, places electionlnit (marked with Yy,cr1.mny(m)), electedPrimary, and
electedSecondary model different stages of the main election method: start of
the negotiation, start of the election in “primary mode” or in “secondary mode”.

Net Modelling the Main Election Method. The net of Figure[6lis a high-
level view of the election method. The subnet on the left-hand side of the figure
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models the negotiation process with the broadcast of AskPrim messages (transi-
tion sendAskPs) and the network polling (transition poll). As soon as a master m
knows it is a secondary master, a token (m) is present in place electedSecondary.
It then keeps polling the network (transition secPoll) until it knows the identity
of the primary master. The subnet on the right-hand side models the behaviour
of the primary master. Message announcePrim is broadcasted (transition sen-
dAnnPs) and then the primary master keeps processing the messages received
(transition primaryPoll).

electionlnit electedSecondary electedPrimary
<m> =m= <m> <m=
sendAssz+ M + sendAnnPs
secPoll
<m> <m>
polling # fé primaryPolling
<m> <m> <m><m>
poll primaryPoll

Fig. 6. Net modelling the main election method

The Polling Mechanism. A key element of the pro-
tocol algorithm is method poll that is called by nodes to

handle messages received from the network (the polling et
mechanism is also used in the bootstrap phase pre- é
sented in Section [l). This method is called by an event pollstart
manager to which several handlers — one for each mes- pollEnd
sage type — are attached, and it only handles a single 0
packet at each call by invoking the appropriate han- <m>

dler. In Figure [0 it is modelled by an input transition e enc

start putting a token in place pollStart. After process-
ing a message, a token (m) is present in place pollEnd
and the master can then exit method poll (transition
end). This is realised through the merging of these two
places with their homonyms in the message handler nets (e.g., Fig. [)) as detailed
below. Each transition modelling a message processing also moves a token from
pollStart to pollEnd. Specifically for the case of meta-transition poll, we also in-
clude in its subnet the nodes of Figure 8 These model the exit condition of the
negotiation step. The negotiation is over for master m if it is not negotiating
with any other master anymore: there must not be any token (m,n,neg) with
neg # DONE in place negotiation. Depending on the content of place master-
State, the token (m) in pollStart will move to place electedPrimary or electedSec-
ondary — both fused with their homonym places of net electPrimary (Figure [G).

Fig.7. Net modelling
the poll method
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If m has not received an Acceptld with a uuid greater than its own (see the
corresponding handler in Figure [I0), then a token (m,T,0) is still present in
place masterState and changed to (m,T,m) since m learns it is the primary master
(transition iAmPrimary). Otherwise, masterState is marked with token (m,F,pm)
and m knows it is a secondary master (transition iAmSecondary).

pollstart
-:m.T.m:-"{P masterState //Q\ masterState Q
=m,T,0> —-m=> o =m=> =m,F,pm=
negotiation
iAmPrimary <m,1,DONE=+ ——H+——=m,1,DONE=>+ iAmSecondary

- |:_ <m, 2,DONE=>- <m,2,DONE=>-
m <m,m,DONE= <m,m,DONE=

é electedPrimary electedSecondary

=M=

Fig. 8. Net modelling the decision process: master m has negotiated with all other
masters and can decide of its role

Message Handlers. Nets modelling message handlers are presented in Fig. [
Fig.[I0 and Fig. [Tl along with the corresponding Python code. These nets follow
the same pattern. Their transitions model the handling of a received message by
removing one token from place network (the message received) and moving token
(m) (the receiving master) from place pollStart to place pollEnd, hence specifying
the message has been processed and the master can exit the poll function (see
the net of Figure[l). The variable s of each transition identifies the sender of the
message. Alternatively, the master token can be put in place electionFailed if the
processing of the message raises the ElectionFailure exception.

As handlers of message types Requestld and AskPrim are rather straightfor-
ward we have chosen to focus on types AnswerPrim, Acceptld and AnnouncePrim.

For messages of type AnswerPrim (Figure [) we distinguish three cases:

1 def answerPrimary(self ,
2 conn, packet, prim_ uuid, fwork lIstart
3 known master list): networ polista p<>0 and
4 app — self.app , *—<m> handleAnsP3 || pm<>0 and
5 if prim_ uuid is not None: <M,SANSP0> L s <m,s,AnsP,p> <m> LIRAD
6 if app.prim is not None and \ netwnrk/.’ <mjiam,pm>
7 app.prim_master.getUUID () != \ <m,sAnsPp> |
8 prim uuid: T . .
9 raise ElectionFailure ‘handIeAnsPl| ‘handIeAnsP2|¢<m,iam,pm> electionFailed
10 app.prim = False <m> <m> - <m,Fp> masterState
11 app.prim_master = \ ‘ <=0and (pm=0/or pm= ﬁ
12 app.nm.getByUUID (prim _uuid) pollEnd C E LEah
13 conn.ask(RequestIdentification ( <s5,m,Rl,0>-H—<5,m,RI,0>
14 NodeTypes.MASTER, app.uuid, network
15 app.server , app.name))

Fig. 9. Handler for message type AnswerPrim
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— the peer s does not know any primary master (transition handleAnsP1). Local
data are not changed by master m that replies to master s with a Requestld
message (arc from handleAnsP1 to network);

— transition handleAnsP2 is fired if s knows a primary master (p<>0) and m
does not know any or knows the same one (pm=0 or pm=p). The local data
of m held in place masterState is updated and, once again, m replies to s
with a Requestld message;

— last, an ElectionFailure exception (ll. 6-9) is raised if m and s both know a
different primary master. This is modelled by transition handleAnsP3.

1 def acceptldentification (self , network pollstart network
2 conn, packet, node type, ? /.\

3 uuid, address, num _partitions,

4 num_replicas, your uuid): <ms,AL0>  <m> <m> <m,s,AlD>

app — self.app negotiation
# error management handleAllj—<m,s,CO>@—<m,s,CO>—|nandleAl2
# <m,s,DONE>  <m,s,DONE>

if app.uuid < uuid:

= O W~ o U

<m,iam,pm=>
N
app.prim = False s<m <m=. <m= <m,F,pm>
1 app.negotiating \
1 .discard (conn.getAddress()) pollEnd masterState

Fig. 10. Handler for message type Acceptld

At the reception of an Acceptld message (Figure [I0), master m ignores the
message if the enclosed uuid s is smaller than its uuid (transition handleAll) or,
if s>m (transition handleAl2), updates its local data by setting its primary field
to False (1l. 8-9). In both cases, the content of place negotiation is changed to
specify that m has finished negotiating with s: s is removed from the negotiating
set of m (ll. 10-11). This will possibly trigger the exit by master m from the
negotiation phase and enable one of the two transitions of the net of Figure 8

Finally, a message of type AnnouncePrim can be handled in two ways (Fig-
ure [[1)) depending on the local data of the receiver m:

— m does not think it is the primary master. It thus accepts the sender s as the
primary master and updates its local data: the token (m,iam,pm) becomes
(m,Fs).

— m also considers itself as the primary master (Il. 7-8 modelled by transition
handleAnnP2) and thus raises exception ElectionFailure.

We mentioned that some synchronisation problems trigger the raise of exception
ElectionFailure caught in the body of the main method of the election. One of
the requirements of the protocol is that, in the absence of faults, this exception
is not raised. Therefore, in that first modelling step, we left out the handling of
this exception and verified through state space analysis that this exception may
not be raised.
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1 def announcePrimary (

2 self , conn, packet ); network N pollStart network

3 uuid = conn.getUUID () ? ?

4 # error management

5 4 o <m,s,AnnP,0> <m=> <m=> <m,s,AnnNP,0=>
g ??Pazpssrlifn-lépp handleAnnP1 <m_iam_pmj}<m,T,m> handleAnnP2
8 raise ElectionFailure “m> <m,F,5> masterstate <m>

9 node = app.nm.getByUUID (uuid)
10 app.prim = False pollEnd electionFailed
11 app.prim_master = node

Fig. 11. Handler for message type AnnouncePrim

4.4 Injecting Faults in the Model

In sections and [£3] we only considered in our models the ideal situation
where no malfunction may occur. Since the NEO system is intended to tolerate
faults, it is a primary concern to enhance our models in order to analyse such
scenarios. This injection of faults in the model raises several issues. First, we
have to define the nature of the faults we are interested in. Both for modelling
and state explosion issues we need to focus on some specific kinds of faults.
Second, we must — for the same reasons — abstract the way these faults may
occur. If we choose, for instance, to model packet losses, this means focusing on
the loss of some specific “strategic” packets, even if any packet may be lost. Last,
according to the faults we choose to model we need to reinvestigate the election
program in order to determine which pieces of code that were abstracted away
in our first modelling step (because they dealt with this kind of faults, e.g. the
raise or handling of an exception) now need to be considered.

It appeared, during several meetings with the system designers, that the sys-
tem should be able to recover from the crash of a master. The election protocol
should also tolerate other types of faults, e.g., the loss of message, but since most
of these are directly handled by lower level layers, they were not considered here.
We then decided to restrain the occurrence of such events to two specific situa-
tions: the beginning of the election (when any master may be “allowed” to crash),
and when a master learns it is the primary master, i.e. when transition iAmPri-
mary of the net of Figure 8 is fired. The first scenario is the most realistic one:
in most cases, the election begins precisely because of a primary master failure.
The second one is due to the specific role of the primary master: it announces
its existence to other masters, announcement that will cause the exit from the
election protocol. Therefore, its failure is a critical event compared to the crash
of a secondary master that has few consequences. As previously mentioned, a
look at the election code reveals that these events would typically raise Election-
Failure, exception caught in the main method of the election algorithm. Other
exceptional cases are managed in the election code, but most of these deal with
errors that are out of the scope of our study, or are defensive programming issues.
Therefore these were left out.
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Modelling the Crash of a Master Node. The net of Figure is the
main net of Figure [fl modified to include the crash of a master. A fault is simply
modelled by transitions crash and primCrash putting a token (m) in place crashed.
After its crash, a master may reboot and join again the election (transition
reboot) or be considered as permanently dead (transition die) — at least during
the election process. The details of the meta-transition reboot are not given due
to lack of space. It consists of reinitialising all the internal data of the master,
i.e. the content of places masterState and negotiation, and setting back the token
(m,F) in place live (described below) to (m,T).

Transitions crash and primCrash are substituted by the net of Figure [12(b)|
modelling the effect of a crash on the global system. In order to be visible by
other masters, a crash must have two side effects. First, the token (m,T) in place
live modelling the fact that master m is alive (and considered as such by other
masters) is changed to (m,F). Second, the network must be purged from all the
messages sent to (or by) master m. Otherwise, if m recovers from its crash, it
may handle a message received prior to its crash, an impossible scenario that
we should not model. Also, a message is automatically ignored by the receiving
master if it detects the crash of the sender. So, rather than changing the message
handlers nets we decided to also purge the network from messages sent by m.
This is the purpose of transitions removeRec and removeSentd. If transition end
becomes enabled, the network does not contain any message with the identity
of master m. To guarantee that no message that has to be removed from place
network is received meanwhile by another master we ensure this treatment is
atomic by protecting it with place lock. The meta-net of the poll function has
naturally been changed in such a way that this lock has to be grabbed before a
message is handled.

Faults Detection. The detection by a master m of the crash of one of its
peers p is modelled by the net of Figure Depending on the state of m this
detection has different consequences.

If m initiated a negotiation with p and is still waiting for its uuid, it aborts
the negotiation as soon as it detects its failure. From the model perspective
this consists of removing p from both s.unconnected and s.negotiating. This first
situation is modelled by transition peerCrashed that replaces token (m,p,neg) by
(m,p,DONE) if master p is dead, i.e. (p,F) € live.

Alternatively, if m is a secondary master waiting for the announcement of the
primary master election it can consider this one as dead if it does not receive an
AnnouncePrim message after some amount of time. The expiration of this timeout
is followed by the raise of exception ElectionFailure. The transition timeout models

3 In order to ease the readability we have used inhibitor arcs to check the completion
of the network purge. Since the verification tools we use do not support inhibitor
arcs, the actual model includes a place counting the number of messages sent by (or
to) any master. Zero-test is made via this place. Moreover, note that, due to the
additional combinatorics this would generate, we do not model the possibility that
a packet is received and handled between a sender crash and this crash detection by
the receiver.
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electioninit  electedSec undaw ele[tedanary

<m>
<m=> <m> <m> <m=> <m> <m=> start :m'::i)lwe
S " removeRec
crash sendAssz secPoll sendAnnP pnmcrash remRec Q‘—“")—"——('
<m> <m,s,t,p>
pnlllnq prlmaryPoIIlng network
lock recDonex:'L:c%‘:m_s,t_p)
reboot
<m> <M= <m > <m> g <s5,m,t,p>
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pnll <m> prlmPnlI removeSent
<m>
crashed _ ) end mimo—<5:M.Lp>
die l—_Ll—<m>—’. dead (b)
(a)
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<m> <pF> <m> <m> <pm,F>
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pollEnd negofiation electionFailed

()

Fig. 12. Insertion of master node crashes in the model. Fig. [12(a)}f The top level net
extended with crashes. Fig. [L12(b)} Side effects of a crash. Fig. [12(c)f Detection of the
crash of a master node.

this second scenario. One of its pre-conditions is the token (m,F,0) to be in place
masterState to specify that m is a secondary master not aware of the identity of
the primary master.

Last, a secondary master m will raise exception ElectionFailure if it detects
the failure of the primary master. This is the purpose of transition primCrashed.
The master must be aware of the identity of the primary master to raise this
exception, i.e. (pm,F) € live (with pm # 0).

All these transitions are waiting for a token to be in place pollStart to become
firable. Hence, they will be included in the appropriate meta-transition of the
main net: transition peerCrashed will be put in the subnet of the meta-transition
poll while transitions primCrashed and timeout will appear in the subnet of tran-
sition secPoll.

Handling of Exception ElectionFailure. Modelling the handling of this ex-
ception is essential if one wants to analyse the election protocol in the presence
of faults since most synchronisation issues or fault detections will be followed by
this exception raise. The code for handling this exception that we had voluntar-
ily put aside in our first modelling phase can be seen on Figure It consists
of three parts: the broadcast of a ReelectPrim message intended to ask all peers
to stop the current election process and start a new one (ll. 4-6); the processing
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; def electPrimary (self): @ clectionFailed
3 except ElectionFail s
xcep ectionFailure :
4 for conn in em.getClientList (): === sendRPs pollstart network
5 conn.notify (ReelectPrimary ()) bt
6 conn. abort () é RPsSent
7 t = time () ) ) <m> <m> <m,s,RP,0>
8 while em.getClientList () -
9 and time() < t + 10: +c|oseConnectlons handleRP
10 try : <m=>
11 em.poll (1) : <m>
12 except ElectionFailure: <g)>c°”"em°“50°58d ‘
13 pass
14 for conn in em.getClientList (): +initData electionFailed
15 conn.close () Lo
16 for conn in em.getServerList (): (C)
17 conn.close () 6 electioninit
18 # restart the megotiation
(a) (b)

Fig. 13. Modelling the handler of exception ElectionFailure. Fig. [13(a)l Handler of ex-

ception ElectionFailure. Fig. [13(b); Net modelling the exception handler. Fig. [13(c)|
Handler of message type ReelectPrim.

of incoming messages for some amount of time (1I. 7-13); and the closing of all
connections (1. 14-17). After that, the master restarts the election process.

The corresponding net is in Figure Its structure reflects roughly the
code. The transition sendRps (of which we do not show the details here) puts a
token (n,m,RP,0) in place network for each alive master n # m. We then close
connections (transition closeConnections). The subnet implementing this transi-
tion is exactly the one corresponding to the crash of a master (see Figure .
Indeed, from the viewpoint of another master, closing connections is equivalent
to consider the master as crashed. This has the consequence of removing all
messages of master m from the network. At last, the firing of transition initData
reinitialises the internal data of the master and makes it alive to other masters
in order to restart the negotiation. The subnet implementing this transition is
the same as the subnet of transition reboot of the net of Figure We see
that the handler of this exception is quite equivalent to the crash and reboot
of a master. We have left out the call to the poll method at 1. 11. Indeed, its
purpose is mainly to ensure that all peers have received the ReelectPrim message
before closing the connections, and to ignore other ReelectPrim messages that
could be received meanwhile (see 1l. 12-13). Handling other messages is useless
insofar as the election will be triggered again. This kind of timing issues needs
not to be modelled. At last, Figure depicts the net of the handler of Re-
electPrim messages. At the reception of this message a master simply raises the
electionFailure exception.

4.5 Alternative Modelling with Helena

The Helena model has exactly the same module structure but is written in the
language of the Helena tool [9]. Figure [[4] presents a sample of the final model.
The place network always contains a single token c of type chans. For each pair
of masters (s,r), c[s,r] is the list of messages sent by s to r. The broadcast by
master s of a message m is achieved by function broadcast. One of its parameters
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type id : range 1 .. 3;

1
2 type msgType: enum (AskP,AnsP,RI,Al,AnnP,RP); network
3 type msg : struct { mngypc t; 1d P; ;
4 type msgList: list[int] of msg thh capacxty 10;
5 type conns : vector [mid,mid] of bool; <(c)> <tbroadcast
6 type chans : vector [mid,mid] of msngst; (m,{RP,0},c,co))=
7 place network {dom: chans; init: <([empty])> };
8 place conns {dom: conns; init: <([true])> };
9 function broadcast (mid s,msg m, broadcast
10 chans c¢,conns co) —> chans {
11 for (r in mid) <(co)=
12 if (s != r and co[s,r])
13 c[s,r] := c[s,r] & m;
14 return c; conns
15 }
(a) (b)

Fig. 14. Sample of the Helena model. Fig. |1 Some type and function declarations.
Fig. [14( - Model of the broadcast of a ReelectPrlm message.

—

is the matrix co specifying which masters s is connected to. The broadcast of Re-
electPrim messages can then be modelled with a single transition (Figure [14(b))),
instead of performing a loop.

This language allowed us to model some features more concisely and to relax
some constraints we had with symmetric nets that prevented us from modelling
some parts of the protocol. For instance, the connection loss between masters is
another type of faults that could be easily modelled in this new model. Although
the system is not expected to tolerate such faults, the system designers were still
interested to have some feedback on how the system could behave in the presence
of disconnections and to which extent it could tolerate such faults. Broadcast of
messages can also be modelled as shown by Figure List types can also be
used to model FIFO channels.

Note that this additional modelling effort was relatively small since the mod-
elling tools we use (Coloane and our composition tool) are largely independent
of the type of high-level net. Therefore, in many cases, we only had to rewrite
arc labels from one language to another, an easy task, although a bit tedious.

4.6 Analysis

State space analysis has been conducted on the election model. Symmetric net
modules were first assembled to produce a single net describing the protocol. In
order to use symbolic tools of the CPN-AMI platform [II], this net was then un-
folded in a low-level one using optimised techniques [15] and finally reduced [10]
to produce a smaller net (but equivalent with respect to the specified properties).

The Helena model briefly described in Section was also analysed using a
slightly different procedure: since Helena can directly analyse high-level nets, the
unfolding step was not performed, and the reduction was directly applied to the
high-level net.

For the election protocol we formulated four requirements R0-R3 given below.
First, we have seen that, if we do not consider faults, it is important that no
exception is ever raised (R0O). Two requirements are also logically required for
the election protocol (R1 and R2). At last, we want to be sure the cluster can
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Table 1. State space analysis of some configurations

Configuration Nodes Arcs Terminal | Analysis Results

Masters Crashes Disconnections nodes|RO R1 R2 R3
2 no 0 78 116 1Ww v v

1 102 165 6 X X X

yes 0 329 650 6 v v X

1 434 968 10 X X X

3 no 0 49,963 169,395 1Ww v v

1 57,526 206,525 52 X X X

yes 0 1,656,002 6,446,764 31 v v X

1 2,615,825 10,313,162 84 X X X

enter its operational state (R3).
RO — The ElectionFailure exception is not raised.
R1 — A single primary master is elected.
R2 — All masters are aware of the identity of the elected primary master.
R3 — The election eventually terminates.
Properties RO, R1 and R2 can be expressed as safety properties while R3
reduces to the absence of cycles in the reachability graph.
Next, we give some elements on the analysis of different configurations we
experimented with, and present two suspicious election scenarios encountered.

Analysis of Some Instances. State space analysis has been performed on some
instances of the election model listed in Table [l It also gives statistics we have
gathered on their reachability graphs. A configuration is characterised by the
number of masters (column Masters) joining the election, the possibility of ob-
serving master crashes (column Crashes), and the number of disconnections that
may occur (column Disconnections). The table gives for each configuration the
number of nodes, arcs and terminal nodes of its state space and indicates for
each of the three requirements we have checked whether it is matched (V) or
not (X) for this configuration. Requirement RO was only checked for faultless
configurations as the raise of an exception is naturally expected in the presence
of faults. Our observations are the following ones:

— in the faultless configurations (N,no0,0), the election behaves as expected;

— the possibility of a master crash does not break requirements R1 and R2
but does not guarantee the termination of the protocol even if we put aside
trivial infinite scenarios during which a master keeps crashing and rebooting;

— connection loss between two masters is a severe kind of fault in the sense
that the protocol does not show any guarantee in their presence. We actually
found out very few situations where requirements R1-R3 are still verified
despite a disconnection.

Faulty Scenarios. The first scenario is quite straightforward and could be discov-
ered by simulating any configuration that includes a disconnection possibility.



Modelling and Formal Verification of the NEO Protocol 215

Let us assume that the protocol is executed by two masters. If they get dis-
connected, then two elections will take place. Each master is isolated and thus
declares itself as the primary master. Some storage nodes will then connect to
one master and others will connect to the other master. Hence, there will really
be two NEO clusters running separately and the data on the storage nodes will
progressively diverge. This scenario is actually not unrealistic if we remember
that nodes can be distributed worldwide.

A second suspicious scenario is due to lower level implementation details re-
lated to the handling of exception ElectionFailure. It can be reproduced with 3
master nodes M1, M2 and M3. Let us assume that M3 gets elected but crashes
immediately after being elected. M2 (or M1) then detects this crash, raises ex-
ception ElectionFailure and sends a ReelectPrim message to M1. M1 receives this
message and automatically proceeds the same way. Now let us assume that mean-
while M2 closes all its connections and restarts the election before M1 sends its
ReelectPrim message. The ReelectPrim message is therefore not received in the
handling of exception ElectionFailure (in which case it would be ignored) but
after the restart of the election process. This will again cause M2 to raise an
ElectionFailure exception, send a ReelectPrim message to M1. If M1 receives its
message after it restarts the election (as M2 did), it will proceed exactly the
same way. Hence, we can observe situations where M1 and M2 keep exchanging
ReelectPrim messages that cancel the current election and restart a new one,
thus constituting a livelock. The election will never terminate.

Both problems have been reported to the system designers. They are con-
sidering some extensions that could prevent the first scenario. It was not clear
whether the second scenario is an actual bug or if it is a spurious error due to an
over-abstraction in our modelling. Tests were carried out in order to reproduce
this situation. Actually, a programming language side effect avoids this problem.
The engineers will work on the code to remove this ambiguity.

5 Formal Analysis of the Bootstrap Protocol

The general goal of the bootstrap protocol initiated after the election of the
primary master is to ensure that the database is in a consistent state before the
system enters its operational state. To reach this consistent state, the following
points must be checked:

— All expected data are stored on the storage nodes that are responsible of it.

— All transactions (in its database meaning) have been completed.

— All nodes have the same partition table and are aware of the identifiers (IDs)
of the last transaction performed and of the last object updated.

In Figure I3 the different phases of primary master and storage nodes are dis-
played along a time axis. This graph corresponds to the normal work of the pro-
tocol. An error occuring in one phase may cause the recall of preceding phases.
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Pri elected Recovery Verification  Service .
rimary time

Storage T -
& connected to Verification Initialisation Service

primary master

Fig. 15. Primary master and storage nodes phases in time

Each phase (e.g. verification, recovery) in the lifecycle of a node is charac-
terised by a handler specifying how the different messages expected during this
phase are handled. From the code perspective, a handler is a Python class con-
taining one method per type of packet expected. This method is triggered upon
the reception of such a packet. In the absence of the appropriate method, the
packet is rejected and an exception raised. These handlers are called by the poll
method that has been described in more details in Section (]

Right after its election the primary master first does some preliminary work:
it announces itself, and checks the list of known storage nodes. Normally, during
this period of time a storage node should connect to the primary master and
set up the verification handler. It means that from the storage side a verifica-
tion phase begins. Meanwhile, the primary master starts a recovery manager.
After the recovery manager finishes its work, the primary master starts the ver-
ification manager, which verifies all the pending transactions on storage nodes.
Verification phases of storage and primary nodes finish at the same time. Then
the primary master sets up its service handler, and the storage node sets up
an initialisation one, moving to an initialisation phase. When the initialisation
phase is completed, the storage node goes to service state, performing replica-
tion (hatching on Figure [[H]) of data from time to time (a first time at the very
beginning since some data might be missed while the storage node was down).

To be in the operational state, a storage node must be connected to the
primary master, have an up-to-date partition table, the last identifiers (last
transaction ID and last object ID) and the list of available nodes (regardless of
their type). All this is obtained during the first phases of the storage cycle. The
cluster state reached is then sound since data is consistent across storage nodes
before the cluster becomes operational.

If an exception is caught while the system is operational, it may lead to restart
the execution from one of the preliminary phases, according to the exception
handled. For example, in case the primary master crashes, a new master node
is elected and storage nodes must receive from this new primary master all the
information listed above.

5.1 Model Architecture

The graphical conventions are the same as in Section For instance, poll _ver
(see Figure [I6) is an abstract transition which is “implemented” by the net of
Figure [l Places from initial to operate in Figure model the control flow of
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storage nodes. The model of the poll function introduced in the previous section
has been reused during the modelling of the bootstrap protocol. Therefore, we
only describe in this section the packet handlers of the bootstrap steps.

Shared Places. Places network (described in Section .3)), has_pt ni_lid, Las-
tOID and LastTID model important resources of the protocol and are shared by
several modules.

— Place has_pt_ni_lid allows to check when storage nodes can move from
the verification phase to the operational mode. It always contains, for each
storage node s, a single token (s, pt, ni, lid) such that pt = T iff s received
the partition table; ni = T iff s received the list of nodes belonging to
the cluster (i.e. the node information); and lid = T iff s received the last
identifiers regarding the partition table.

— Places LastOID and LastTID contain, for each (storage or master) node n,
the last object (resp. transaction) identifier id the node is aware of. This
information is modelled by a token (n,id) in the corresponding place.

Global Level Storage Node Model. The model in Fig. [[6]together with the
declarations in Table Rlrepresent the functioning of a storage node from a global
perspective. Every storage node starts its life cycle in place initial. It then listens
to connections with some identification handler (transition start listen puts a
storage token into place listen conn), and handles all the attempts of other
nodes to connect. This is typically used during the replication phase, when some
storage node has detected that it is out-of-date. It connects to another storage
node that currently has the up-to-date copy of the required data.

The primary master also starts listening to connections at some moment.
From then on, other nodes can connect to it. Note that no node can connect to
another one if the second one is not listening to connections.

The next important step in the storage node life cycle is the connection to
the primary master. Formally, it waits until place primary contains a token (in
the current version of the model it means that the primary master has an-
nounced itself; later it should be modelled by exchange of messages) and a place
listen conn has the same token, meaning that the primary master has opened

Table 2. Declarations for the nets in Figures [[GHI9]

class domain

SN is 0..10; SNxOPER is (SN,OP);

MN is 1..3; SNxPTxNIxLID is (SN,PT,NI,LID);
MTYPE is [AskNI,AskPT,AskLID]; NODE is [SN,MN];
oP,PT,NI,LID,REP is [T,F]; NODExNODE is (NODE,NODE);

PART is 1..20; MESS is (NODE,NODE,MTYPE,INT);
PSTATE is [UP,0UT]; SNxID is (SN,ID)

ID is 1..100; SNxPART is (SN,PART)

NSTATE is [RN,TD,DW,BR]; NODExNSTATE is (NODE,NSTATE)

PARTXINT is (PART,INT)
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initial : SN

start listen

listening : SN O listen conn : NODE

(pm

conn_to_pm O live : NODExNODE

(s, pm)

(s)

. (pm)
primary : MN verif : SN () [ poll _wver
(pm)

(s,T)

pm, s, AskPT,0)+ L—(llsl<:7pz‘/77l'£7licl
(pm, s, AskNI,0)+ (s)
(pm, s, ASKLID.0). . oy O = 1 poll_init
s

(s)

(s,T,T,T)
perf oper [ _je——() has_pt_mni_lid : SNxPTxNIxLID
(s)
operate : SN ()

(O operational : SNxOP

network : MESS .<

Fig. 16. Storage nodes global level

a listening connection. Transition conn_to pm checks the presence of these two
tokens via test-arcs, puts one token containing a pair of storage and primary
nodes into place live, which means that henceforth the connection between these
two nodes is established. A storage token is put into place verif, saying that
the storage node has started its verification phase by setting up a verification
handler on its primary master connection.

The verification phase is supervised by the primary master, i.e. a storage node
only receives messages and handles them (transition poll ver) until one of the
handlers changes the value of the variable operational to true. In the net, place
operational contains as many tokens as there are storage nodes in the system.
Each of these tokens consists of a storage node identifier and the current value
of its internal variable operational. As soon as it becomes true, the storage node
sends a message asking for the actual version of the partition table, the last
identifiers and the node information to the network (transition ask pt ni_lid)
and proceeds to the initialisation phase (place init).

Similarly, the storage node stays in place init listening to incoming messages
(transition poll _init) until it receives the partition table, the last IDs (last trans-
action identifiers) and the node information.

Finally, a storage token arrives in place operate. Hence, the storage node has
reached its operational state and starts providing service. If everything goes
correctly, it remains in this state forever. If an operation failure occurs, the life
cycle continues from connection to primary, but the current version of the model
does not cope with errors yet.
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new_sn : SN partition_table : SNxPART dead : SN

0.id) pt id: swx1p_(0.4d

O

(0,4d 4 1) (0,4id + 1) del_cell to_del : PART

s, nr)

to add : PART add_cell

(s,nr

(s,nr + T

number of repl : PARTXINT

Fig. 17. Model of the partition table

The Partition Table. The partition table is one of the key elements of the
protocol implementation. It allows for making a correspondence between pieces
of data and the storage nodes where they (or their copies) are saved. The overall
data is divided into partitions. The number of partitions is defined by the system
administrator before the cluster is started, according to physical parameters of
the system such as the expected volume of data, the number of available storage
nodes, and the degree of data safety (how many replicas should be saved). The
number of partitions cannot be changed during the cluster life cycle. For each
object, the number of partitions to which it belongs is defined by the simple
formula: (Object Identifier) modulo (Number of Partitions). So, the partition
number is equal to the remainder of the division of Object Identifier by the
Number of Partitions.

In the partition table, each row corresponds to one partition and contains the
IDs of the storage nodes where the partition is located. Figure [T represents the
basic model of the partition table that contains two transitions: add cell allow-
ing to add a partition and del cell allowing to delete a partition. The internal
structure of the table is represented by two places: partition table and num-
ber of repl. The first one contains pairs (storagelD, partitionID) establishing
a correspondence between partitions and storage nodes. If the protocol operates
correctly, there should be no duplicates. Place number _of repl contains exactly
one token per partition that includes its ID and the number of tokens in the place
partition _table corresponding to it. The other places model the input arguments
for the functions add and delete, and are shared with other subnets.

5.2 Formal Modelling of the Verification Phase

Figure [I8 presents the models handling messages, that are called when a storage
node is in the verification phase. The goal of this phase is to check that all ex-
pected information persists and there is no pending transaction. The process of
verification is managed by the primary master. All transitions have two common
input places: pollStart (corresponding to a storage node that is handling a mes-
sage) and network (corresponding to the message that is being handled). There
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network : MESS pollStart : SNxMN
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Fig. 18. Verification phase handlers of storage nodes for different message types

is also one common output place pollEnd where a storage token is placed after
handling a message. Handling ask messages (with ask in the name) finishes with
a response that is put into place network, to notify it is sent:

1. handleAskPT (Ask Partition Table, Figure[18(a)|) — Since it is not possible to
model the complete partition table without facing the state space explosion
problem, only the ID number of the table is sent. Thus the response from a
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storage node to a AskPT message is of type AnsPT with the current partition
table ID as parameter.

2. handleAskLID (Ask Last IDs, Figure — When a storage node receives
an AskLID message, the primary master requests the last transaction ID and
last modified object ID. If any of these numbers is greater than the one
currently known by the primary master, the latter saves those IDs obtained
from the storage node and considers them as last. Hence, transition han-
dleAskLID takes two tokens from places LastOID and LastTID respectively
(corresponding to the storage node that is currently handling this message)
and replies with an answer message to the network place of type AnsLID: re-
ceiver pm, sender s, information K(oid,tid) (where K is a one-to-one mapping
from naturals to pairs of natural numbers).

3. handleNotPCh (Notify Partition Changes, Figure — This message is
sent by the primary master in case the structure of the partition table is
changed. This may happen for different reasons: some storage nodes crashed,
new storage nodes are added or the distribution of the partitions is not
uniform. This message actually contains all the rows of the table that have
been changed, but for the modelling purposes only the partition table ID is
sent. Hence transition handleNotPCh replaces a token corresponding to the
current storage node in place pt_id with a new one with the ID just received.
From then on, this storage node contains this partition table.

4. handleStartOp (Start Operation, Figure[18(d))) — This message is sent when
the primary master considers the verification phase finished and allows to
proceed to the next stage. Transition handleStartOp sets the value of the
token in place operational to true. In the global level model, this activates
transition ask_pt ni_lid and storage nodes can move from place verif to init.

5.3 Formal Modelling of the Initialisation Phase

The goal of the initialisation phase (Figure[I9) is that every node has the same
partition table, and the IDs of last transaction and last modified object. The
handlers for receiving last IDs and nodes information from the primary master
are very simple. Storage nodes just save the values received in the appropriate
places and change the corresponding boolean.

Similar to the verification phase, all transitions have two common input places
(polIStart and network) and one common output place pollEnd.

1. handleNotNI (Notify Node Information, Figure — The primary mas-
ter uses NotNI messages to announce to the storage nodes their new status.
If the new status of a storage node is DW (down), TD (temporarily down)
or BR (broken), it closes its connection with the primary master and shuts
down. Formally, transition handleNotNI replaces a token corresponding to
current storage node from s_state with one corresponding to the new status
(function NState(i) is a simple mapping of integer i to the colour domain
of storage states). It also removes a token with current storage and primary
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Fig. 19. Initialisation phase handlers of storage nodes for different message types

master nodes from place live, signifying that the connection between them
is down and adds the storage node to place dead.

2. handleAnsLID (Answer Last ID, Figure — The storage node saves
its last object ID in its database (place LastOID) and changes the value of
has _pt ni_lid from false to true, meaning that it now knows last IDs.

3. handleAnsNI (Answer Node Information, Figure[19(c)[) — Similar to the pre-
vious message, only the boolean value of has _pt ni_lid is changed.
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4. handleAnsPT (Answer Partition Table, Figure [19(d)[) — The corresponding
boolean is also changed, and a token in pt_id is replaced with the one con-
taining the new partition table ID received in the message.

5.4 Desired Properties

The engineers working on the NEO protocol provided us with more than 70
properties (related to the whole system and not only to the election and boot-
strap phases) they would like to check on our models. These descriptions had
first to be refined for several reasons: the terms used to express some properties
had different meanings according to the context, several properties were poorly
expressed and had to be refined, others were really trivial to check and only re-
quired a careful look at the implementation, ... Therefore, the statements were
rewritten and we (with the engineers of the NEO protocol) retained three main
requirements, namely R4, R5 and R6, that concern the bootstrap protocol.

R4 - The first requirement for the bootstrap phase states that all storage nodes
eventually reach the operational mode. It actually implies that the following two
conditions hold:

— All storage nodes have reached the operational state in every terminal node.
— The reachability graph is acyclic.

R5 - According to this requirement, there is at least one storage node, for each
partition, that will be responsible for storing that partition.

R6 - Similarly, the third requirement, implying that any storage node will store
at least one partition, can also be expressed as a reachability property.

5.5 Analysis Results

We analysed several configurations of our CPN model through simulation and
then through state space analysis. Table Bl provides statistics on the reachability
graphs of these various instances. Each configuration is defined by a number
of storage nodes (column N), and a replication factor (column Repl.), i.e. the
number of storage nodes a partition is kept on.

For all configurations we analysed, the reachability graph is acyclic. Hence,
the termination of the bootstrap protocol is guaranteed. Moreover, all terminal
markings respect our three requirements R4, R5 and R6 presented in Section[5.4]
and describe only acceptable termination states of the bootstrap protocol:

Table 3. State space results for several configurations

Configuration|Markings Terminal Transitions
N Repl. markings

1 1 537 9 905
2 1| 22,952 106 57,059
2 2| 76,590 106 217,897
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— all storage nodes and the primary master have reached the operational state;
— the database is consistent: a partition is owned by at least one storage node
and no storage node is empty.

Terminal markings only differ on the content of place network containing mes-
sages in communication channels. This could mean that some messages (those
still present in the network in the termination states) are not required for the
system to be operational since they are not consumed. Therefore, the protocol
could possibly be optimised by avoiding some messages in specific situations.

It is noteworthy that the state space grows considerably with the number of
storage nodes. Actually, more than the number of nodes involved, the number of
messages exchanged is the major bottleneck in our analysis. Indeed, each time
a node invokes function poll it can treat numerous different packets received,
hence generating a comparable number of transitions. We believe that the use
of partial order reductions [7] could efficiently tackle this issue. Since in most
cases the order in which incoming packets are treated is irrelevant, the use of
this technique should naturally leverage this source of combinatorial explosion.

To conclude this analysis section we will stress the fact that although we did
not find any actual problem in the implementation, we plan to perform further
model checking with larger configurations and other analysis tools, e.g. using
partial order or symmetry based reductions [5].

6 Conclusion and Perspectives

In this paper, we have presented our work on the modelling and analysis of
the first two (and essential) steps of the NEO system, a protocol developed
to manage very large distributed databases. The correctness of these steps is
vital since it implies a coherent system state and database consistency when
clients start querying the database. Checking this correctness is also probably
the most difficult point since, once the system is functioning, synchronisations
ensuring data consistency seem simpler. Modelling is achieved using a reverse-
engineering approach from the code. It required to devise appropriate choices to
work on relevant and useful levels of abstraction at different steps. To this end,
we used several tools motivated by the different complexities of the objects to be
modelled: namely Coloane, CPN-AMI, CPN tools and Helena. We also identified
a lack in the modeling tools we used in that, besides CPN tools, they do not
easily support the creation of nets modularly and hierarchically structured. This
observation led us to define an XML-based composition language to ease our
task. This is, to our best knowledge, the first attempt to define such a language.

The outcome of this analysis was profitable to the system designers in several
ways. First, we could discover several suspicious election scenarios that led them
to make their code more robust. Second, our analysis confirmed that a connection
loss between two masters is a severe fault from which the system will not recover
in most situations. Last, we increased their confidence in the bootstrap protocol
by checking several configurations in which all expected properties are verified.
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In the future, three extensions of the work presented here will be considered.

First, we intend to take into account the storage nodes failure during bootstrap.
Several mechanisms are implemented by the protocol to manage this kind of
issue and it is worthwhile analysing them through model checking. Second, we
plan to verify the considered properties when the number of storage nodes is
not known in advance, and thus take into account the fact that the number of
storage nodes can change dynamically during execution. Finally, we plan to use
other analysis techniques, especially through Coloane which can interface with
several verification tools such as Great-SPN [2] and Prod [17].
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