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Abstract

The mission system of an aircraft is a complex
real-time distributed system consisting of a mis-
sion control computer, different kinds of devices
interconnected by a number of serial data buses.
The complexity and real-time requirements of mis-
sion systems have motivated research into the ap-
plication of formal techniques to investigate and
predict the effects of upgrades on mission system
behaviour. This paper reports on a joint research
project between the University of South Australia
and Australia’s Defence Science and Technology
Organisation. In previous work we modelled a
generic avionics mission system with Coloured
Petri Nets and analysed the model using state
spaces. Here, we describe how this model was re-
fined and modified to obtain a Coloured Petri Net
model for the AP-3C Orion maritime surveillance
aircraft.

1. Introduction

Mission system upgrades to aircraft platforms
are labour intensive and require significant capi-
tal expenditure by national Defence Forcesmainly
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because: changes to system components normally
require substantial redesign and testing; their inte-
gration can lead to unforeseen and undesirable be-
haviour due to complex interactions between com-
ponents. The mission system [16] is critical for
the successful deployment and operation of mili-
tary aircraft. It is a complex real-time system [9],
responsible for the tactical control of devices such
as radars and sensors of the aircraft during a mis-
sion. The tasks performed by the mission system
include data collection from sensors, fusion of col-
lected data, display of information to pilots, and
controlling devices in response to inputs from the
aircraft crew. To ensure that the system is work-
ing properly, the tasks must be scheduled in a way
that guarantees that hard deadlines are met. This
requirement is critical to the success of a mission.
Thus major concerns when upgrading and main-
taining mission systems are the scheduling of tasks
and the impact of the delays associated with data
transfer across the bus connecting the mission con-
trol computer and the devices.

In [12, 13], Timed Coloured Petri Nets (CP-nets
or CPNs) [7, 8] were used to model a generic air-
borne mission system [10] with the purpose of in-
vestigating scheduling. Design/CPN [5] was then
used to find a schedule. Scheduling of tasks was
treated as a reachability problem, using a state
space search. The use of state space methods for



scheduling was motivated by recent work [2, 3, 6,
17] in the area of timed automata [1], where state
space methods have been used to synthesize sched-
ules for the control of real-time systems. The ad-
vantage of formal modelling and state space meth-
ods in this setting is that the same model of the
system can be used to analyse scheduling as well
as other functional and performance properties.
Hence, it provides an integrated approach for pre-
dicting system behaviour.

In this paper, we show how a specification
for the AP-3C Orion aircraft, used for maritime
surveillance, could be derived from the generic
model. The CPN model was created by a team
of engineers and researchers from RLM Systems
[14], Australia’s Defence Science and Technology
Organisation (DSTO) [15], and the Computer Sys-
tems Engineering Centre (CSEC) at the University
of South Australia[4]. The purpose of constructing
the CPN model of the AP-3C mission system was
to investigate whether the modelling framework
for the generic mission system [12, 13] could be
applied to develop a CPN model of the AMS of a
real aircraft. RLM Systems and DSTO considered
a formal and executable CPN specification a valu-
able supplement to existing design documentation
of the AP-3C aircraft. A long-term goal for DSTO
and RLM Systems is to integrate the CPN model
into their evaluation environment for the AP-3C
aircraft. The focus for the part of the project re-
ported on in this paper is therefore modelling and
specification, rather than state space analysis.

This paper is organised as follows. Sect. 2
presents the mission system architecture for the
AP-3C platform and compares it with the generic
architecture. Sect. 3 compares the overall structure
of the CPN model of the generic AMS to the AP-
3C mission system model. Sect. 4 presents how
subsystems of the AP-3C mission system were
modelled. Sect. 5 details the I/O processing and
messages transmission. Finally, in Sect. 6 we pro-
vide conclusions and discuss future work. We as-
sume that the reader is familiar with the basic ideas
of the CPN modelling language [7, 8].

2. Mission System Architectures

An Airborne Mission System (AMS) architec-
ture is characterized by a set of sub-systems or
components interconnected via serial data busses.
The architecture of the generic avionics mission

system [10] is depicted in Fig. 1(a)1 [13]. It con-
sists of a mission control computer, a serial data
bus, and external components such as the naviga-
tion system, radars and sensors. The various sub-
systems and displays are controlled by executing a
set of tasks on the mission control computer (Mis-
sion Computer in Fig. 1(a)).
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Figure 1. The AMS architectures.

Fig. 1(b) shows a high-level architecture block
diagram of the AP-3C AMS, consisting of a Data
Management System (DMS) which communicates
with several subsystems, such as Radar, Mag-
netic Anomaly Detection (MAD), and the Acous-
tic Subsystem via the Mission Equipment Bus
(MEB). The MEB is a dual MIL-STD-1553B [11]
serial data bus. The DMS is also connected to
the Navigation Subsystem of the aircraft. Another
1553B bus, the Avionics Bus, connects the Navi-
gation Subsystem and the Communication Subsys-
tem. The Displays and Controls allow the crew to
monitor and control the aircraft and are connected
to the DMS by a VME bus. The DMS of the AP-

1The displays and controls include the HUD (Heads-Up
Display), MPD (Multi-Purpose Display), KEYSET (keyboard
for crew) and HOTAS (Hands-On Throttle And Stick). Among
the devices is the INS (Inertial Navigation System).



3C plays the same role as the mission control com-
puter in the generic mission system.

Mission 
Equipment

Bus 

HS

Data 
Management 

System
HS

Communication
Subsystem

HS

Navigation
Subsystem

HS

Mission Equipment Bus
Messages

Radar

HS

Magnetic
Anomally
Detection

HS

Acoustic 
Subsystem

HS

Avionics
Bus

Messages

Avionics
Bus HS

Radar
RADAR

Component
MAD

MAD

Component
ACS

ACS

Component

COS
COS

Component

Figure 2. The AMS page.

From the two architectures depicted in Fig. 1(a)
(generic) and 1(b) it follows that although the com-
ponents in the two systems are basically the same,
the structure is quite different. Firstly, there are
two 1553B busses in the AP-3C instead of one in
the generic AMS. This is easy to handle in our
model as they are identical, allowing us to use
two instances of the same bus representation. We
just need to connect the appropriate components
to each bus instance to ensure that the model cor-
rectly reflects the topology of the system.

Secondly, a display processor is attached to
the serial data bus in the generic mission system,
while it is directly connected to the data manage-
ment system in the AP-3C, through a VME bus.
Based on the experience of the domain experts
from DSTO and RLM Systems, it was decided not
to model the VME bus, as the VME bus is a high-
bandwidth bus carrying little traffic relative to the
1553B bus. It is therefore unlikely that it would be-
come the bottleneck in the system. Hence, we con-
sider that omitting the VME bus from the model
will not compromise the analysis results.

Finally, we need to consider two sorts of sub-
systems (or devices) in the AP-3C mission sys-
tem, rather than one. Because of the level of ab-
straction chosen for the model, we call subsystems
or devices that have just a single connection to a
bus, a simple device. These are Radar, Magnetic
Anomaly Detection, the Acoustic Subsystem and
the Communication Subsystem. We need a more
complex model of the Navigation Subsystem be-
cause it is connected to both busses. Therefore,
the simple devices can be modelled in the same
way as the devices of the generic mission system
(the Generic Sensor), while the navigation subsys-
tem requires an enhancement to this model.

3. Modelling AMS Architectures

The AMS systems under consideration are
modelled by means of Hierarchical Timed
Coloured Petri Nets [7, 8] (CP-nets or CPNs). CP-
nets allow the model to be split into a number of
hierarchically related pages (modules) via the con-
cepts of substitution transitions and subpages. A
page on one level may have a number of substitu-
tion transitions, typically representing a subsystem
or some compound behaviour. A substitution tran-
sition has an associated subpage modelling the be-
haviour represented by the substitution transition
in more detail. A subpage may again contain sub-
stitution transitions giving rise to a hierarchical or-
ganization of the model.

Fig. 2 depicts the page AMS from the AP-3C
model. This page provides a high-level architec-
tural view of the AP-3C AMS similar to the in-
formal drawing in Fig. 1(b). All the transitions
(rectangles) are substitution transitions, indicated
by the hierarchical substitution tag (HS) in their
lower right corner. The substitution transition
Data Management System represents the main part
of the system. The Communication Subsystem,
Navigation Subsystem, Acoustic Subsystem, Mag-
netic Anomaly Detection and Radar correspond
to the different AMS subsystems. The other two
substitution transitions, Mission Equipment Bus
and Avionics Bus are used to model data trans-
fer across the MIL-STD-1553B serial data buses.
Places Mission Equipment Bus and Avionics Bus
represent the interfaces for each bus. Finally, the
other places (e.g. ACS) allow subsystems (such as
the acoustics subsystem) to be identified.

The hierarchy page of the generic AMS model
is shown in Fig. 3. This page shows the over-
all organization of the pages constituting the CPN
model. Each page of the CPN model is represented
by a node on the hierarchy page. An arrow from
one node to another node indicates that the latter
is a subpage (submodule) of the former. It can be
seen that the CPN model of the generic AMS con-
sists of 17 pages. The generic AMS consists of a
MCC (Mission Control Computer), a Serial Data
Bus, ControlsDisplays, and Stores. These corre-
spond to the main components of the generic AMS
as shown in Fig. 1(a).

The hierarchy page of the AP-3C CPN model
is depicted in Fig. 4. The AP-3C model consists
of 14 pages. The AP-3C Airborne Mission Sys-
tem (AMS) consists of a Data Management Sys-
tem (DMS) comprising an Enhanced General Pur-
pose Controller responsible for executing a set of
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tasks, and an IOProcessor Card. The Data Man-
agement System communicates with several sim-
ple Devices, and with the Navigation Subsystem
of the aircraft via a dual MIL-STD-1553B mission
equipment bus (MEB). There are four instances of
the Device page corresponding to the four simple
devices in the system. This can be seen from the
four labels on the arc from page AMS to page De-
vice. The labels correspond to names of the sub-
stitution transitions at the source page of the arc.
This means that each simple device is modelled by
the page Device and at the abstraction level of the
CPN model, all simple devices behave the same
way. The Avionics Bus sits between the Naviga-
tion Subsystem and the Communication Subsys-
tem. Since the MEB and the avionics bus are iden-
tical, there are two instances of the MILSTD1553
page, one corresponding to the MEB, and the other
to the avionics bus.

A parallel should be drawn between the generic
model hierarchy in Fig. 3 and the one of the AP-
3C (see Fig. 4). The four main differences between
the CPN models of the generic AMS and the AP-
3C are reflected in the hierarchy pages as follows:

• The Stores and the ControlsDisplays pages
and subpages have been removed from the
model as we are initially concerned with
scheduling problems associated with the
DMS not related to the displays and controls.

• The Sensors and Generic Sensor pages from
the generic AMS model have been combined
and then split into two: the simple devices
and the navigation subsystem.

• The CPN model of the AP-3C AMS contains
a refined model of the input/output process-
ing on the mission control computer. In the
generic CPN model, I/O processing was mod-
elled by page IOProcessor. In the AP-3C
model, it is modelled by page IOProcessor-
Card and its three subpages. The Scheduling
page of the generic model becomes the EGPC
page for the AP-3C.

• The timing regarding task execution has been
moved from the mission control computer
level to the EGPC level. Hence, page Up-
dateMajorCycle is now a subpage of the
EGPC page.

The differences between the AP-3C and the
generic AMS architectures are easily recognised
by examining the CPN models’ hierarchy pages.
The transformation of the generic model into the
AP-3C model was greatly facilitated by its initial
hierarchical design. The transformation mainly
consists of: re-arranging the hierarchy by moving
some pages; creating new ones when refinement
is required; and deleting pages not relevant to the
specific architecture or the purpose of the model.

One purpose of the CPN model is to formally
specify the transmission of messages between sub-
systems across the mission equipment and avion-
ics busses. As usual we model the messages be-
ing transferred as tokens in the CPN model. When
a subsystem transmits a message across the mis-
sion equipment bus to another subsystem, it will
put a token on place Mission Equipment Bus.
The subpage of the substitution transition Mis-
sion Equipment Bus will then model the details
in transferring the message. Eventually the mes-
sage will have been transmitted and the destina-
tion subsystem will consume the token represent-
ing the message from place Mission Equipment
Bus. To model this data transfer in a flexible way
that makes it easy to add/remove components, a
general addressing scheme was developed as part
of the CPN model of the generic AMS.

Fig. 5 shows selected colour set declarations
used to implement the addressing scheme for the
AP-3C, and the modelling of messages transferred.
The Component colour set is a union colour set
corresponding to the components of the AMS. The
MCCTask colour set is used to specify the tasks



executing on the DMS. The addressing scheme
makes it possible to identify the specific tasks
in the DMS. This is required since tasks will be
blocked waiting for responses from subsystems
when messages are being sent across the buses.
Hence, it is necessary to be able to identify the task
that is to receive a certain message.

The SDBCommand colour set is used to spec-
ify the sender, receiver and size of a message. It is
important to notice that we do not model the con-
tent of messages. We are only interested in mod-
elling that a message is being transmitted, and the
timing related to this message transfer. The colour
set SDBMsg is used for modelling the messages
(control signals) at the local interface between the
subsystems and the bus.

The colour set Messages, colour set of the place
Mission Equipment Bus in Fig. 2, is used to rep-
resent messages in transit. When a subsystem puts
a message on the bus, the first component of the
tuple representing the message will be BUS to sig-
nal that the message is currently at the bus inter-
face. The bus will then transfer the message as
modelled by the subpage of the substitution transi-
tion Mission Equipment Bus. This will produce a
token on place Mission Equipment Bus where the
first component of the tuple identifies the destina-
tion subsystem. This subsystem may then receive
the message by consuming the token.

color Component = union
DMS : MCCTask +
IOP + BUS + RADAR + MAD +
ACS + NAS + COS;

color SDBCommand = record src : Component *
dest : Component *
spec : Int;

color SDBMsg = union SDBCOM : SDBCommand +
IOstart : Int + IOcomplete;

color Messages = product Component * SDBMsg;

Figure 5. Selected colour set declara-
tions for component addressing.

4. Modelling AMS Subsystems

We now consider the modelling of the individ-
ual subsystems of the AP-3C platform.

4.1. Data Management System

The Data Management System (DMS) is the
core of the airborne mission system. Fig. 6 depicts
the most abstract part modelling the data manage-
ment system, the DMS page. It has two substitu-
tion transitions: EGPC1 represents the Enhanced
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Figure 6. The DMS page.

General Purpose Controller on which the tasks ex-
ecute, and the 1553B I/O Processor Card handles
all the input and output related to tasks. The IO
Processor Card is described in detail in Sect. 5.
The AP-3C aircraft uses up to 4 EGPCs. Our
model can easily cater for this by just including the
required number of EGPC substitution transitions
(e.g. EGPC1 to EGPC4). Thus, several instances
of the EGPC page may be used concurrently.

Input socket places Tasks and AllTasks store the
tasks to be executed for the mission. Each task is
represented as a token of colour set MCCTask (see
Fig. 7) on the place Tasks. Place AllTasks contains
a list of all tasks. It is used to access all tasks to de-
termine which one will be executed next, accord-
ing to the task priority mechanism on the EPGC.
The Tasks place ensures that if there is a choice of
the next task to execute, the CPN model represents
all possible choices. This might seem redundant
information, but having both places helps in mak-
ing an non-deterministic choice among tasks and
priority calculus.

Tasks
MCCTask

P I/O

MCCCPU

CPUState

Idle

ScheduleTask
HS

TaskCompleted
HS

Minorcycle

Int

1

AllTasks

MCCTasklist

P I/O

InterruptTask
HS

IOStatus
MCCTaskxIOStatus

P I/O IOQueue P I/O

MessagesDescList

MinTime
ET

UpdateMajor
Cycle HS

Updating
Major

Updating

noup

Figure 8. The EGPC page.

Fig. 7 contains the colour set declarations for
the modelling of tasks executing on the EGPC.
Each task has a name (modelled by the colour
set MCCTaskName) and can be in five different
states as modelled by the enumeration colour set
TaskStatus. There are two different kinds of tasks:
BackgroundTasks and RategroupTasks. Schedul-



color Int = int;
color Bool = bool;
color MCCTaskName = string;
color TaskStatus = with TaskIdle | TaskDataRequest |

TaskWaitingWithData | TaskExecuting | TaskResponse;
color BackgroundTask = record

name : MCCTaskName *
size : Int * (* size of task in time units *)
left : Int * (* time units left of the job *)
exeinmajor : Bool * (* if executed in the major cycle *)
priority : Int * (* priority among backg. tasks *)
status : TaskStatus; (* for priority computation *)

color RategroupTask = record
name : MCCTaskName *
rate : Int * (* time units between executions *)
next : Int * (* next minor cycle to be scheduled *)
size : Int * (* size of task in time units *)
left : Int * (* time units left of the job *)
status : TaskStatus; (* for priority computation *)

color MCCTask = union Background : BackgroundTask + Rategroup : RategroupTask ;
color MCCTasklist = list MCCTask;

Figure 7. Colour set declarations for tasks.

ing on the EGPC is based on the concept of ma-
jor cycles and its subdivision into minor cycles.
Background tasks are required to be executed once
within each major cycle. Rategroup tasks are re-
quired to be executed with a certain frequency
(measured in minor frames) within each major cy-
cle. The real-time requirement of the AMS is that
background tasks must be completed before the
end of a major cycle, and rategroup tasks must fin-
ish before the next minor cycle in which they are
to be executed. Each of the two types of tasks are
modelled as a record with a number of attributes.
The duration of a task is captured by the size at-
tribute present in both types of tasks. This attribute
is used to specify the processing time (run-time)
for the task when executed. This means that we do
not model the detailed control-flow of tasks. In-
stead we model the execution of a task in an ab-
stract way, as a period of time in which the task is
in state TaskExecuting.

The socket places IOQueue and IOStatus in
Fig. 6, represent the interface between the EGPC
and the I/O processor card. Place IOQueue mod-
els a queue in which tasks can make requests for
data to be transferred across the Mission Equip-
ment Bus. Place IOStatus keeps track of the in-
put/output status of tasks. For example, when a
task T needs to send two messages M1 and M2,
a token (T,2) will be put in IOStatus, indicating
that task T waits for two messages to be sent,
and both messages M1 and M2 will be added to
the IOQueue. Place MEB represents the interface
for the mission equipment bus. The input/output
processing is the aspect where the AP-3C model

differs most from the generic AMS model. The
modelling of input/output processing in the AP-3C
model will be detailled in Sect. 5.

When it is time for tasks to start their execu-
tion, they are scheduled by the EGPC. As for the
generic model, we assume that tasks request their
input at the beginning, and send their output at the
end of their execution. The input requests that have
to be performed before the execution can start are
passed by the Input/Output (I/O) processor card to
the serial data bus. When all the information re-
quired has been transferred via the I/O processor,
the task can be executed. When the execution is
complete, the output can be performed. Then the
task must wait until it has to start again.

Fig. 8 depicts page EGPC, subpage of the sub-
stitution transition EGPC1 in Fig. 6. The EGPC
has the same role as the CPU in the Mission Con-
trol Computer, namely scheduling and executing
tasks. The places Tasks and AllTasks are related
to the same places on page DMS via port-socket
assignments. Place MCCCPU is used to model the
CPU of the EPGC. The CPU may be in two states:
busy executing a task, or idle. When the CPU
is busy executing a task, the corresponding task
will be present as a token in place MCCCPU. That
tasks are modelled as tokens in the CPN model
rather than by CP-net structure, makes the CPN
model highly parameterisable. This facilitates the
investigation of different scenarios. If simulation
or state space analysis is to be conducted with a
different set of tasks, it is only a matter of initialis-
ing the CPN model with a different set of tokens,
as no change to the CP-net structure (i.e., places,



transitions, arcs and inscriptions) is required.
The three substitution transitions Schedule-

Task, InterruptTask, and TaskCompleted represent
the main events that may happen on the CPU. A
task may be scheduled for execution, interrupted
by a task with a higher priority, or may complete its
execution. The associated subpages are essentially
identical to the corresponding ones in the generic
AMS model. Only very minor changes were made
for consistency and to cater for future work. We
therefore do not describe these pages here, but re-
fer the reader to [12] for more details.

Places Minorcycle and MinTime are used to
model the concept of minor cycles. Substitution
transition UpdateMajorCycle and place Updating-
Major are used to model the concept of major cy-
cles. Page UpdateMajorCycle was included in the
EGPC model, instead of staying at the DMS level
as it only deals with changing time slots. There is
a single clock corresponding to major cycles in the
generic model, whereas there can be one clock per
EGPC in the AP-3C.

4.2. Simple Devices

The information necessary for tasks is gathered
by external devices. As discussed in Sect. 2 we
consider Radar, Magnetic Anomaly Detection, the
Acoustic Subsystem and the Communication sub-
system to be simple devices. They have the same
behaviour as the Generic Sensor in the generic
AMS model. Page Device modelling the simple
devices is shown in Fig. 9(a). When an IOstart re-
quest is received via the Bus Interface, the device
enters a Transfer state for the duration of the data
transfer. The duration of the transfer is specified
by the variable i which is part of the IOstart com-
mand. Upon completion of the data transfer, the
device sends an IOComplete command to the BUS
it is connected to and enter its Idle state.

The colour set of the port place Idle is Compo-
nent (see Fig. 5). This makes it possible to parame-
terise the Device page with the specific device that
it should represent. The page is instantiated via the
socket place of Idle. For example, page Device is
the subpage of the substitution transition Radar in
Fig. 2. The socket place of Idle in this case is place
Radar which has the initial marking RADAR. Thus
a RADAR token will be present in place Idle for
the instance of the Device page corresponding to
the radar device.
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Figure 9. The different kinds of de-
vices.

4.3. Navigation Subsystem

Fig. 9(b) depicts page Navigation Subsystem,
which can receive messages from the Mission
Equipment Bus. These messages are either for the
navigation subsystem itself or for the Communi-
cation Subsystem. In the first case, the naviga-
tion subsystem behaves as a simple device (tran-
sitions StartNAS Transfer and TransferNAS Com-
plete). In the second case, it passes the messages
to the Avionics Bus (transition StartCOS Trans-
fer). The Communications Subsystem processes
the message using the Device page, and returns the
response to the Avionics Bus. The response is re-
layed to the Mission Equipment Bus by transition
TransferCOS Complete.

5. Modelling AMS Message Transmis-
sion

The bus considered in the generic AMS model
is a basic serial data bus: it receives messages from
an I/O processor, and passes them to the appropri-
ate device. After some amount of time has elapsed,
the receiving unit sends back the answer on the
same data bus. The I/O processor receives and in-
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terprets it. Therefore, the model is composed of
two parts (reflected in the hierarchy in Fig. 3 as
two pages): the I/O processor card and the bus it-
self. Each task executing on the mission control
computer CPU may send out messages request-
ing information from various subsystems. The I/O
processor card sends each message over the bus
and waits for the reply, have been sent. Then the
messages of the next task are processed.

On the AP-3C, the I/O processor card also pre-
pares the messages to be sent over the bus, but in
a much more complex manner. The basic com-
mand/response behaviour of the bus model is the
same as in the generic case. Therefore, page MIL-
STD1553 is identical to the Serial Data Bus used
in the generic AMS model [12]. In the follow-
ing, we concentrate on the modelling of the IOPro-
cessor which was significantly refined when going
from the generic AMS model to the AP-3C model.
To understand the modelling of the I/O processor
card, we explain the basic operation of the MIL-
STD-1553B bus. Once again, the hierarchical net
structure made things easier: a single page was re-
placed by a new set of related pages, without inter-
fering with the rest of the model.

5.1. The Bus Characteristics

The dual Redundant Mission Equipment Bus
(MEB) is a MIL-STD-1553B [11] digital time di-
vision multiplexed command/response serial data
bus, operating at 1 Mbit per second. The mas-
ter/slave protocol of the bus operates between a
bus controller and other subsystems connected to
the bus. It provides confirmation of delivery for
data bus messages.

The AP-3C MEB uses a pre-defined framing.
It contains messages that are managed by the bus
controller. A major frame consists of 40 minor
frames of 25 ms each that are allocated messages
in a pre-determined schedule. Messages are sched-
uled in 3 ways: Periodic, Aperiodic and Man-
ual. Periodic messages are transmitted every ma-
jor frame. Manual periodic messages are switched

on or off depending on the mode of operation.
When they are on, they are transmitted every ma-
jor frame. The Aperiodic messages are transmitted
as required. Framing synchronization is achieved
by periodic messages sent each minor and major
frame. The frequency of message transmission is
a function of the number of minor frames in which
a message is scheduled each major frame. For ex-
ample a 40 Hz message is scheduled every minor
frame, a 4 Hz message is scheduled in 4 minor
frames of a major one, 10 minor frames apart.

This scheduling mechanism provides reliable
bus communication for critical scheduled periodic
messages. Aperiodic messages require significant
data transfer limited by the remaining bandwidth.

5.2. The I/O Processor Card

Page IOProcessorCard (see Fig. 10) depicts the
DMS I/O processor card. Its role is to process the
requests for input and output made by the tasks ex-
ecuting on the DMS CPU. This page has been con-
siderably modified from the generic model in order
to take into account the different types of messages
encountered in the AP-3C: Periodic, Manual and
Aperiodic. Among the messages ready to be sent
within a minor frame, the periodic messages are
sent first, then the manual messages, and finally
the aperiodic ones. A sending frequency is asso-
ciated with each message, determining the minor
frame in which the message is sent.

Places IOQueue and IOStatus represent the in-
terface between the tasks and the I/O processor.
These two places are related via port/socket as-
signments to the correspondingly named places on
pages EGPC (Fig. 8) and TaskCompleted. Tasks
make requests for input/output by placing them in
the queue modelled by place IOQueue. The place
MEB represents the interface between the I/O pro-
cessor card and the mission equipment bus.

The three substitution transitions Periodic Mes-
sage, Manual Message and Aperiodic Message
handle one type of message each. The correspond-
ing sub-pages are three instances of subpage Mes-
sages that will be presented shortly.

The messages are sent in minor frames, taking
some amount of time (25ms on the AP-3C). The
substitution transition MinorFrame in page Minor-
Frame (not shown), models a switch to the next
minor frame. It works as a simple periodic timer
which increments the current minor frame number
corresponding to the duration of minor frames.



5.3. Messages

The transmission of messages is modelled by
page Messages shown in Fig. 11. If no mes-
sage of the appropriate type remains to be sent (in
place IOQueue), transition NextType can be fired,
switching to the next type of message. This condi-
tion is checked in the transition guard by the SML
function NoMess. Otherwise, the transmission of
a message can start as modelled by the substitution
transition Transmission.

Minorframe

IntxMessageType

P I/O

MEB
Messages

P I/O

IOQueue

MessagesDescList

P I/O

IOStatus

MCCTaskxIOStatus

P I/O

Tasks

MCCTask

P I/O

AllTasks
MCCTasklist

P I/O

Mess
Type

MessageType

P I/O

Next
Type

[NoMess(i,messtype,desclist)]

Transmission
HS

(i,messtype)

desclist

(i,nexttype(messtype))

messtype

Figure 11. The Messages page.

Page IOTransmit shown in Fig. 12 is the sub-
page of the substitution transition Transmission in
Fig. 11. When transition Send is fired, a message
in the IOQueue, of the appropriate type and which
should be sent in the current minor frame, is pro-
cessed. If it is a Periodic message, it remains in the
queue, but with the minor frame number indicat-
ing when it will be sent next. The task requesting
this message enters the state Waiting, and the mes-
sage is put on the mission equipment bus MEB.
The acknowledgment is retrieved by transition Re-
ceive, which also updates the status of the task by
decreasing the number of acknowledgments it is
still waiting for. When a task has received all the
acknowledgments it was waiting for, transition Re-
ceive also updates the status of the task.

Capturing the structure of messages to be sent
on the 1553B bus is an important issue. The task
input/output specification not only defines the re-
quested device, and the time taken to obtain a re-
sponse, as in the generic model, but must also con-
tain more detailed information. The colour set
MessageDesc shown in Fig. 13 is used to model
the message to be transmitted across the bus.

The task field indicates which task is sending
the message, the message is named by msgname,
it is issued from src and has dest as its destination.

Send
[(NbIO>0),
(iostatus = datarequest orelse
 iostatus = dataresponse),
 (ExistsMessage(mcctaskname,
           desclist,i,messtype))]

Receive
Waiting

MCCTaskxIOStatus

Idle
E

e

IOStatus

MCCTaskxIOStatus P I/O

MEB

Messages

P I/O

IOQueue
MessagesDescList

P I/O

Mess
Type

MessageType

P I/O

Minorframe

IntxMessageType

P I/O

AllTasks

MCCTasklist

Tasks
MCCTask

(i,messtype)

messtype

desclist

BuildMessage(mcctaskname,
   desclist,i,messtype)

(mcctaskname,
iostatus,NbIO)

e

(IOP,IOcomplete)

(mcctaskname,
iostatus,NbIO)

e

(mcctaskname,iostatus,NbIO)

NewStatus(mcctaskname,
    iostatus,NbIO) mcctask

mcctasks
NewTaskListStatus(mcctask,
       mcctaskname,iostatus,NBIO)

NewTaskStatus(mcctask,
       mcctaskname,iostatus,NbIO)

UpdateDesc(mcctaskname,
  desclist,i,messtype)

Figure 12. The IOTransmit page.

color MessagesDesc = record
task: MCCTaskName * msgname: MSGname *
src: Component * dest: Component *
mtype: MessageType * nextframe: Int *
frequency: Int * duration: Int;

Figure 13. Colour set declarations for
messages.

The type of the message, i.e., Periodic, Manual or
Aperiodic, is contained in mtype. nextframe de-
scribes the earliest frame in which the message can
be sent, and the frequency allows the exact frame
in which the message can be sent to be deduced:
nextframe, nextframe + frequency, nextframe + 2
× frequency . . . . The duration of messages is com-
puted according to the following formula:

Duration =20× size(Message+Header)+
Response_time+ Inter_gap

where Response_time = 12µs and 40 ≤
Inter_gap ≤ 100µs. All the times in the AP-
3C CPN AMS model are expressed in µs (ms in
the generic model). Such type changes are per-
formed by updating the color declarations, writing
the new SML functions operating on messages, and
updating the ones of the generic model so that they
operate on the more complex message structure.

6. Conclusions and Future Work

We have presented a formal specification of the
mission system of the AP-3C aircraft, capturing
the architecture of the system and its division into
subsystems, the communication between devices
and tasks executing on the main computer, and
the timing related to task execution and message
transfer. The formal specification is a Timed Hi-
erarchical CP-nets. The hierarchical organisation
of the model facilitated the transformation of the
generic model to the AP-3C CPN model. The main



differences in mission system architecture could
be accommodated by changing the relationships
between pages. The I/O Processor Card model
could also be significantly refined without chang-
ing other parts of the model. The declarations were
easily modified to incorporate the more complex
structure of messages required for the MIL-STD-
1553B bus. We conclude that such a modelling
approach has a lot of advantages and that a well
considered hierarchical design is very helpful for
maintaining the model.

In the future, we plan to analyse the model with
a set of tasks running on the AP-3C. In [12], we
analysed a set of up to 26 tasks on the generic
model. Although there are many more tasks on the
AP-3C, these can be grouped into 26 virtual nodes
which can also be considered as compound tasks.
Hence, we believe that the size of the systems are
very similar and that the analysis of the the AP-
3C task set will be possible. We then plan to
consider several Enhanced General Purpose Con-
trollers, by simply creating several instances of the
already existing EGPC page.
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