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Abstract. FAST is a tool for the analysis of infinite systems. This paper
describes the underlying theory, the architecture choices that have been
made in the tool design. The user must provide a model to analyse, the
property to check and a computation policy. Several such policies are
proposed as a standard in the package, others can be added by the user.
FAST capabilities are compared with those of other tools. A range of case
studies from the literature has been investigated.

1 Introduction

Model-checking is a wide-spread technique in critical systems verification. Several
efficient model-checkers, such as Smv [SMV], SpIN [SPI] or DEsIGN/CPN [CPN],
are available. However, these tools are restricted to finite systems whereas many
real systems are infinite, because of parameters or unbounded data structures.

FAST is a tool designed to allow automatic verification of systems modeled
by automata augmented with (unbounded) integer variables (extended counter
automata). The main issue addressed by FAST is the computation of the exact
(infinite) set of configurations reachable from a given set of initial configurations.
Let us recall that verification of safety properties can be reduced to reachability
of a given configuration from a set of initial configurations.

A lot of properties are in general undecidable, but there are two ways to
deal with undecidability. The first one is to consider decidable subclasses, thus
reducing the expressiveness of the model, while the second one is to accept only
a semi-algorithm, which does not terminate in the general case but which is ex-
pected to terminate in most practical cases. We follow the second approach. The
techniques used in FAST are based on acceleration [FL02]. It comes down to com-
puting the (exact) effect of iterating a control loop of an arbitrary length (cycle).
These cycles are automatically chosen. Both forward and backward reachabil-
ity are allowed. FAST works on linear systems, i.e. finite sets of linear functions
whose definition domains are defined by a Presburger formula over non-negative
integers. Most systems with integer variables can be described by such a system.



In [FLO2], it is proved that for linear systems whose associated square matrices
generate a finite multiplicative monoid — namely finite linear systems, accel-
eration of a loop terminates. It turns out that most integer variables systems
appear to be finite linear systems. Even though termination is not guaranteed, in
practice, FAST deals with a large amount of examples of our extended counter au-
tomata model (see section 4). We believe that Presburger arithmetic is sufficient
to model these problems and that most systems are effectively computable.

2 Related tools

We present four main tools able to cope with integer variables infinite systems,
two of them using acceleration or similar techniques.
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Fig. 1. A comparison of different tools for reachability set computation

3 Architecture
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Fig. 2. FAST inputs and outputs

whether the property is satisfied or not. Settings can also be optionally set by
the user, such as the ordering of variables and stop criteria.

Strategies allow the user to direct “by-hand” the computation. Strategies
make it possible to describe standard model-checking features such as forward
or backward reachability as well as more advanced constructs like a sequence
of incremental submodel analysis. This has been successfully used to verify the
TTP protocol (see section 4). Concretely, the user describes strategies through a
high-level language allowing to manipulate Presburger definable sets of integers,
linear functions, booleans and providing primitives for pre* and post* operations.

Presburger definable sets of integers are internally represented by Labeled
Number Decision Diagrams (LNDDs). This automata description for non-negative
integer arithmetic is based on works like XXX. LNDDs allow to represent any
Presburger formula and provides basic operations on sets (intersection, nega-
tion, inclusion or emptiness test) as well as more advanced constructs like the
acceleration of a cycle described in [FL02]. Our implementation uses packages
from MONA [MON], providing automata operations. An extended version of
FAST for integer arithmetic has also been developed, but there was a drop in
performances. Since all the case studies considered only deal with non-negative
integers, we decided to first limit FAST to non-negative integers.

4 Results

FAST has been applied to a large number of examples (about 40), ranging from
Petri nets to abstract multi-threaded JAVA programs, mainly taken from [Del].
About 80% of these case studies could effectively be verified. It proves that
choices made during FAST design, like having only a semi-algorithm or restricting
FAST to non-negative integers, are sound for practical infinite systems verifica-
tion. Moreover, most of these examples require only a basic predefined strategy
(a forward search), thus only little input from the user.

Figure 3 presents the performances obtained by FAST on ten of the most
representative examples. Dekker ME is a bounded Petri net, other examples
are infinite state systems because of parameters (lift controller) or unbounded
integer variables (FMS). Despite its number of variables and transitions, the
Swimming Pool protocol is a highly non-trivial protocol. The T'TP protocol is a



complex group membership protocol, using elaborate guards. The tool computes
efficiently these examples. A forward search has been used for all examples. For
the particular case of TTP, a more elaborate strategy was also tested, leading
to considerable increase in computation time.
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Fig. 3. Results using an Intel Pentium 933 MHz with 512 Mbytes

Considering the case studies that could not be verified (9 out of 40), we
propose three reasons for FAST not to terminate. First of all, the input model can
be such that FAST cannot terminate, either some loops have infinite associated
monoids or the reachability set is not flatable, i.e. not computable using a finite
set of accelerations [FL02]. Second, the computation may lead to large automata
and saturate the memory. Finally, there may be too many cycles to consider, and
then the heuristic used by FAST to find cycles to be accelerated reaches its limits.
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