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1. Introduction

1.1 Background and Motivation

The design and development of computer communication protocols is central to the
development of embedded and pervasive computing systems which nearly always
involve the co-operation of distributed components. It is important that protocols
behave according to their requirements, since their failure can have serious conse-
quences particularly for life critical or financially sensitive applications. Being able
to verify that protocols behave correctly is a significant challenge since they usually
include a number of parameters (such as a maximum sequence number, flow and
congestion control window sizes, and the maximum number of retransmissions)
that may be chosen to suit the operating environment, and may vary widely. Thus
we would like to consider a class of protocols where the parameters can take any
value within their range, and verify their correctness for all values of the parame-
ters. Sometimes the ranges for these parameters are unbounded, giving rise to an
infinite family of state spaces, one for each value of the parameter. At other times
no limit may be placed on the value of a parameter (e.g. the number of times a
packet can be retransmitted) which may result in an infinite state space.

The approach we use to tackle this problem is that of model driven development.
The first step is to develop a formal model of our system which we then analyse
either using tools or if they fail then by hand or a combination of both. The model
is normally at the design level and the proofs are intended to show that the design
satisfies the requirements of the system. This is rather important because remov-
ing errors at the design stage is very cost effective in the development of systems
compared with removing errors in the implementation using testing. The effect is
even more pronounced if the errors are discovered after the product has been re-
leased. The development of the model and its analysis can also increase the level
of understanding of the requirements. Further, if the model is executable it can be
used in fast prototyping of system specifications. This also increases the designer’s
and customer’s understanding of requirements, which is widely acknowledged as
a problematic area in software development.

In previous work [Billington et al. 2004] we summarised a protocol verifica-
tion methodology based on Coloured Petri nets [Jensen 1997] and finite state au-
tomata [Hopcroft et al. 2001]. Coloured Petri Nets (CPNs) are an executable mod-
elling language with a formal semantics, based on Petri nets and the ML functional
programming language. The verification methodology uses state space methods
and has been applied successfully for finite state systems, for small values of pa-
rameters. Techniques such as partial orders and Binary Decision Diagrams for alle-
viating the state explosion problem [Valmari 1998] (and more recently the sweep-
line method [Kristensen and Mailund 2002]) help to extend the method to larger
ranges of parameters, but cannot handle large or unbounded values.

In [Billington et al. 2004], the methodology is illustrated using a stop-and-wait
Protocol (SWP) [Tanenbaum 2003][Stallings 2004] which involves two parame-
ters: the maximum sequence number, MaxSegNb; and the maximum number of
retransmissions, MaxRetrans. In general, the values of these parameters may be
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chosen arbitrarily. We would thus like to prove that the SWP class is correct for
any values of MaxSegqNb > 1 and MaxRetrans > 0. This becomes impossible using
finite state techniques, as we need to consider an infinite number of increasingly
larger finite state spaces. For FIFO channels (either lossy or lossless), a hand proof
is given in [Billington et al. 2004] that shows that the number of messages in the
message channel (and the number of acks in the acknowledgement channel) has a
least upper bound of 2MaxRetrans + 1, for any positive value of MaxSegNb, and any
non-negative value of MaxRetrans. For other properties, such as verifying that the
protocol conforms to its service of alternating send and receive events, the standard
methodology was used for a range of parameter values (0 < MaxSegNb < 1024,
0 < MaxRetrans < 4), but no general result was obtained. This has motivated us
to search for methods that will handle unbounded parameters and provide some
degree of automation.

This paper addresses the unbounded parameter problem by using a tool called
Fast (Fast Acceleration of Symbolic Transition systems) [Bardin et al. 2003], based
on counter systems [Finkel and Leroux 2002]. Fast performs symbolic analysis of
infinite state systems by using accelerations (meta-transitions) to encode an arbi-
trary number of iterations of sequences of actions within the system. Parameters
can be input as variables that are not constrained, and hence automated parametric
verification of systems may be possible. However, we face two difficulties using
this tool. Firstly, Fast’s input language is based on counter systems (CS), whereas
we would like to use the much more expressive language of CPNs. CS can model
Place/Transition nets augmented with special arc types such as inhibitors [Esparza
et al. 1999], but as far as we are aware no attempt has previously been made to
translate CPNs to CS. Secondly, Fast provides a semi-algorithm, which is not guar-
anteed to terminate. Hence we can never be sure the verification will succeed.

The purpose of our work is thus to explore the potential of Fast for the paramet-
ric verification of communication protocols which have been previously modelled
using CPNs. This paper investigates the class of stop-and-wait protocols. This is
because they require parametric verification and are the simplest representative ex-
ample of the class of protocols which provide flow control and bit error recovery
that are used in practice, such as in the data link and transport layers of communi-
cation protocol architectures. We slightly revise our CPN model in [Billington et
al. 2004] to make it easier to translate to a counter system. We find that translating
CPN places representing states, stored sequence numbers and the retransmission
counter is straightforward, but queues are more of a challenge. We are able to use
4 integer variables to represent the FIFO queue, due to the operation of the SWP.
The conditions that are required for the queue model to be valid are checked using
Fasr, as well as the following properties: channel bounds; deadlocks; the stop-and-
wait property; in-sequence delivery; and absence of message loss and duplication;
for both lossless and lossy FIFO channels.

1.2 Related Work

The simplest SWP restricts its sequence numbers to 0 and 1 and is known as the
Alternating Bit protocol (ABP) [Bartlett et al. 1969]. The ABP and its extensions
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(e.g. [CCITT 1984]) have been used extensively in the literature as case studies
(e.g. [Reisig 1998]). Often such papers demonstrate in various ways whether
the ABP works as expected over (lossy or lossless) FIFO channels [Billington
et al. 1988] [Suzuki 1990], investigate performance [Steggles and Kosiuczenko
1998][Marsan et al. 1994], demonstrate new tools [Billington et al. 1988], or illus-
trate verification methodologies [Diaz 1982], the application of formal description
techniques [Turner 1993], new modelling languages or derivatives of existing lan-
guages [Suzuki 1990][Steggles and Kosiuczenko 1998][Marsan et al. 1994]. How-
ever, none of these papers address the issue of parametric verification of the ABP
(i.e. for arbitrary values of MaxRetrans.)

More recently there has been work in the area of symbolic verification of the
ABP. Valmari and his co-workers (e.g. [Valmari and Kokkarinen 1998]) use a be-
havioural fixed point method and compositional techniques for the verification of
parametric systems. In [Valmari and Kokkarinen 1998] a variant of the ABP us-
ing limited retransmission, i.e. where there is an arbitrary bound (e.g. MaxRetrans)
on the number of retransmissions, is verified using Valmari’s CFFD equivalence.
There are several differences with our work. Perhaps the most significant is that
the channels are limited to holding only one message or acknowledgement at a
time, whereas ours are unbounded FIFO queues. Valmari [Valmari and Kokkarinen
1998] considers this to be a more difficult problem. Valmari’s method relies on
defining a separate counter process which needs to be synchronised (using par-
allel composition) with the sender logic, which has 18 states. The counter itself
is a recursive parallel composition of counter cells. The receiver is a relatively
straightforward 6 state process. The ack channel is given as a 3 state process, but
the data channel is more complex and not given explicitly in the paper. To obtain
the model, all these processes need to be synchronised with parallel composition.
In contrast our CPN model integrates all these aspects in the one model, and ex-
tends the model to include unbounded FIFO queues and sequence numbers with
an arbitrary maximum sequence number as a parameter. However, our model does
not have explicit communication with the users (but relies on the send and non-
duplicate receive transitions to be considered as synchronised communication with
the user) and does not consider reporting errors to the user. We see no problem in
extending our model to include these features, however, our aim is to illustrate the
use of Fast in analysing parameterised CPN models, rather than a direct compari-
son with a particular ABP variant.

The ABP and another variant called the Bounded Retransmission Protocol are
used in [Abdulla et al. 2004] to demonstrate a symbolic verification methodol-
ogy [Abdulla et al. 1999]. TReX (Tool for Reachability Analysis of Complex
Systems) [trex 2003] was used to implement this methodology in [Abdulla et al.
2004]. The content of unbounded lossy FIFO channels is modelled by (a restricted
class of) regular expressions thus providing a symbolic representation of the chan-
nels. TReX also uses an acceleration technique similar to Fast. This allows a small
symbolic state space to be calculated based on the states of the sender and receiver
ABP processes. They verify that the ABP conforms to its service of alternating
sends and receives, using the Aldebaran tool [cadp 2005]. The maximum number
of retransmissions was considered to be unlimited giving rise to a single, infinite-
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state model. This differs from our approach of modelling MaxRetrans explicitly as
a parameter and thus having an infinite number of finite-state models, one for each
parameter value. As mentioned above, we also model an arbitrary maximum
sequence number, rather than being limited to a maximum sequence number of 1.

Recently, a new approach [Gallasch and Billington 2005b] to parametric verifi-
cation of the SWP has been introduced. An algebraic expression is obtained for
the infinite family of state spaces for the SWP when MaxRetrans = 0. An induction
proof is used to prove the expression is correct. Automata reduction techniques
based on language equivalence are then used to prove that the SWP operating over
lossy FIFO channels does conform to its service of alternating sends and receives.
However, all proofs are done manually.

1.3 Contribution and Organisation

This paper! provides three contributions. Firstly, we believe it is the first time
that automatic parametric verification of the stop-and-wait protocol class operating
over unbounded (lossy) FIFO channels has been undertaken where MaxSegNb has
been included as a parameter. We are able to verify the SWP for arbitrary values
of MaxRetrans for small values of MaxSegNb (i.e. 1 to 5), and when there is no re-
transmission (MaxRetrans = 0) for arbitrary values of MaxSegNb, for an extensive
range of safety properties. Secondly, we confirm the validity of the algebraic ex-
pression (derived in [Gallasch and Billington 2005b]) for the states of the system
when MaxRetrans = 0. Finally, we provide some insight into how CPNs may be
translated into counter systems.

The rest of the paper is organised as follows. Section 2 describes the stop-and-
wait protocol using a Coloured Petri net model. Counter Systems are introduced in
Section 3 which also describes a methodology for translating a CPN model into a
CS. This methodology is applied in Section 4 to the SWP CPN of Section 2. The
expected properties of the SWP are described in Section 5. After introducing Fasr,
we analyse the SWP CS in Section 6. Section 7 provides concluding remarks and
identifies areas of future work.

2. Stop-and-Wait Class of Protocols: A CPN Model

We explain the class of stop-and-wait protocols by providing a parameterised Co-
loured Petri Net (CPN) model of it as shown in Figs. 1 and 2, which were created
using Design/CPN [CPN 2004].

2.1 Coloured Petri Nets

A CPN diagram such as in Fig. 1 comprises a bipartite directed graph, consisting
of two types of nodes: places (ellipses) and transitions (rectangles). The names
given to places and transitions are, usually, written inside the place or transition.

! This paper is a revised version of [Billington et al. 2005]. It provides further information on how
to translate from the CPN model to its CS equivalent, and also includes new results for the case when
MaxSeqgNb is arbitrary and MaxRetrans = 0.



6 J. BILLINGTON, G.E. GALLASCH, L. PETRUCCI

Directed arcs link places to transitions (input arcs) and transitions to places (output
arcs). Places connected to transitions via incoming arcs are called input places and
places connected to transitions via outgoing arcs are called output places.

Places may contain fokens. In CPNs tokens are arbitrarily complex data values.
Accordingly, each place in a CPN must be fyped by a non-empty set of data values,
called a colour set. The colour set defines all possible data values that tokens
residing on the corresponding place are able to take. The colour set is usually
written in italics below the place, to the left or right as room permits. For example,
in Fig. 1, the place sender_state is typed by the colour set Sender.

The marking of a place, denoted M (place name), is a multiset of tokens over the
colour set of that place. Each place may be given an initial marking, denoted
My (place name), written by convention above the place and usually on the same
side as the colour set inscription. The sender_state place in Fig. 1 has an initial
marking of a single s_ready token. This is interpreted as 1°s_ready (read as “a multi-
set comprising one token of colour s.ready”) but when the multiplicity of the token
colour is 1, it is usual to omit the 1° in the inscription. The initial marking of the
CPN is denoted My and the set of all states (markings) of the CPN reachable from
the initial state M is denoted [My).

Arcs may be annotated with arbitrarily complex expressions involving constants,
variables and functions, provided that the arc expressions evaluate to a multiset
over the colour set of the place associated with the arc. For example, we can
see that the arc from transition receive_.mess to place recv_seq.no has an expression
containing a conditional statement, variables sn and rn and a call to the function
NextSeq (defined in Fig. 2). This expression will, for any valid binding of values to
the variables sn and rn, always evaluate to a single token from the colour set Seq.
Again we note that when the multiplicity of this token is one, the 1° is omitted from
the graphical representation.

Each transition in a CPN has a boolean expression called a guard associated with
it. The guard may use constants, any of the variables present in the arc expressions
of the incoming arcs of the transition in question, and may also introduce new
variables, local to the guard. The guard is usually written near the transition and
enclosed in square brackets. For example, the transition timeout retrans has the guard
[rc < MaxRetrans] with the variable rc and the constant MaxRetrans as defined in Fig. 2.
The default guard expression ([true]) is omitted from the graphical representation.

The execution of a CPN consists of a sequence of occurrences (or firings) of
transitions. A transition can occur if it is enabled. For a particular marking of the
CPN, a transition is enabled in a mode, determined by the binding of its variables,
when the following conditions are true:

(1) Each input place of the transition contains at least the tokens obtained when
its input arc expression is evaluated for the specific binding; and
(2) The guard of the transition evaluates to true for that binding.
Guards thus provide an additional constraint on the execution of the CPN.
When a transition occurs, the following two actions occur atomically:
(1) The multiset of tokens corresponding to the evaluation of each input arc ex-
pression is removed from the corresponding input place; and
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Fig. 1: CPN of the SWP operating over a lossy FIFO channel.

(2) The multiset of tokens corresponding to the evaluation of each output arc
expression is added to the corresponding output place.

Transition modes may be concurrently enabled with one another, and with them-
selves, by a linear extension of the above enabling conditions and occurrence rules.

Every CPN model contains a set of declarations, comprising declarations for
variables, and definitions for colour sets, functions and constants as illustrated in
Fig. 2. Colour sets (types) are defined using the keyword color and a number of
set constructors like with (for enumerated types), product and union. Variables are
declared by the keyword var and are typed by a colour set, e.g. the variables sn and
rn of type Seq (sequence number). Functions are defined using the keyword fun and
values (e.g. constants) are defined using the keyword val.

2.2 The SWP CPN Model

Essentially three changes are made to the CPN model presented in [Billington and
Gallasch 2004][Billington et al. 2004]:

o in the sender, one place (instead of two) is used to store its states, so that the
colour set Sender comprises two states: s_ready and wait-ack;

o one place (receiver_state) is used in the receiver to store its states;
o anew place in the receiver stores its current sequence number; and
o arc inscriptions are revised accordingly.

This makes the CPN diagram more compact and provides a consistent modelling
style. Control flow is indicated by bold arcs.
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val MaxRetrans = 1;
val MaxSegNb = 1;

color Sender = with s_ready | wait_ack;

color Receiver = with r_ready | process;

color Seq = int with 0..MaxSeqNb;

color RetransCounter = int with 0..MaxRetrans;
color Message = Seq;

color MessList = list Message;

var sn,rn : Seq;
var rc : RetransCounter;
var queue : MessList;

fun NextSeq(n) = if(n = MaxSegNDb) then 0 else n+1;

Fig. 2: Global Declarations for the Stop-and-Wait Protocol CPN.

The protocol operates between a sender, shown on the left of Fig. 1 and a re-
ceiver shown on the right. The communication medium (Network) is represented
by two lossy FIFO queues, one for each direction of message flow. The queues are
modelled by using a list type for places mess_channel and ack.channel, adding mes-
sages to the end of the queue and removing messages from the head of the queue
(the operator ™" concatenates two lists while the operator :: appends an element to
a list). Loss is represented by arbitrarily removing the head of the queue.

The protocol is implemented by the sender and receiver procedures. The sender
has two states: s_ready and wait_ack, with the current state stored in place sender_state.
When ready, it sends a message (transition send-mess) and waits for an acknowl-
edgement before sending the next message (hence, stop-and-wait). To recover
from the possibility of message loss, the sender sets a timer running on sending
a message, and if it expires before receiving the acknowledgement (receive .ack), the
message is retransmitted (timeout_retrans) and the timer is set running again. This
works well if the message is lost. However, it is possible that the message has
been received correctly but the acknowledgement is lost or delayed, causing re-
transmission of the original message, now a duplicate. Thus the receiver needs to
detect and discard duplicate messages. To do this, a sequence number is included
with each message. The sequence number space is finite, but allows for any range
of consecutive integers, starting from zero. In our model we use the parameter
MaxSegNb to represent the maximum sequence number. Messages are represented
by their sequence number only, as data is not used in the procedures. To detect
duplicates both the sender (place send_seq-no) and the receiver (place recv_seq.no)
store a sequence number, initially synchronised to zero. If a new message arrives
at the receiver, its sequence number is the same as that stored in the receiver. The
message is received (transition receive_mess with sn=rn) and the sequence number is
incremented, modulo MaxSeqNb+1 (NextSeq(rn) see Fig. 2). Because the sequence
number has been incremented in the receiver, duplicates will have a different num-
ber to that stored by the receiver (sn#rn). In this case the sequence number remains
the same. The sequence number in the receiver represents the next message to be
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received, and this is the value that is sent back to the sender, as an acknowledge-
ment. Acknowledgements are returned on receipt of each message, whether or not
it is a duplicate. (This is required to recover from loss of acknowledgements.) To
model flow control, we have two states in the receiver (rready and process), which
allow the sending of the acknowledgement to be asynchronous with the receipt of
a message. The current state is stored in place receiver state.

While waiting for an acknowledgement, the sender may continue to retransmit
messages, until it reaches a preset limit (MaxRetrans). It then gives up hope of the
message getting through and passes control to a management entity for higher level
recovery (not modelled). If an acknowledgement arrives before this, indicating that
the message has been received (rn=NextSeq(sn)) transition receive_ack increments the
send sequence number and returns the sender to ready, allowing the next message
to be sent. Duplicate acknowledgements, which are generated by the receiver on
receiving a duplicate message, are discarded by the sender (receive dup_ack) at any
time.

3. Mapping the CPN Model to a Counter System

As we aim at obtaining an extensive set of analysis results on the stop-and-wait
protocol, parametric analysis is desirable. It can be achieved using tools such as
Fast [Bardin et al. 2003]. Fast operates on counter systems (CS), so it is neces-
sary to transform our CPN model into a CS. This is straightforward for Petri nets,
even with extended arcs [Bérard and Fribourg 1999][Bardin and Petrucci 2004] but
requires enhancement for CPNs.

Counter systems are automata extended with unbounded integer variables. Fast
uses accelerations (sometimes called meta-transitions) to enable it to calculate the
exact effect of iterating a behavioural loop an arbitrary number of times, and pro-
duces a symbolic occurrence graph representing the infinite state system. Details
on counter systems and the theory behind Fast can be found in [Finkel and Leroux
2002][Boudet and Comon 1996][Wolper and Boigelot 2000][Leroux 2003].

The places of a CPN are transformed into a set of counter system variables
and a single counter system state. This transformation is straightforward if the
types of the places are or can be mapped to integers (e.g. enumerated types). If
a place, p, has a type, Type(p), that can be mapped to the natural numbers N
by an injective mapping, I, : Type(p) — N, and p always contains one token
(YM € [My),|M(p)| = 1), then we can create an integer variable, v, in the CS, that
takes the values of the token in the place transformed by /,, for each marking. This
is the case both for the places in the sender and those in the receiver of our SWP
CPN model.

However, the stop-and-wait protocol uses two FIFO queues: one for messages
and one for acknowledgements, represented by places mess_channel and ack_channel
both typed by a message list, where messages are represented by sequence numbers
(integers). These queues can be any size, depending on the maximum number
of retransmissions [Billington et al. 2004]. The values of the sequence numbers
depend on the MaxSegNb parameter. Because the sequence numbers are integers
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we can store the value of a queue item in a CS variable, and the number of queue
items of that value in an associated CS variable. As long as sequence numbers do
not wrap, we can always remove the item with the ‘smallest’ value from the queue
and hence maintain FIFO order. However, this will require an unbounded number
of variables in the general case, but not if the queue can only contain a finite number
of values at any one time. For example, if the queue can contain only one message
value at a time, then it can be represented by two variables: one storing the message
value and a second storing the number of messages in the queue.

For the SWP operating over FIFO channels it turns out that there can be at most
two different messages (represented by their sequence numbers) in the queue at any
one time and that the messages of the same type are contiguous in the queue. Thus
the queue is of the form mess1*mess2*. (Before doing the analysis, this property is
a conjecture, so we must check that this property holds as a first step in validating
the model.) Therefore, the queue can be modelled using four variables:

o Old is the smallest/oldest sequence number (modulo MaxSegNb) that is in the
queue;

o New is the latest sequence number that was put in the queue;

o NbOId is the number of messages with sequence number Old;

o NbNew is the number of messages with sequence number New.

Now, we will explain how to add messages to and remove messages from the

queue. We will also show that this is done in a consistent manner.

The queue can contain:

(1) no message. Hence NbOId = NbNew = 0;

(2) one type of message. Then, Old = New and NbOIld = NbNew # 0O;

(3) two types of message. Thus, Old # New, NbOId # 0 and NbNew # 0.

In the following, a prime denotes the new value of the variable after an action

has been performed. Variables that do not change are not mentioned.

Firstly, consider adding a message with sequence number SeqNb. If the queue is

in state (numbered as above):

(1) The new message is the only one. Therefore, after adding the message: Old’ =
New = SegNb and NbOld = NbNew' = 1. This is consistent with the above
statement for a queue having a single message, hence containing only one
type of message;

(2) The new message can be either:

o of the same type as those already in the queue. Then, after adding the
new message, we have: NbOld” = NbNew’ = NbOId + 1(= NoNew + 1). This
is consistent with the queue containing a single type of message;

o of a new type. Thus, New = SeqNb and NbNew' = 1. This is consistent
with the queue now having two types of message.

(3) In this case, only a New message (i.e. a duplicate) can be added to the queue
(we check this property when validating the model) and hence NoNew' =
NbNew + 1. This is consistent with the queue containing exactly two types
of message.



PARAMETRIC VERIFICATION OF SWP 11

Now, we explain how to remove a message SegNb. If the queue is in state:
(1) It is empty, so this case should never occur as there is nothing to consume;

(2) The message consumed is of the single type in the queue. Hence: SeqNb =
Old = New and NbOld = NoNew’ = NbOIld — 1 = NbNew — 1. Note that the
resulting queue can either contain messages of the same single type or no
message at all;

(3) The message consumed can be of type either New or Old. Both cases can
be handled in a similar manner, but in this paper, the queues considered
are FIFO. Therefore, the message consumed is the oldest in the queue, i.e.
SegNb = Old. Then two cases can be considered:

o The message consumed is the last one of type Old, i.e. NoOld = 1. Then
the resulting queue contains a single type of message, Old = New and
NbOId® = NbNew;

o There is more than one message of type Old in the queue. Then, NbOIld’ =
NbOId — 1.

4. The SWP CS Model

The CPN model of the stop-and-wait protocol can now be transformed into a
counter system by application of the techniques from the previous section.

4.1 SWP CS Variables

We start by mapping the types of the places of the SWP CPN to CS variables.
Our mapping technique relies on each non-queue place containing exactly one
value in each reachable marking. Direct inspection of the CPN in Fig. 1 reveals
this to be the case. For example, consider place sender_state. The marking of this
place can only be changed by transitions send_mess, timeout_retrans and receive_ack.
Moy(sender_state) = 1°s_ready hence |My(sender_state)] = 1. The occurrence of these
transitions just replaces one value by another (send_mess and receive _ack) or does not
change the marking (timeout.retrans). Hence |M(sender_state)| = 1 for all M € [M).
This property also holds for the places send_seq_no, retrans_counter, receiver state and
recv_seq-no.

Table I shows the mapping to CS variables of the non-queue places sender state,
send_seq-no, retrans_counter, receiver_state and recv_seq-no. The columns give the place
name, place type, the name of the corresponding CS variable and the mapping I,
from tokens to natural numbers.

The places mess_channel and ack_channel are modelled using four CS variables
each, as described in Section 3. Place mess_channel is modelled using the CS
variables MCOId, MCNew, NoMCOId and NbMCNew to represent, respectively, the se-
quence number of the oldest type of message in the channel, the sequence number
of the newest type of message in the channel, and the numbers of both types of
message. The place ack_channel is modelled similarly, using the CS variables ACOId,
ACNew, NbACOId and NbACNew.
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TasLE [: Mapping from Non-queue Place Types to CS Variables
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Place Place Type | CS Variable I,
p Type(p) vp 1 € Type(p) | 1,(0)

sender_state Sender SState s_ready 1
wait_ack 0
send_seq-no Seq SSegNb ss ss
retrans_counter | RetransCounter Retrans rc rc
receiver_state Receiver RState r_ready 1

process
recv_seq-no Seq RSegNb rs rs

Two other variables are needed for the parameters of the system: the maximum
sequence number MaxSegNb and the maximum number of retransmissions MaxRe-
trans.

4.2 SWP CS Transitions

Each CPN transition is mapped to a set of CS transitions as a result of the more
complex representation of the message and acknowledgement queues (four CS
variables each) and the need to explicitly represent sequence number wrap in CS
transitions. For example, the action of the send_mess transition must be differenti-
ated according to the four cases highlighted in Section 3:

o The message channel is empty;

o The message channel contains only one type of message with the same se-
quence number as the message to send (NbMCOId > 0 A MCOId = MCNew A
MCOId = SSegNb);

o The message channel contains only one type of message with a different se-
quence number to the message to send (NoMCOId > O A MCOId = MCNew A
MCOIld # SSegNb); or

o The message channel contains two types of message (MCNew # MCOId A MC-
New = SSeqNo).

Each case represents a different manipulation of the four CS variables represent-
ing the message channel. However, this can lead to the inclusion of CS transitions
that turn out to be dead. For example, the send_mess transition will never occur in
the second or fourth cases, hence only the first and third cases need to be mapped
to CS transitions. These are the first two transitions (sendM1 and sendM2) listed in
the excerpt in Fig. 3 described below. It is important to only include firable tran-
sitions in the model, to reduce the number of CS transitions, as the number of CS
transitions can increase the computation time significantly. Part of the soundness
property discussed in Section 5 and verified in Section 6 is to ensure the complete-
ness of the CS model with respect to capturing all allowable behaviours of the CPN
model.
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model SWP {
var SState, SSegNb, Retrans, RState, RSeqNb, MCOIld, MCNew, NobMCOIld, NoMCNew,
ACOId, ACNew, NbACOId, NbACNew, MaxSegNb, MaxRetrans;
states marking;

// send1: new message with no message in queue
transition sendM1 := {
from := marking;
to := marking;
guard := SState=1 && NbMCOId=0;
action := SState’=0, MCNew'=SSeqNb, NoMCNew’=1, MCOId'=SSegNb, NbMCOId’'=1;
5
/I send2: new message with old duplicates in the queue
transition sendM2 := {
from := marking;
to := marking;
guard = SState=1 && |(NbMCOId=0);
action := SState’=0, MCNew'=SSeqNb, NbMCNew’=1; };
/I receive duplicate message with seq nb MCNew != MCOIld, NoMCOId = 1
transition receiveM3 = {
from := marking;
to := marking;
guard := RState=1 && NbMCOIld=1 && !(MCOIld=MCNew) && (MCOId=RSegNb);
action := RState’=0, MCOId'=MCNew, NboMCOId’=NbMCNew; };
/I sendAck: new ack for empty ack queue
transition sendACK1 = {
from := marking;
to := marking;
guard = RState=0 && NbACOId=0;
action := RState’=1, ACOId'=RSeqNb, NbACOId’=1, ACNew’=RSeqNb, NboACNew’=1;};
/I receive expected ack
transition recack := {
from := marking;
to := marking;
guard = NbACOId>0 && ACOId=ACNew && SState=0 && ((SSeqNb=MaxSegNb
&& ACOId=0) | | (SSegNb<MaxSegNb && ACOId=SSeqNb+1));
action := NbACOId’=NbACOId-1, NoboACNew'=NbACNew-1, SState’=1, Retrans’=0,
SSegNb’=ACOId; };

Fig. 3: An Excerpt of the SWP CS Model.

4.3 The Stop-and-Wait protocol CS Model

Figure 3 shows an excerpt of the SWP CS model, illustrating Fast model input.
It comprises the integer variables identified above, a dummy state, marking, of the
counter system, and specifications of the transitions. Comments are prefixed by
the symbol //. Each transition is described by its source and destination states (from
and to fields), which in this model is always the state marking. A guard is associated
with each transition, giving an enabling condition on the values of the variables.
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The effect of the transition is given in action, describing how the values of variables
are changed when the transition occurs. The symbol && indicates logical AND, | |
represents logical OR, ! indicates negation, and the prime is as defined in Section 3.

Consider the declaration of transition sendM1. It starts and ends in the counter
system state marking. The guard means that the sender sends a message only if it is
ready to do so (SState=1) and the case handled by this transition is when the message
channel is empty (NbMCOId=0). When these conditions are met, the transition can
be fired and the action occurs, leading to a state where the sender is waiting for
an acknowledgement (SState’=0), and the queue, containing only one message, is
updated (MCNew’=MCOId’=SSegNb, NoMCNew'=NbMCOId’=1).

5. Required Properties of the CS Model

The model of the SWP should satisfy several properties, which are of two kinds:
the properties ensuring that our translation from the CPN model to the counter
system is sound, i.e. all the assumptions made are valid; and the properties that the
protocol itself should satisfy.

5.1 Model Soundness

For the model to be sound, we need to verify the modelling assumptions. Our
model is correct if both the message and acknowledgement channels: contain no
more than two different types of message, where the ‘type’ of the message refers
to its sequence number (i.e. Old and New from Section 3); and all messages of the
same type are contiguous in the queue (i.e. the contents of the queue is of the form
Old*New*). To verify this, we check that if there are already two types of message
in the queue (i.e. Old and New), no enabled transition can add a message with a
sequence number different from New.

We also verify the completeness of the model, i.e. that all the relevant actions of
the CPN model are taken into account by CS transitions. Hence, all cases that are
not explicitly described by the guards of the CS transitions can never occur. This
is done by verifying that there is no reachable marking that would enable a CS
transition with a guard specifying conditions on the channel content not explicitly
described by any of the existing guards.

5.2 SWP Properties

We wish to prove the following SWP properties:
Consecutive sequence numbers If there are different types of message in a
channel, they have consecutive numbers. Hence:

MCOId # MCNew = (MCNew = MCOId + 1 v (MCNew = 0 A MCOId = MaxSeqNb))
ACOId # ACNew = (ACNew = ACOId + 1 vV (ACNew = 0 A ACOId = MaxSegNb))
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Number of messages in channels The least upper bounds for the number of
messages in both channels, and the least upper bound on the total number of mes-
sages (i.e. messages plus acknowledgements) is 2MaxRetrans + 1. This is checked
by counting the messages in the channels. The number of messages in the message
channel is:

Nb_Messages = if MCOId # MCNew then NbMCOId + NoMCNew else NoMCOld

Hence, for the message channel:

Nb_Messages < 2MaxRetrans + 1

should hold over all reachable markings, but

Nb_Messages < 2MaxRetrans

should not. Similarly for the acknowledgement channel. We can also check the
bound on the number of messages (or acknowledgements) of a particular type that
can exist in the message (or acknowledgement) channel:

if MCOId # MCNew then NoMCOId < MaxRetrans A NboMCNew < MaxRetrans + 1
else NoMCOId < MaxRetrans + 1

Stop-and-Wait Property A sent message is received before the next (new) mes-
sage is sent and after receiving a message, a new message is sent before the next
message is received (i.e. alternating send and receive events).

No data loss Each original message (or a retransmission) is eventually received,
except for the last message in case the original plus all retransmissions were lost
and the maximum number of retransmissions is reached.

No duplication When a duplicate message arrives, it is detected as such and
discarded. No duplicate message is mistakenly accepted as a new one.

In-sequence delivery The messages are received in the order they are sent.

Deadlocks When using reliable channels, there should be no deadlock. When
using unreliable channels, only expected deadlocks should exist, i.e. the maxi-
mum number of retransmissions is reached but the sender is stuck waiting for an
acknowlegement, the receiver expects a message, and both message and acknowl-
edgement channels are empty:

Retrans = MaxRetrans, SState = 0, RState=1
MCOId = MCNew, NbMCOIld = NoMCNew = 0,
ACOId = ACNew, NbACOId = NbACNew =0

5.3 Instrumentation of the model

In order to check several of the properties, some instrumentation of the model is
required. We add a variable SRprop, which is set to the sequence number plus 1,



16 J. BILLINGTON, G.E. GALLASCH, L. PETRUCCI

when a new message is sent. When an expected message (i.e. not a duplicate)
is received, this variable is set to 0. Checking the stop-and-wait property then
amounts to verifying that there is no pending new message in the message channel
when the sender is ready to send (a send cannot follow a send), and that the receiver
cannot be ready to receive the next expected message when SRprop = 0 (a receive
cannot follow a receive), i.e. no state such that:

SRprop > 0 A SState = 1
and no state such that:

SRprop = 0 A RState = 1 A NbMCOId > 0 A MCOId = RSegNo

When operating over a FIFO medium, because the stop-and-wait property holds
(a new message can only be sent if the expected one was received) it follows that
there is no loss of data (except possibly the last message as described in the previ-
ous subsection.)

To verify the no duplication property, we check that there is no state such that
the receiver is ready to accept a new message with a sequence number other than
that most recently sent by the sender, i.e. there is no state such that:

SRprop = MCOId + 1 A RState = 1 A NbMCOld > 0 A =(MCOId = RSeqNb)

When a duplicate is received the value of SRprop will be 0 (if no new message has
yet been sent by the sender) or the sequence number plus 1 of the new message sent,
which is different to the sequence number plus 1 of the duplicate being received.

Finally, to prove the in-sequence delivery property, we note that variable SRprop
contains the number (plus one) of the last new message sent, and that it is not
possible to receive an original message with a sequence number different from that
of the last new sent message, i.e.:

—-(SRprop = MCOId + 1) A RState = 1 A NoMCOIld > 0 A MCOId = RSegNb

6. Analysis of SWP using Fast

6.1 Introduction to Fast

Fast [Bardin et al. 2003][Bardin and Petrucci 2004] is a tool dedicated to check-
ing safety properties on counter systems. The main issue addressed by Fast is the
symbolic computation of the (infinite) state space. Although Fast uses a semi-
algorithm which is not guaranteed to terminate, experiments with its use on practi-
cal examples have been promising [Fast 2005].

6.1.1 Inputs and Outputs

Fast requires both a model and a strategy to be input for analysis. Outputs are
messages indicating whether the system satisfies a property or not. The model
input format was illustrated in Section 4 for an excerpt of our SWP model.
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strategy SWP {

Region init := {SState=1 && SSeqNb=0 && Retrans=0 && MCOId=0
&& MCNew=0 && NbMCOld=0 && NbMCNew=0 && ...};

Region reach := post*(init, t, 2);

// Consecutive sequence numbers in Message channel
Region diffminmaxM := {{MCOIld=MCNew) | | (MCNew=MCOId+1) | |
(MCOld=MaxSeqNb && MCNew=0)};

if (subSet(reach,diffminmaxM)) then

print("Message channel consecutive seq numbers OK");

else print(""Message channel consecutive seq numbers NOK");
endif

Fig. 4: An Excerpt of the SWP CS Strategy.

The strategy is the sequence of computations to perform in order to check the
validity of the system. The strategy language is a script language which operates
on regions (sets of states), transitions and booleans. All the usual operators on sets
are available and primitives to compute the reachability set (forward or backward)
are provided. Checking a safety property involves declaring the initial states, com-
puting the reachability set A, declaring the property to check (good states) B, and
testing if A C B.

An excerpt of the SWP CS strategy, illustrating Fast strategy input, is shown
in Fig. 4. Firstly, the region init is declared, which is used to describe the initial
states. Then, the set of reachable states, reach, is computed from init, using the
forward reachability function post*. Parameter t is the set of transitions to be used,
i.e. here all transitions (the declaration of t is not included in the excerpt), and 2 is
the length of cycles to accelerate. Region diffminmaxM characterises the set of states
with consecutive sequence numbers in the message channel. If reach is a subset of
diffminmaxM then the consecutive sequence numbers property is satisfied, otherwise
it is not. An appropriate message is printed.

6.1.2 Architecture

The Fast computational engine can be used as a standalone application, or with a

graphical user interface in a client-server architecture [Bardin and Petrucci 2004]:

o the server is the computation engine of Fast. It contains a Presburger library,
the acceleration algorithm and the search heuristics;

o the client is a front-end which allows interaction with the server through a
graphical user interface. This interface facilitates guided editing of models
and strategies, with features such as pretty printing and predefined strategies.
Once the computation starts, feedback is supplied through different measures
and graphs (time elapsed, memory used, number of states, ... ).
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TasLe II: Fast Experimental Results with MaxRetrans as a Parameter
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Reliable 1 | 324 | 70 | 00:11:38 | 28 | 88
Reliable | 2 | 324 | 112 | 00:49:37 | 33 | 204
Reliable | 3 | 324 | 116 | 00:51:54 | 40 | 201
Reliable | 4 | 324 | 126 | 02:21:48 | 37 | 421
Reliable | 5 | 324 | 150 | 02:31:18 | 37 | 448
Lossy 1 {576 | 93 | 00:10:11 | 27 | 110
Lossy 2 | 576 | 144 | 00:57:12 | 31 | 259
Lossy 3 | 576 | 149 | 00:42:47 | 34 | 246
Lossy 4 | 576 | 249 | 03:51:25 | 43 | 554
Lossy 5 | 576 | 266 | 03:43:37 | 39 | 567

6.2 Analysis Results

Our aim is to investigate both the properties and structure of the state space. An
attempt was made to analyse the SWP CS model from Section 4 using Fast with
both MaxSegNb and MaxRetrans as parameters. However, Fast ran out of memory,
due either to the semi-algorithm not terminating, or a lack of available computer
memory. The SWP CS model was thus analysed for the following restricted cases:

o Fixed values of MaxSegNb (from 1 to 5) with MaxRetrans as a parameter; and

o MaxRetrans=0 with MaxSegNb as a parameter.
Further, an additional experiment was carried out to prove automatically the form
of the markings in the occurrence graph of the SWP CPN when MaxRetrans=0.

6.2.1 Fixed MaxSeqNb with MaxRetrans as a Parameter

With only MaxRetrans as a parameter, the SWP CS model was analysed with sepa-
rate runs of Fast for fixed values of MaxSegNb from 1 to 5. The results can be seen
in Table II. The analysis was performed on the lossy channel model as well as on
a model with reliable channels (where the loss transitions were removed).

The computation is done at a reasonable cost with respect to both time and mem-
ory usage, as shown by the experimental results in Table II. Column 1 in Table II
indicates whether the channel is reliable or lossy. Column 2 gives the fixed value of
MaxSegNb for each run. The third and fourth columns give the number of transition
compositions and acceleration compositions for each run. Columns 5 and 6 give
the total computation time and the peak memory usage of Fast. Finally, column 7
gives the number of symbolic states at the end of computation.

The total computation time is divided into three steps (for technical details, see
e.g. [Finkel and Leroux 2002]):
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o transition compositions which take 1 minute 32 seconds in the reliable case
(324 compositions) and 1 minute 58 seconds in the lossy case (576 composi-
tions);

o accelerations computation which takes 1 minute in the reliable case and 41
seconds in the lossy case;

o applying the accelerations to construct the state space.

The computation time for compositions and accelerations are a constant for all 10
cases in Table II, as the same preliminary computations are performed. The results
obtained from Fast confirm the expected properties from Section 5. When attempts
were made to analyse the SWP CS model for values of MaxSegNb > 5, Fast did not
terminate in a reasonable amount of time.

6.2.2 Fixed MaxRetrans with MaxSeqNb as a Parameter

Analysis of the SWP CS model with MaxSegNb as a parameter and MaxRetrans fixed
to 0 was conducted next. The computation required the acceleration of cycles of
length 4, which is consistent with a send_mess/receive_mess/send_ack/receive _ack
loop. It terminated within 35 minutes. All properties were valid and thus proved
regardless of the value of the maximum sequence number. The results also showed
that some transitions were never enabled, which is consistent with having no re-
transmissions. Also, it was proved that there is at most 1 message in each queue
at any one time. This means that for MaxRetrans = 0 we do not need to distin-
guish MCOId and MCNew, ACOId and ACNew, NbMCOId and NbMCNew, nor NbACOId
and NbACNew. The variable Retrans is no longer needed as no retransmissions can
occur.

6.2.3 Automated Proof of the Form of the Markings of the SWP CPN

The third experiment aimed to prove automatically the form of the markings in
the occurrence graph of the SWP CPN when MaxRetrans = 0. This was manually
proved in Gallasch and Billington [2005a, 2005b], and the different possible mark-
ings are described in Table III. They are grouped into 6 different sets, one per row
of the table. Columns 2 through 8 of the table describe the values of the relevant
CS variables. The variables Retrans, MCNew, NoMCNew, ACNew and NbACNew are not
needed (as MaxRetrans=0) and the value of RSegNb is specified in terms of SSegNb.

TasLE III: Occurrence graph markings with MaxRetrans = 0

Set | SState | NoMCOId | MCOId | NbACOId ACOld RState RSegNb
1 1 0 - 0 - 1 SSegNb
2 0 1 SSegNb 0 - 1 SSegNb
3 0 0 - 0 - 1 SSegNb
4 0 0 - 0 - 0 SSeqNb @ 1
5 0 0 - 1 RSeqNb 1 SSeqNb & 1
6 0 0 - 0 - 1 SSeqNb @ 1
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The symbol @ denotes modulo MaxSegNb+1 addition. Each row can be evaluated
for each sender sequence number, 0 < SSegNb < MaxSegNb to obtain the set of
markings for that particular SSeqNb. The union of all 6 rows, when evaluated over
0 < SSegNb < MaxSeqgNb, is the full state space.

A predicate is created from Table III by deriving 6 regions, one for each of the 6
sets of markings defined in Table III, characterising the markings in each of the 6
sets. To check efficiently that the full state space is exactly the union of these sets
of markings, we took advantage of the properties previously proved to reduce the
size of the model. Specifically, the transitions that are never enabled were removed
from the model. Since there is no retransmission, variable Retrans was removed.
As there is at most one message in the channels, the variables NoMCNew, MCNew,
NbACNew and ACNew were eliminated. Variable SRprop, which was used only as
an instrument for proving particular properties, was also no longer needed. When
using this reduced model, we proved automatically that the algebraic expression
representing the states of the occurrence graph of the SWP CPN is correct, in less
than 35 seconds.

7. Conclusions and Future Work

Finite state methods for protocol verification can fail due to state explosion when
considering ranges of values for important parameters such as the maximum num-
ber of retransmissions or the size of the sequence number space. When considering
these parameters, we would like to provide a general result that allows protocol
properties to be proved for any value of each parameter. When arbitrary values are
considered, we need to generate an infinite number of finite state spaces, one for
each value of the parameter. (This is quite different from considering, for example,
the specific case of no limit on the number of retransmissions, which gives rise to
a single infinite state system.)

This paper has addressed this problem for the stop-and-wait class of protocols,
where we modelled the parameters explicitly. We used a recently developed tool
called Fast to facilitate parametric verification. Fast allows symbolic state spaces
to be generated by taking advantage of encoding arbitrary iterations of sequences of
events, known as accelerations. It is based on counter systems, which are automata
where states are vectors of (unbounded) integers.

The stop-and-wait protocol (SWP) has two parameters: MaxRetrans representing
the maximum number of retransmissions; and MaxSegNb representing the maxi-
mum sequence number that can be used. In previous work [Billington et al. 2004]
we modelled the SWP using Coloured Petri Nets and provided a hand proof that
the bound on the number of messages in the FIFO communication channel was
2 MaxRetrans + 1. However, we were only able to prove other properties, such
as the stop-and-wait property of alternating sends and receives, for up to 10 bit
sequence numbers and with up to 4 retransmissions using automated finite state
techniques.

In this paper we have overcome these limitations for the MaxRetrans parameter.
Fully automatic proofs have been obtained for channel bounds (confirming the
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previous hand proofs and including proving that the sum of the messages and ac-
knowledgements in the channels does not exceed 2 MaxRetrans + 1), the stop-and-
wait property, that there is no loss of messages (except for the last one when the
maximum number of retransmissions is reached), no duplication and that messages
are delivered in-sequence. This has been done for 1 < MaxSegNb < 5 by consider-
ing acceleration of cycles of length 2. Unfortunately, Fast does not terminate in a
reasonable amount of time when both MaxSegNb and MaxRetrans are considered as
unbounded parameters, or for values of MaxSegNb greater than 5.

We also considered the situation when the value of MaxRetrans was set to 0 and
MaxSegqNb was a parameter. FasT was able to terminate when considering accelera-
tions of cycles of length 4. In addition, we have used Fast to automatically confirm
hand proofs of algebraic expressions for the occurrence graph of our CPN model
when MaxRetrans = 0. However Fast did not terminate for MaxRetrans > 1. The au-
thors suspect that memory constraints imposed by the MonNa library [MONA 2004]
used by Fast, which limits the size of the automata handled to 22* nodes, is the
cause of the non-termination problems encountered.

Further we have shown how to translate our CPN model into a counter system
by using a novel approach to represent a FIFO queue by 4 integer variables. This
is valid when the queue can hold only two types of message indicated by their
sequence numbers and all messages of the same sequence number are adjacent.
This condition is proved using Fast as part of model validation. Some general
guidance has also been given for translating CPNs to counter systems.

Future challenges include generalising the method to channels that allow re-
ordering of messages and formally incorporating data independence, which has
been assumed in our work so far. Other ways of representing queues that are effi-
cient and suit the Fast framework of Presburger arithmetic could be investigated. A
more general and formal translation of CPNs into counter systems is also of inter-
est, to allow models that have already been constructed in CPNs to be automatically
translated and input to Fast. Automatically translating the properties formulated
on the CPN model to those on the counter system and translating the results back
is also an interesting issue. We would also like to investigate the use of other tools
such as TReX and compare them with FasT.
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