
http://www-lipn.univ-paris13.fr/~petrucci/PAPERS
In Perspectives in Concurrency Theory. K. Lodaya and M. Mukund, eds.

Universities Press, pages 1-21. december 2008.

Modular Synthesis of Petri Nets from Regular
Languages

Eric Badouel1, Philippe Darondeau1, Laure Petrucci2

1IRISA, campus de Beaulieu, F-35042 Rennes Cedex
{Eric.Badouel,Philippe.Darondeau}@irisa.fr

2LIPN, 99, avenue Jean-Baptiste Clément, F-93430 Villetaneuse
Laure.Petrucci@lipn.univ-paris13.fr

Abstract

We propose a framework in which the synthesis of Petri nets from
products of regular languages may be dealt with in a modular way,
without evaluating any global language. For this purpose, we focus
on distributed Petri nets, made of subnets residing in different sites
of a communication network. The behaviour of each component is
specified by a regular language on the union of the alphabets of this
component and the components immediately upstream.

1 Introduction

The basic Petri Net Synthesis problem consists in finding whether an
automaton or a labelled graph may be realized up to an isomorphism
by the reachable state graph of a Petri net with injectively labelled
transitions. The problem was first examined for elementary nets, and
it was decided using the key concept of regions of a graph [12, 13, 4,
10, 5]. The similar problem for P/T-nets was decided later on in [1]
using the extended concept of regions defined in [15] and in [3].

Another Petri Net Synthesis problem consists in finding whether
a prefix-closed language may be realized by the set of firing sequences
of a Petri net with injectively labelled transitions. This problem was
solved abstractly in [14] using the concept of regions of a language.
For prefix-closed regular languages, the problem was decided later on
in [1].

A drawback of the synthesis procedures constructed so far in
both contexts is the lack of modularity: the graph or language to
be realized is given by a monolithic specification. This limitation
restricts the range of the applications of Petri Net Synthesis. In
this paper, we will show that the synthesis of nets from regular lan-
guages is not incompatible with modular specifications. Under some
conditions which we believe reasonable, one can in fact synthesize a
bounded P/T-net N = (P, T, F,M0) from a finite family of regular

languages Ls ⊆ T̂ ∗
s , where T̂s ⊆ T and T = ∪sT̂s, without computing

their product ⊗s Ls nor any automaton accepting this product.

2 Perspectives in Concurrency

If T = ∪sT̂s but no other assumption is made on the alphabets

T̂s of the languages Ls, we do not know any modular solution to
the net synthesis problem. Therefore, we assume that languages Ls

bijectively correspond to the sites s ∈ S of a communication network
G = (S,→), where s′ → s represents a channel from s′ to s. We

assume moreover a partition T = �sTs such that for all s, T̂s is the
union of Ts and all sets Ts′ such that s′ → s in G. The idea is that
the synthesized P/T-nets N should be distributed, and a transition
t′ ∈ Ts′ cannot produce tokens consumed by t ∈ Ts unless there is

a channel from s′ to s in G. According to this interpretation, T̂s is
the set of all transitions t ∈ Ts that can take place at site s plus
all remote transitions that can influence the firing of the transitions
t ∈ Ts, by sending tokens on channels from s′ to s in G.

In this framework, if a specification {Ls | s ∈ S} is coherent,
that is the languages Ls are the respective projections of some lan-
guage L ⊆ T ∗, one can decide in a modular way whether there exists
a bounded and distributed net implementing them. Even though
coherence can in general not be checked in a modular way, it is fortu-
nately the case when G is minimally connected, which excludes e.g.
ring architectures but still covers a lot of practical cases.

The rest of the paper is organized as follows. In Section 2, we
recall the concept of Distributed Petri Nets and the way to convert
them into communicating finite state machines with bounded chan-
nels. In Section 3, we state the Distributed Net Synthesis Problem to
be solved, and we show that this problem may be decomposed over
sites, thus leading to the Open Net Synthesis Problem. The Open
Net Synthesis Problem is addressed in Section 4, using a suitable
adaptation of the concept of regions of a language. A brief conclu-
sion completes the paper.

2 Distributed Petri Nets

In this section, we refine the concept of Distributed Petri Nets in-
troduced in [2] and we recall their relationship to communicating
finite state machines. To begin with, we recall the definition of
Place/Transition nets.

Definition 1.[P/T-net] A P/T-net is a bi-partite graph N = (P, T, F),
where P and T are disjoint sets of vertices, called places and transi-
tions, respectively, and F : (P ×T)∪ (T ×P) → N is a set of directed
edges with non-negative integer weights. A marking of N is a map
M : P → N. The state graph of N is a labelled graph, with markings
as vertices, where there is an edge fromM toM ′ with label t ∈ T (no-
tation: M [t〉M ′) if and only if, for every place p ∈ P , M(p) ≥ F (p, t)
and M ′(p) =M(p)− F (p, t) + F (t, p). The reachability graph of an
initialized P/T-net N = (P, T, F,M0) with the initial marking M0 is

Modular Synthesis of Petri Nets from Regular Languages 3

the induced restriction of its state graph on the set of markings that
may be reached from M0. The net N is finite if P and T are finite.
The net N is bounded if its reachability graph is finite. The language
L(N) of the net N is the set of words t1 t2 . . . tl ∈ T ∗ that label firing
sequences M0[t1〉M1[t2〉 . . .Ml−1[tl〉Ml. We use M0[t1 . . . tl〉Ml as a
shorter notation for such a firing sequence.

It follows from the net firing rule that whenever M [w〉M ′ for
some word w ∈ T ∗,M ′(p) =M(p)+

∑
t∈T ψ(w)(t)×(F (t, p)−F (p, t))

for every place p ∈ P , where ψ(w) is the firing count vector of w,
also called the Parikh image of w.

Definition 2. The Parikh image of a word w of T̂ ∗, where T̂ =

{t1, . . . , tk}, is the map ψ(w) : T̂ → N such that ψ(w)(th) counts the
occurrences of th in w. By a slight abuse of notation, we sometimes
use the alternative map ψ(w) : {1, . . . , k} → N such that ψ(w)(h)
counts the occurrences of th in w.

Distributed Petri Nets are P/T-nets in which the weighted flow
relation F : (P × T) ∪ (T × P) → N includes predefined constraints
F (p, t) = 0 or F (t, p) = 0. These constraints reflect the architecture
of a communication network, and they ensure that the net may be
realized with a communicating finite state machine mapped on this
architecture.

Definition 3.[Distributed Net Architecture] Given a set of tran-
sitions T , a distributed net architecture is defined by a location
map λ : T → S and a communication graph G = (S,→) where
S is a finite set of sites. For s ∈ S, we note Ts = λ−1{s} and

T̂s = Ts ∪ λ−1{s′ ∈ S | s′ → s}.
Ts is the set of all transitions that can occur at site s. T̂s is the

set of all transitions that can exert direct influence on the firability
of transitions in Ts. In the sequel, πs : T

∗ → T ∗
s is the unique monoid

morphism such that πs(t) = t for t ∈ Ts and πs(t) = ε (the empty

word) otherwise. Similarly, π̂s : T ∗ → T̂ ∗
s is the unique monoid

morphism such that π̂s(t) = t for t ∈ T̂s and π̂s(t) = ε otherwise.

Definition 4.[Distributed P/T-net] Given a location map λ : T → S
and a connected communication graph G = (S,→), a distributed
P/T-net is a P/T-net in which the following requirements are satis-
fied:
- (∀p ∈ P)(∃t ∈ T) F (p, t) �= 0
- (∀p ∈ P)(∀t, t′ ∈ T) F (p, t) �= 0 ∧ F (p, t′) �= 0 ⇒ λ(t) = λ(t′)
- (∀p ∈ P)(∀t, t′ ∈ T) F (p, t) �= 0 ∧ F (t′, p) �= 0 ⇒ λ(t) = λ(t′) ∨
λ(t′) → λ(t)

In view of the first two requirements in Def. 4, the location map
λ : T → S extends in a unique way to a map λ : T ∪P → S such that

4 Perspectives in Concurrency

F (p, t) �= 0 ⇒ λ(p) = λ(t). So, the places of a distributed net are lo-
cated in sites. The first two requirements stipulate that a transition
t located in site λ(t) cannot consume tokens from a place p located
in a different site λ(p) �= λ(t). The third condition stipulates that a
transition t′ located in site λ(t′) can produce and send tokens to a
place p only if λ(p) = λ(t′) or there is an edge from λ(t′) to λ(p) in
graph G, figuring a channel from λ(t′) to λ(p).

Example 1 Let us consider a communication system, sketched in
figure 1, with four machines PC1, PC2, PC3 and PC4 connected
by a network comprising a router. Machines PC1 and PC3 send
messages, while machines PC2 and PC4 wait for incoming mes-
sages. Machines PC1 and PC3 send messages to machine PC2 via
the router. The router uses a store and forward strategy, i.e. each
incoming message is stored and then forwarded to its destination.
Copies of all messages from PC3 to PC2 are sent directly to PC4.

router PC2

PC4

PC1

PC3

Figure 1: Example of a routing system

Figure 2 shows a distributed Petri net modelling this system. The
distribution is such that: S = {PC1, PC2, PC3, PC4, router} with
the communication graph as in figure 1 and:

λ(P11) = λ(P12) = λ(T11) = λ(T12) = PC1

λ(BR2) = λ(P21) = λ(P22) = λ(T21) = λ(T22) = PC2

λ(P31) = λ(P32) = λ(T31) = λ(T32) = PC3

λ(B34) = λ(P41) = λ(P42) = λ(T41) = λ(T42) = PC4

λ(R1) = λ(R2) = λ(PR1) = λ(PR2) = λ(T1R) = λ(T3R) = λ(TR2) =
router

The sets Ts and T̂s are thus defined by:

TPC1
= {T11, T12}, T̂PC1

= {T11, T12}
TPC2

= {T21, T22}, T̂PC2
= {T21, T22, T1R, T3R, TR2}

TPC3
= {T31, T32}, T̂PC3

= {T31, T32}
TPC4

= {T41, T42}, T̂PC4
= {T41, T42, T31, T32}

Trouter = {T1R, T3R, TR2}, T̂router = {T1R, T3R, TR2, T11, T12, T31, T32}

Modular Synthesis of Petri Nets from Regular Languages 5

PC3 PC4

PC2

routerPC1

T31

T11

T41

T21

P31 P41

P11 PR2 P21

P12

P32

P22

BR2PR1 TR2

R1

P42

R2

B34

T12

T32 T42

T22

T1R

T3R

Figure 2: Distributed Petri net modelling the routing system

From now on, N = (P, T, F,M0) is a finite initialized P/T-net,
bounded and distributed w.r.t. λ : T ∪ P → S and G = (S,→). The
distributed architecture (λ,G) induces a decomposition of N into an
indexed family of components Ns for s ranging over S, as follows.
Each subnet Ns is the induced restriction of N on the subset of
places Ps = P ∩ λ−1{s} and on the subset of transitions T̂s, i.e.

Ns = (Ps, T̂s, Fs,M0s) where M0s is the restriction of M0 on Ps and

Fs is the restriction of F on (Ps × T̂s) ∪ (T̂s × Ps). Thus N = ⊕sNs

according to the definition below.

Definition 5. The sum of a family of place disjoint nets Ns =

(Ps, T̂s, Fs,M0s), s ∈ S, is the net ⊕sNs = (P, T, F,M0) defined with

P = �sPs, T = ∪sT̂s, F (p, t) = Fs(p, t) if p ∈ Ps and t ∈ T̂s for some

s ∈ S else 0, F (t, p) = Fs(t, p) if p ∈ Ps and t ∈ T̂s for some s ∈ S
else 0, and M0(p) =M0s(p) for p ∈ Ps.

In order to explain the relationship between the language L(N)
of the net and the languages of the net components L(Ns), we recall
the following definition.

Definition 6.[mixed product of languages, adapted from [11]] Given

Ls ⊆ T̂ ∗
s for s ranging over S, let ⊗s Ls ⊆ T ∗ be defined as {w | ∀s :

π̂s(w) ∈ Ls}.
The following propositions follow immediately from the defini-

tion of distributed P/T-nets.

6 Perspectives in Concurrency

Proposition 7. L(Ns) · (T̂s \ Ts) ⊆ L(Ns).

Proposition 8. L(Ns) ⊇ π̂s(L(N)).

Proposition 9. L(N) = L(⊕sNs) = ⊗s L(Ns).

We state now two other useful properties of the component nets
Ns induced by the decomposition of a bounded and distributed P/T-
net.

Proposition 10. The following two properties hold for all s ∈ S
and t ∈ Ts:
i) (∀w ∈ L(N)) wt /∈ L(N) ⇒ π̂s(wt) /∈ L(Ns),
ii) (∀w′ ∈ π̂s(L(N))) w′t /∈ π̂s(L(N)) ⇒ w′t /∈ L(Ns).

Proof. We first prove (i). Let w ∈ L(N) and t ∈ Ts be such
that wt /∈ L(N). In view of the net firing rule, 0 ≤ M0(p) +∑

t′∈T ψ(w)(t′) × (F (t′, p) − F (p, t′)) < F (p, t) for some place p ∈
P , and F (p, t) > 0 entails that λ(p) = λ(t) = s. From Def. 4,

F (p, t′) = 0 and F (t′, p) = 0 for every transition t′ outside T̂s, while
by Def. 5, F (p, t′) = Fs(p, t

′) and F (t′, p) = Fs(t
′, p) for every tran-

sition t′ in T̂s (in particular for t). So, if we set w′ = π̂s(w), then
M0s(p) +

∑
t′∈T̂s

ψ(w′)(t′)× (Fs(t
′, p)− Fs(p, t

′)) < Fs(p, t), showing
that w′t = π̂s(wt) /∈ L(Ns).

We now show that (i) entails (ii). Let w′ ∈ π̂s(L(N)) and t ∈ Ts

such that w′t /∈ π̂s(L(N)). Since w′ ∈ π̂s(L(N)), w′ = π̂s(w) for
some w ∈ L(N). From w′ = π̂s(w) and w′t /∈ π̂s(L(N)), necessarily

wt /∈ L(N) hence by (i), π̂s(wt) /∈ L(Ns), i.e. w
′t /∈ L(Ns).

Definition 11.[restricted boundedness] Given s ∈ S and Ls ⊆ T̂ ∗
s ,

the net Ns = (Ps, T̂s, Fs,M0s) is said to be bounded in restriction
to Ls if there exists some finite bound B such that (∀p ∈ Ps)(∀w′ ∈
Ls ∩ L(Ns)) M0s[w

′〉M ′ ⇒ M ′(p) ≤ B.

Proposition 12. Let N be a bounded and distributed P/T-net. Then
for all s ∈ S, the component subnet Ns of N is bounded in restriction
to π̂s(L(N)).

Proof. Let M0[w〉M in N and M0s[w
′〉M ′ in Ns, with w′ =

π̂s(w). As N is a bounded net, for any place p ∈ P , M(p) ≤ B
for some finite bound B independent of M and p. From Def. 4, for
any place p ∈ Ps, M(p) = M0s(p) +

∑
t′∈T̂s

ψ(w′)(t′) × (Fs(t
′, p) −

Fs(p, t
′)) =M ′(p), hence M ′(p) ≤ B.

In the end of this section, we sketch a simple translation from
bounded and distributed P/T-nets to communicating finite state ma-
chines with an equivalent behaviour. Let N be a bounded and dis-
tributed P/T-net over (λ,G). For any place p ∈ P , there exists a

Modular Synthesis of Petri Nets from Regular Languages 7

finite bound B(p) such that M(p) ≤ B(p) for every reachable mark-
ingM ofN . Note that, for any place p ∈ Ps, B(p) may be determined
locally from π̂s(L(N)) if this language is known, without computing
the global state graph of N . This will be the case for nets N synthe-
sized from a specification {Ls | s ∈ S} since π̂s(L(N)) = Ls for such
nets.

Given a bounded and distributed P/T-net N , we shall simulate
the behaviour of this net with a communicating machine (A, C) where
A = {As | s ∈ S} is a set of finite automata and C = {(s, s′) | s → s′

in G} is a set of channels. The set of messages that may be sent to
or received from a channel (s, s′) is the set of names of places p′ such
that p′ ∈ Ps′ and F (t, p′) > 0 for some transition t ∈ Ts. For each
s ∈ S, the automaton As has an extended alphabet Ts ∪ τs, where
Ts is a set of internal actions representing homonymic transitions
of N , and τs is a set of communication actions. Each alphabet τs
comprises two types of actions on channels: an action !s′(p′) means
sending message p′ on channel (s, s′) in order to simulate the emission
of a token (intended for place p′); an action ?s(p′) means receiving
message p′ from channel (s, s′) in order to simulate the delayed ar-
rival of a token in place p′. Channels are unordered, i.e. messages
sent on channel (s, s′) may be received in a different order. The state
of a channel may therefore be seen as a vector of counters (one for
each p′). The state of the communicating machine is defined as the
set of states of the component automata As plus the set of states of
the channels. An action !s′(p′) is always enabled when it is enabled in
some automaton As such that (s, s′) ∈ C. An action ?s(p′) is enabled
if it is enabled in some automaton As such that (s, s′) ∈ C and this
channel contains at least one occurrence of the message p′.

We now define, for each s ∈ S, the set of states Qs and the
transition function δs of the automaton As. First, we let Qs be the
set of all maps M ′ : Ps → N such that (∀p ∈ Ps)M

′(p) ≤ B(p).
Second, we let q0s = M0s and As = (Qs, Ts ∪ τs, δs, q0s) where δs :
Qs × (Ts ∪ τs)

∗ → Qs is the partial transition function defined as
follows:

• for each t ∈ Ts and q, q′ ∈ Qs such that q[t〉q′ is a firing step
of Ns (although q is not necessarily reachable from M0s), let
δs(q, t · send(t)) = q′ for an arbitrary linearisation send(t) ∈ τ ∗s
of the multiset { !s′(p′) × F (t, p′) | s′ �= s ∧ p′ ∈ Ps′ },

• for each s′ �= s and p ∈ Ps such that F (t′, p) �= 0 for some
t′ ∈ Ts′ , provided that q(p) < B(p), let δs(q, ?s

′(p)) = q′ where
q′(p) = q(p) + 1 and q′(p′) = q(p′) for p′ �= p.

Note that when a transition produces tokens for one or several dis-

8 Perspectives in Concurrency

tant places, these tokens are sent on the communication network in
one batch while they are received one at a time. In order to restore
the symmetry between send actions and receive actions, one may ex-
pand the automata As to automata with larger sets of states Q′

s and
partial transition functions δs : Q

′
s × (Ts ∪ τs) → Q′

s. We claim that
the resulting family of finite state machines {As | s ∈ S} communi-
cating through the channels (s′, s) or s′ → s defined in G, is channel
bounded and implements L(N). By adapting the proofs given in
[2], one may further show that N and the considered communicating
finite state machines have branching bisimilar behaviours [17] when
all communication actions ?s(p) and !s(p) are dealt with as silent
actions τ .

Remarks: Following the indications given in section 5 of [2], one
may define an alternative translation from distributed nets to com-
municating systems ({N ′

s | s ∈ S}, C) where each component N ′
s is a

Petri net with possible concurrency.

3 The Distributed Net Synthesis Problem

The problem we want to address may be stated as follows.

Definition 13.[Net Specification] Given a distributed net architec-
ture (λ,G) with λ : T → S and G = (S,→), a net specification L
is an indexed family of prefix-closed and regular languages Ls ⊆ T̂ ∗

s

where s ranges over S.

Problem 1 (Net Synthesis Problem) Given a distributed net ar-
chitecture (λ,G) and a specification {Ls | s ∈ S}, decide whether there
exists and construct a bounded and distributed P/T-net N such that
π̂s(L(N)) = Ls for all s ∈ S.

We moreover want to solve this problem in a modular way, with-
out ever computing the mixed product ⊗s Ls nor the global language
of any net over (λ,G). In particular, we forbid ourselves to compute
from the specification some global net N and then check whether
π̂s(L(N)) = Ls for all s ∈ S as required. It is worth noting that a
specification L = {Ls | s ∈ S} does generally not define unambigu-
ously any global language L over T , as the following example shows.

Example 2 Let S = {1, 2, 3} with T1 = {a}, T2 = {b}, T3 = {c},
and G = {1 → 2, 1 → 3}. Consider the net specification given by
L1 = pref{a}, L2 = pref{ab}, and L3 = pref{ac} where pref E
means the set of all left factors of words in E. Then there exists
several languages L ⊆ T ∗ such that Li = π̂i(L) for every i in {1, 2, 3},
for instance L = pref {abc, acb}, L = pref {abc}, L = pref {acb}, or

Modular Synthesis of Petri Nets from Regular Languages 9

L = pref {ab, ac}. In fact, only L = pref {abc, acb} coincides with
the language of a solution N to the distributed net synthesis problem
from L = {L1, L2, L3}.

It seems however desirable that a specification L = {Ls | s ∈ S}
over (λ,G) defines at least one global language L over T , hence the
following definition.

Definition 14.[Coherency] Given a distributed net architecture (λ,G)
with λ : T → S and G = (S,→), a specification {Ls | s ∈ S} is co-
herent if there exists some language L over T such that π̂s(L) = Ls

for all s ∈ S.

Proposition 15. A specification L = {Ls | s ∈ S} is coherent if and
only if (∀s′) Ls′ = π̂s′ (⊗s Ls).

Proof. Suppose π̂s(L) = Ls for all s ∈ S then clearly L ⊆ ⊗s Ls

and for all s′, Ls′ = π̂s′ (⊗s Ls) because π̂s′(L) ⊆ π̂s′(⊗s Ls) ⊆ Ls′

and π̂s′(L) = Ls′ . The converse implication is immediate.

Proposition 16. Let L = {Ls | s ∈ S} be a coherent specification
and let N = ⊕s Ns be a distributed net. Then L(N) = ⊗s Ls if and
only if π̂s(L(N)) = Ls for all s ∈ S.

Proof. Suppose that π̂s(L(N)) = Ls for all s ∈ S. Then
L(N) ⊆ ⊗s Ls. Moreover, for all s ∈ S, π̂s(L(N)) ⊆ L(Ns) be-
cause L(N) = ⊗s L(Ns). Therefore ⊗s Ls ⊆ ⊗s L(Ns) = L(N).
Altogether, L(N) = ⊗s Ls. The converse implication follows from

Prop.15.

In view of Prop. 16, for coherent specifications, Problem 1 is
equivalent to the following.

Problem 2 Given a net architecture (λ,G) and a specification {Ls |
s ∈ S}, decide whether there exists and construct a bounded and
distributed P/T-net N over (λ,G) such that L(N) = ⊗s Ls.

In view of Def. 14, the coherency of a specification L = {Ls | s ∈
S} is necessary to the existence of solutions to Problem 1, but Prob-
lem 2 may have solutions for incoherent specifications. Indeed L(N) =
⊗s L(Ns) for any distributed net N , but in most cases L(Ns) is a
strict superset of π̂s L(N) and therefore {L(Ns) | s ∈ S} is not a co-
herent specification.

Coherency is a decidable property since it expresses as (∀s ∈ S)
Ls = π̂s (⊗s Ls) and any mixed product or projection of regular lan-
guages is a regular language. However one can generally not check

10 Perspectives in Concurrency

coherency without computing the mixed product ⊗s Ls. Comput-
ing from L, without a preliminary check of coherency, some net N
candidate as a solution to Problem 1 does not help overcoming the
difficulty because, unless coherency is assumed, it is generally not
possible to check that π̂s(L(N)) = Ls for all s ∈ S without comput-
ing L(N). The modular synthesis of P/T-nets can therefore not be
envisaged without imposing constraints on distributed net architec-
tures, hence the following definition.

Definition 17.[Minimally Connected] A communication graph G =
(S,→) is minimally connected if the underlying undirected multigraph
is a graph and this graph is a tree (with arbitrary root vertex).

Example 3 The communication graph of example 1 (figure 1) is
minimally connected.

Lemma 18. Let (λ,G) be a net architecture with a minimally con-

nected graph G = (S,→). Then T̂s′ ∩ T̂s = Ts′ for every edge s′ → s
of G.

Proof. By definition, T̂s′ is the union of Ts′ and all subsets Ts′′

such that s′′ → s′. Similarly, T̂s is the union of Ts and all subsets
Ts′′ such that s′′ → s, thus including Ts′ . By minimal connectedness
of G, s′′ → s′ entails s′′ �= s, and there exists no vertex s′′ such that
s′′ → s and s′′ → s′. As subsets Ts′′ are pairwise disjoint, the lemma

follows.

Lemma 19. Let (λ,G) be a net architecture with a minimally con-
nected graph G = (S,→). Then, for any two distinct vertices s′ and
s, T̂s′∩T̂s = ∅ unless s′ → s or s→ s′ or s′′ → s′ and s′′ → s for some
(necessarily unique) s′′. Moreover, in the latter case, T̂s′ ∩ T̂s = Ts′′ .

Proof. Left to the reader.

Proposition 20. Let L = {Ls | s ∈ S} be a specification over (λ,G)
where G is minimally connected. Then L is coherent if and only if
πs′(Ls′) = πs′(Ls) for every edge s′ → s in G.

Proof. By Prop. 15, {Ls | s ∈ S} is coherent if and only if, for any
s′ ∈ S and for any w ∈ Ls′ , there exists an indexed family of words
{ws | s ∈ S ∧ ws ∈ Ls} such that w = ws′ and w ∈ π̂s′(⊗s{ws}).

By construction of the alphabets Ts and T̂s, s ∈ S, Ts′ = T̂s′ ∩ T̂s

whenever s′ → s, and then πs′ ◦π̂s′ = πs′◦π̂s. Thus if the specification
L is coherent, πs′(Ls′) = πs′ ◦ π̂s′(⊗sLs) = πs′ ◦ π̂s(⊗sLs) = πs′(Ls).

Suppose that πs′(Ls′) = πs′(Ls) for every edge s′ → s in G. We
show that {Ls | s ∈ S} is coherent. Let s′ be an arbitrary vertex of

Modular Synthesis of Petri Nets from Regular Languages 11

G, and let ws′ ∈ Ls′ . For all n ≥ 0, let Sn be the subset of vertices
at a distance at most n from s′, thus S0 = {s′} and Sm = Sm+1 for
some m. We proceed by induction on n < m.

Assume that for each s ∈ Sn, ws has been chosen from Ls such
that, for all vertices s′′, s ∈ Sn, if s′′ → s is an edge of G then
πs′′(ws′′) = πs′′(ws). As G is minimally connected, any vertex s′′ ∈
Sn+1 \ Sn is connected by an edge s′′ → s or s → s′′ to exactly one
vertex s ∈ Sn, and there is no edge between two distinct vertices
in Sn+1 \ Sn. As (s′′ → s) ⇒ (πs′′(Ls′′) = πs′′(Ls)) and (s → s′′)
⇒ (πs(Ls) = πs(Ls′′)), one can choose independently for all s′′ ∈
Sn+1 \Sn some ws′′ from Ls′′ such that πs′′(ws′′) = πs′′(ws) if s

′′ → s
or πs(ws′′) = πs(ws) if s→ s′′.

Now let n = m, thus ws has been defined for all s ∈ S, and
πs′′(ws′′) = πs′′(ws) for every edge s′′ → s in G. At this stage,
Lemmas 18 and 19 show that ⊗sws is not the empty set, hence w ∈
π̂s′(⊗s{ws}).

Prop. 20 shows that when the communication graph G is min-
imally connected, the coherency of specifications over (λ,G) can be
checked in a modular way. For the purpose of modular net synthe-
sis, we impose on specifications a slightly stronger requirement of
coherency as follows.

Definition 21.[Strong Coherency] A specification L = {Ls | s ∈ S}
over (λ,G) is strongly coherent if it is coherent and the following
condition is satisfied for every edge s′ → s in G:
(∀w ∈ Ls)(∀t ∈ Ts′)πs′(wt) ∈ πs′(Ls′) ⇒ wt ∈ Ls.

Example 4 We now consider example 1 again. Let PC1, PC2, PC3,
PC4 and router be the subnets shown on figure 2, and let router ′ be
the net obtained by removing places R1 and R2 from router . For
any two subnets N ′ and N ′′, let N ′ +N ′′ be the net containing the
places and transitions of both nets plus the connecting arcs drawn on
figure 2. Define LPC1

= L(PC1), LPC2
= L(PC2 + router ′), LPC3

=
L(PC3), LPC4

= L(PC4 + PC3), and Lrouter = L(router + PC1 +
PC3). Then L = {Ls | s ∈ S} is a strongly coherent specification.

For coherent specifications, in view of Prop. 20, the above con-
dition may be rewritten to (∀w ∈ Ls)(∀t ∈ Ts′)πs′(wt) ∈ πs′(Ls) ⇒
wt ∈ Ls, hence strong coherency may be checked in a modular way.

Proposition 22. Let N be a distributed P/T-net over (λ,G). If
G is minimally connected, then L = {π̂s(L(N)) | s ∈ S} is strongly
coherent.

Proof. The coherency of L follows clearly from its definition. It
remains to show that L is strongly coherent. Let s, s′ ∈ S such that

12 Perspectives in Concurrency

s′ → s in G. Let w ∈ π̂s(L(N)) and t ∈ Ts′ such that πs′(wt) ∈
πs′ ◦ π̂s′(L(N)). We show that wt ∈ π̂s(L(N)). First, it is possible
to choose a word w′ ∈ π̂s′(L(N)) such that πs′(w) = πs′(w

′) and
w′t ∈ π̂s′(L(N)). Second, proceeding as in the proof of Prop. 20, it is
possible to extend this choice to a full family of words wσ ∈ π̂σ(L(N)),
σ ∈ S, such that ws = w, ws′ = w′, and ws′′ ∈ π̂s′′(⊗σwσ) for all s

′′.
By Prop. 8, ws′′ ∈ L(Ns′′) for all s

′′. Now consider the second family

of words uσ, σ ∈ S, defined with uσ = wσt if t ∈ T̂σ and uσ = wσ

otherwise. Then, uσ ∈ L(Nσ) for all σ ∈ S, and us′′ ∈ π̂s′′(⊗σuσ)
for all s′′. By Prop. 9, uσ ∈ π̂σ(L(N)) for all σ ∈ S. In particular,

us = wt ∈ π̂s(L(N)). Therefore, L is strongly coherent.

Imposing minimally connected architectures is restrictive, since
this excludes in particular ring architectures. We postpone comments
on this point. On the contrary, in view of Prop. 22 and the state-
ment of Problem 1, strong coherency is a necessary condition for a
specification to have some distributed net realization. It is therefore
not restrictive to assume strong coherency, which can be checked
in a modular way for minimally connected architectures. We feel
that modular synthesis of nets is not possible without imposing this
restriction on architectures. In order to solve Problem 1 for a spec-
ification L = {Ls | s ∈ S} over an architecture (λ,G) which is not
minimally connected, we can only suggest to choose if possible a
non-trivial equivalence relation ≡ on S such that G/ ≡ is minimally
connected, and to solve Problem 1 for the aggregated specification
L′ = {L′

x |x ∈ X}, where X = (S/ ≡) and L′
x = ⊗ s∈X Ls.

In the sequel, we consider always strongly coherent spec-
ifications over minimally connected architectures. In view
of Prop. 16, Problem 1 is then equivalent to the following.

Problem 3 Given a net architecture (λ,G) in which G is minimally
connected, and given a strongly coherent specification {Ls | s ∈ S},
decide whether there exists and construct a bounded and distributed
P/T-net N over (λ,G) such that L(N) = ⊗s Ls.

We will solve Problem 3 without ever computing the mixed prod-
uct ⊗s Ls nor the global language of any net over (λ,G). The keys
to the modular synthesis of bounded and distributed P/T-nets are
given by the following two propositions.

Proposition 23. Let {Ls | s ∈ S} be a strongly coherent specifica-
tion, and let {L′

s | s ∈ S} be an arbitrary set of prefix-closed languages

L′
s ⊆ T̂ ∗

s such that L′
s · (T̂s \ Ts) ⊆ L′

s for all s. Then ⊗sLs = ⊗sL
′
s

if and only if, for all s ∈ S: Ls ⊆ L′
s ⊆ �((Ls · Ts \ Ls) · T̂ ∗

s) where �
means complementation w.r.t. T̂ ∗

s .

Modular Synthesis of Petri Nets from Regular Languages 13

Proof.
If part
Suppose that the stated conditions are satisfied. Clearly, ⊗s Ls ⊆
⊗s L

′
s. In order to show the converse inclusion, we proceed by con-

tradiction, and assume the existence of some minimal word wt ∈
(⊗s L

′
s) \ (⊗s Ls) with t ∈ T . From the minimality assumption,

w ∈ (⊗s L
′
s) ∩ (⊗s Ls), and therefore w ∈ ⊗s {ws} for some fam-

ily of words ws ∈ Ls such that ws = π̂s(w) ∈ Ls ⊆ L′
s for all s. Let

t ∈ Ts′ . Define a second family of words w′
s as follows.

• for s = s′ or s′ → s let w′
s = wst,

• in any other case let w′
s = ws.

Clearly, wt ∈ ⊗s {w′
s}. As wt ∈ (⊗s L

′
s), the word w′

s′ = π̂s′(wt) =
π̂s′(w)t belongs both to L′

s′ and to Ls′ ·Ts′ . Therefore, by the second
condition of inclusion, w′

s′ belongs to Ls′ . In order that wt /∈ (⊗s Ls),
it must be the case that w′

s = wst /∈ Ls for some s such that s′ → s.
But this is excluded by the condition of strong coherency, since ws ∈
Ls, πs′(wst) = πs′(w

′
s) = πs′(w

′
s′) and w′

s′ belongs to Ls′ . It follows
from this contradiction that ⊗s Ls = ⊗s L

′
s.

Only If part
Suppose that ⊗s Ls = ⊗s L

′
s. By the condition of coherency, Ls =

π̂s(⊗s Ls), hence Ls = π̂s(⊗s L
′
s) ⊆ L′

s, and the first inclusion holds.
Now let ws′ ∈ Ls′ and t ∈ Ts′ such that ws′t /∈ Ls′ , and assume for
a contradiction that ws′t ∈ L′

s′ . As the specification {Ls | s ∈ S} is
coherent, there exists a family of words ws ∈ Ls, s �= s′, and a word
w ∈ ⊗s ws such that π̂s(w) = ws for all s ∈ S. Define a second family
of words w′

s as follows.

• for s = s′ or s′ → s let w′
s = wst,

• in any other case let w′
s = ws.

Then clearly, wt ∈ ⊗sw
′
s. By assumption, w′

s′ = ws′t ∈ L′
s′ . More-

over s′ → s entails that w′
s = wst ∈ L′

s since ws ∈ Ls ⊆ L′
s and

L′
s · Ts′ ⊆ L′

s. Therefore, wt ∈ ⊗sL
′
s = ⊗sLs. It follows from the

coherency of the specification that π̂s′(wt) = ws′t belongs to Ls′ ,
in contradiction with the assumptions. This establishes the second

inclusion, hence the proposition.

Proposition 24. Let L = {Ls | s ∈ S} be a strongly coherent speci-
fication over (λ,G) where G = (S,→) is minimally connected. Then
⊗s Ls = L(N) for some distributed and bounded P/T-net N = ⊕Ns

where Ns = (Ps, T̂s, Fs,M0s) if and only if the following conditions
are satisfied:

1. p ∈ Ps ∧ t ∈ T̂s \ Ts ⇒ Fs(p, t) = 0,
2. p ∈ Ps ⇒ Fs(p, t) > 0 for some t ∈ Ts,

14 Perspectives in Concurrency

3. w ∈ Ls ∧ t ∈ Ts ∧ wt ∈ Ls ⇒ M0s[w〉M ′ with Fs(p, t) ≤ M ′(p)
for p ∈ Ps,
4. w ∈ Ls ∧ t ∈ Ts ∧ wt /∈ Ls ⇒ M0s[w〉M ′ with Fs(p, t) > M ′(p)
for some p,
5. the net Ns is bounded in restriction to Ls.

Proof.
If part
From conditions 1 and 2, N is a distributed P/T-net. Therefore,

L(N) = ⊗s L(Ns) and L(Ns) · (T̂s \ Ts) ⊆ L(Ns). From conditions 3

and 4, Ls ⊆ L(Ns) ⊆ �((Ls · Ts \ Ls) · T̂ ∗
s). As L = {Ls | s ∈ S} is

a strongly coherent specification, ⊗s Ls = L(N) follows by Prop. 23.
It remains to show that N is bounded. We proceed by contradiction.
Let s ∈ S and p ∈ Ps and suppose that for any n, there exists some
firing sequenceM0[w〉M of the net N withM(p) > n. As N = ⊕sNs,
there exists some corresponding firing sequence M0s[π̂s(w)〉M ′ of the
net Ns with M ′(p) = M(p). As w ∈ L(N) = ⊗s Ls, π̂s(w) ∈ Ls.
Therefore, the net Ns is not bounded in restriction to Ls, contradict-
ing condition 5.
Only If part
In view of Def. 4 and Propositions 8, 10 and 12, all conditions stated
in Prop. 24 are necessary to the existence of a solution to the bounded

and distributed net synthesis problem from L.

By Prop. 24, the bounded and distributed net synthesis prob-
lem from a strongly coherent specification {Ls | s ∈ S} decomposes
modularly to |S| independent instances of the following.

Problem 4 (Open Net Synthesis Problem) Given finite alpha-

bets T and T̂ , with T ⊆ T̂ , and a non-empty regular and prefix-closed

language L ⊆ T̂ ∗, decide whether there exists and construct a finite
P/T-net N = (P, T̂ , F,M0) such that:

1. p ∈ P ∧ t ∈ T̂ \ T ⇒ F (p, t) = 0,
2. p ∈ P ⇒ F (p, t) > 0 for some t ∈ T ,
3. w ∈ L ∧ t ∈ T ∧ wt ∈ L ⇒M0[w〉M with F (p, t) ≤M(p) for all
p ∈ P ,
4. w ∈ L ∧ t ∈ T ∧ wt /∈ L ⇒ M0[w〉M with F (p, t) > M(p) for
some p,
5. N is bounded in restriction to L.

For fixed alphabets T̂ and T ⊆ T̂ , a net N = (P, T̂ , F,M0)
satisfying condition 1 w.r.t. T is called an open net in the sequel.
Clearly, L(N) · (T̂ \ T) ⊆ L(N) for any such open net.

Modular Synthesis of Petri Nets from Regular Languages 15

4 Open Net Synthesis using Regions

In this section, we solve Problem 4 using the concept of regions of a
language, originally defined in [14]. The presentation of regions given
below draws inspiration from [1] and [8], with minor adaptations
reflecting the slightly different statement of the synthesis problem.

Definition 25.[regions] Let L ⊆ T̂ ∗ be a prefix closed language over

T̂ = {t1, . . . , tk}. A region of L is a non-negative integer vector

r = 〈rinit, r ◦t1, t1 ◦r, . . . , r ◦tk, tk ◦r〉

such that for all t ∈ T̂ , wt ∈ L ⇒ r/w ≥ r ◦t where r/w is defined

inductively on the words of T̂ ∗ with r/ε = rinit and r/wt = r/w −
r ◦t+t ◦r. The region r is a bounded region of L if there exists B ∈ N

such that r/w ≤ B for all w ∈ L.

According to Def. 25, the regions r of L correspond bijectively

with the one-place nets Nr = ({pr}, T̂ , F,M0) with language larger
than L, viz. M0(pr) = rinit, F (pr, th) = r ◦th and F (th, pr) = th

◦r
for all th ∈ T̂ . In order to reflect condition 1 in Problem 4, we now
introduce open regions as follows.

Definition 26.[Open Regions] Given two alphabets T ⊆ T̂ and a

non-empty prefix-closed and regular language L ⊆ T̂ ∗, an open region
of L is any bounded region r of L such that r◦th = 0 for all letters

th ∈ T̂ \ T .
The suitability of the concept of regions for solving Problem 4 is

shown by the following proposition, where � means the complemen-

tation in T̂ ∗.

Proposition 27. Problem 4 has a solution N if and only if for all
w ∈ L and t ∈ T , wt /∈ L ⇒ r/w < r ◦t for some open region r of L
(r disables t after w).
Let R be any finite and minimal set of open regions of L such that,
for any t ∈ T and for any minimal word wt /∈ L, some region in R
disables t after w. Then L ⊆ L(N) ⊆ � ((LT \L) · T̂ ∗) for the open

net N = (P, T̂ , F,M0) as follows:
- P is a set of places pr in bijective correspondence with the regions
r ∈ R,

-M0(pr) = rinit and for any t ∈ T̂ , F (pr, t) = r ◦t and F (t, pr) = t ◦r.
Moreover, N is bounded in restriction to L, hence it is a solution to
Problem 4.

Proof. Let N = (P, T̂ , F,M0) be a solution to Problem 4. Let
w ∈ L and t ∈ T such that wt /∈ L. In view of the net firing rule,
there must exist some place p ∈ P such that F (p, t) > M0(p) +

16 Perspectives in Concurrency

∑
h ψ(w)(th) × (F (th, p) − F (p, th)). Let r = 〈rinit, r ◦t1, t1◦r, . . . ,

r ◦tk, tk◦r〉 be the associated vector defined with rinit =M0(p), r
◦th =

F (p,th) and th
◦r = F (th, p) for all th ∈ T̂ . Then r is an open region

of L and r disables t after w.
Conversely let R be a finite set of open regions of L as described
in the proposition, and let N be the associated net defined ibidem.
In view of the definition of open regions, the minimality of R, and
the correspondence between regions in R and places of N , conditions
1, 2 and 3 of Problem 4 are clearly satisfied. Condition 4 follows
from the hypothesis that for any minimal word wt /∈ L, some region
in R disables t after w. Condition 5 follows from the fact that any
open region of L is by definition a bounded region of L. Finally,

L ⊆ L(N) and L(N) ⊆ � ((LT \ L) · T̂ ∗) are mere restatements of

the conditions 3 and 4.

The next proposition helps computing the open regions of a reg-
ular language.

Proposition 28. Given an integral vector r = 〈rinit, r ◦t1, t1 ◦r, . . . ,
r ◦tk, tk ◦r〉 with non-negative entries, let r×w be defined for w ∈ T̂ ∗

inductively with r × ε = 0 and r × wt = r × w − r ◦t+ t ◦r.Then for
any prefix-closed regular language L over T̂ , r is an open region of L
if and only if the following conditions hold:
i) r × w = 0 for every word w such that vw∗ ⊆ L,
ii) r/w ≥ r ◦t for every w ∈ L such that wt ∈ L,

iii) r ◦th = 0 for every letter th ∈ T̂ \ T .
Proof. Condition (i) is necessary because r/vwn = r/v+n(r×w)
for all n. Indeed, if r ×w < 0 then it is not possible that r/vwn ≥ 0
for all n, as required by the definition of regions, and if r × w > 0
then it is not possible that r/vwn < B for some bound B for all n,
as required by the definition of bounded regions. The remaining two
conditions are obviously necessary.
Conversely, suppose that conditions (i,ii,iii) hold. In order to show
that r is an open region of L, it suffices to prove that there exists a
finite bound B ∈ N such that r/w ≤ B for all w ∈ L. As L is regular
and prefix-closed, L = L(A) for some finite deterministic automaton

A = (Q, T̂ , δ, q0) where δ : Q × T̂ ⇀ Q is a partial map, all states
in Q can be reached from q0, and they are all accepting. Define
L′ = {w′ ∈ L |w′ = uvv′ ⇒ δ(q0, u) �= δ(q0, uv) ∨ v = ε}. Clearly, L′

is a finite set of words. We claim that B = max{r/w′ |w′ ∈ L′} is an
adequate bound. To establish this claim, it suffices to show that for
any w ∈ L\L′, r/w = r/w′ for some w′ ∈ L′. We prove this property
by induction on the length of words. Let w ∈ L \L′, hence w = uvv′

and δ(q0, u) = δ(q0, uv) for some v �= ε. As uv∗ ⊆ L, r × v = 0 by
condition (i). Therefore, r/w = rinit+r×w = rinit+r×uv′ = r/uv′.

Modular Synthesis of Petri Nets from Regular Languages 17

Now uv′ ∈ L and it is strictly shorter than w. The validity of the

claim follows by induction.

Propositions 27 and 28 provide a basis for deciding Problem 4
and hence for synthesizing open nets from regular languages. The
presentation of the decision and synthesis procedure given in the end
of the section is cut in two parts. In the first part, we show that the
open regions of a regular language may be characterized by a finite
linear system. In the second part, we show that deciding Problem 4
amounts to deciding for a finite set of minimal words wt /∈ L whether
some open region disables t after w. The net N solution to Problem 4
is synthesized from this finite set of disabling regions as indicated in
Prop. 27.

4.1 A finite linear characterization of open regions

Let L ⊆ T̂ ∗ be a prefix closed and regular language over T̂ =
{t1, . . . , tk}. Then L = L(A) for some finite deterministic automaton

A = (Q, T̂ , δ, q0) where δ : Q× T̂ ⇀ Q is a partial map, all states in
Q can be reached from q0, and they are all accepting. We construct
from A a finite linear system such that a non-negative integer vector
r = 〈rinit, r ◦t1, t1 ◦r, . . . , r ◦tk, tk ◦r〉 is an open region of L if and only
if it is a solution of this system.

The construction of the linear system is based on a partial un-
folding of A into a finite automaton UA = (Q′, T̂ , δ′, q′0) with com-
ponents as follows. Q′ is a subset of words of L(A), constructed
inductively from the single element q′0 = ε according to the comple-

tion rule stated hereafter. Let w ∈ Q′, then for any t ∈ T̂ , wt ∈ Q′

and δ′(w, t) = wt if and only if δ(q0, wt) is defined and differs from
δ(q0, v) for every prefix v of w. This yields a finite spanning tree.
A finite number of chords are then added by setting δ′(vu, t) = v
whenever vu, v ∈ Q′ and δ(q0, vut) = δ(q0, v).

Proposition 29. Let r = 〈rinit, r ◦t1, t1 ◦r, . . . , r ◦tk, tk ◦r〉 be a non-
negative integer vector. Then r is an open region of L(A) if and only
if:

i) r × ut = 0 for every chord vu
t−→ v in UA,

ii) r/w ≥ r ◦t for every edge w
t−→ w′ in UA,

iii) r ◦th = 0 for every letter th ∈ T̂ \ T .
Proof. In view of Prop. 28, the stated conditions are necessary.
Conversely, if (i,ii,iii) hold, then r is an open region of L(A) because
L(A) = L(UA). One may indeed reproduce the reasoning followed in
the proof of Prop. 28 to show that r is a bounded region of L(UA).

18 Perspectives in Concurrency

Each condition r× ut = 0 in Prop. 29 is equivalent to the linear
homogeneous equation:

Σk
h=1

X(h) × (th
◦r − r◦th) = 0 (1)

where
X = ψ(ut) is the Parikh image of the cycle ut in UA. Similarly,
each condition r/w ≥ r ◦t in Prop. 29 is equivalent to the linear
homogeneous inequality:

rinit +Σk
h=1

Y (h)× (th
◦r − r◦th)− (r◦t) ≥ 0 (2)

where
Y = ψ(w) is the Parikh image of the path w in UA.

Let REG denote the finite system of linear equations (1) and
inequalities (2) in the 2k + 1 integer variables rinit, th

◦r and r◦th
derived from UA, augmented with rinit ≥ 0, th

◦r ≥ 0 and r◦th ≥ 0

for all h, and r ◦th = 0 for every letter th ∈ T̂ \ T .
Proposition 30. An integer vector r is an open region of L = L(A)
if and only if all linear constraints in REG are satisfied.

Proof. This is an immediate consequence of Prop. 29.

4.2 The decision and synthesis procedure

From propositions 27 and 30, L(A) = L(N) for some open P/T-net
N if and only if, for each letter t ∈ T and for each state w of UA,
either w

t−→ w′ for some w′ or r/w < r◦t for some open region r. Now
r/w < r◦t is equivalent to the linear homogeneous inequality:

rinit +Σk
h=1

Y (h)× (th
◦r − r◦th)− (r◦t) < 0 (3)

where
Y is the Parikh image of w. Inequality (3) holds for some open
region r of L(A) if and only if the linear system REG extended with
the inequality:

rinit +Σk
h=1

Y (h)× (th
◦r − r◦th)− (r◦t) ≤ −1 (4)

is feasible in Q2k+1, which can be decided in polynomial time. Indeed,
rational solutions always induce integer solutions. Let R be any
minimal set of open regions of L = L(A) large enough for disabling
t after w whenever t ∈ T , w is a state of UA, and wt /∈ L(A). Then
L = L(N) where N is constructed as indicated in proposition 27.

Modular Synthesis of Petri Nets from Regular Languages 19

5 Conclusion

Let us first summarize the paper. We have refined the model of dis-
tributed Petri nets studied in [2], by considering net architectures
(λ,G) where λ : T → S partitions the set of transitions over sites
and G = (S,→) specifies the possible communications between sites.
We have stated conditions under which one can check in a modu-
lar way the coherency of a product specification {Ls | s ∈ S}, where
each Ls is a regular language over ∪{λ−1(s′) | s′ = s ∨ s′ → s}.
We have shown that the distributed P/T-net synthesis problem may
then be decomposed into |S| independent “open” net synthesis prob-
lems, which may be solved by a simple adaptation of already known
techniques.

We now compare our approach to the synthesis of distributed
systems with the earlier approach taken in [6]. In that work, the
authors start from global specifications, namely a transition system
TS over a global alphabet T . The goal is to produce an implemen-
tation by a product of transition systems {TSs | s ∈ S} over some
distributed alphabet {Ts | s ∈ S} with T = ∪sT . The drawback
is the impossibility to deal with large specifications, since these are
monolithic. We tried in [9] to adopt this framework for the synthesis
of P/T-nets from modular specifications. For that purpose, we re-
placed the global specification TS with a Modular Transition System
[16], as follows.

A modular transition system comprises a set of local modules
TS′

s over disjoint alphabets T ′
s = Ts \ ∪ {Ts′ | s′ �= s} plus a synchro-

nizing module S. The synchronizing module defines all remaining
transitions in ∪{Ts ∩ Ts′ | s �= s′} as jumps between vectors of states
of the local modules. The synthesis of P/T-nets from modular speci-
fications is unfortunately more symbolic than modular: one can avoid
computing a global transition system, but one cannot cut the syn-
thesis problem to smaller independent synthesis problems. This is
the reason why we chosed here to start from a product specification
{Ls | s ∈ S}, which would rather look as implementations in the spirit
of [6].

Our goals differ also significantly from the goals pursued in [6] in
that we want to synthesize distributed P/T-nets, and this introduces
a lower level of implementation. This led us to consider that the
communication network on which the implementation is mapped has
some importance, hence the particular form of our product spec-
ifications {Ls | s ∈ S} where each Ls is a regular language over
∪{λ−1(s′) | s′ = s ∨ s′ → s}.

Bibliography

[1] Badouel, E., Bernardinello, L., Darondeau, Ph.: Polynomial Algorithms for
the Synthesis of Bounded Nets. Proc. CAAP, LNCS 915 (1995) 647-679.

20 Perspectives in Concurrency

[2] Badouel, E., Caillaud, B., Darondeau, Ph.: Distributing finite automata
through Petri net synthesis. Formal Aspects of Computing 13 (2002) 447-
470.

[3] Bernardinello, L., De Michelis, G., Petruni, K., Vigna, S.: On the Syn-
chronic Sructure of Transition Systems. In J. Desel, editor, Structures in
Concurrency Theory, Workshops on Computing, Springer Verlag (1996) 11-
31.

[4] Bernardinello, L.: Synthesis of Net Systems. Proc. ATPN, LNCS 691 (1993)
11-31.

[5] Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri
Nets from Finite Transition Systems. IEEE Trans. on Computers 47,8 (1998)
859-882.

[6] Castellani, I., Mukund, M., Thiagarajan, P.S.: Synthesizing Distributed
Transition Systems from Global Specifications. Proc. FSTTCS, LNCS 1738
(1999) 219-231.

[7] Christensen, S., Petrucci, L.: Modular State Space Analysis of Coloured
Petri nets. Proc. ATPN, LNCS 935 (1995) 201-217.

[8] Darondeau, P.: Region Based Synthesis of P/T-nets and its Potential Ap-
plications. Proc. ATPN, LNCS 1825 (2000) 16-23.

[9] Darondeau, P., Petrucci, L.: Modular Automata 2 Distributed Petri Nets 4
Synthesis. INRIA-RR 6192 (2007).

[10] Desel, J., Reisig, W.: The Synthesis Problem of Petri Nets. Acta Informatica
33 (1996) 297-315.

[11] Duboc, C.: Mixed Product and Asynchronous Automata. Theoretical Com-
puter Science 48, 3 (1986) 183-199.

[12] Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures; Part I: Basic
Notions and the Representation Problem. Acta Informatica 27 (1990) 315-
342.

[13] Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures; Part II: State
Spaces of Concurrent Systems. Acta Informatica 27 (1990) 343-368.

[14] Hoogers, P.W., Kleijn, H.C.M., Thiagarajan, P.S.: A Trace Semantics for
Petri Nets. Proc. ICALP, LNCS 623 (1992) 595-604.

[15] Mukund, M.: Petri Nets and Step Transition Systems. International Journal
of Foundations of Computer Science 3,4 (1992) 443-478.

[16] Petrucci, L.: Modélisation, vérification et applications. Mémoire
d’habilitation à diriger des recherches, Université d’Evry (2002).

[17] van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in
bisimulation semantics. Proc. IFIP Congress, North-Holland/IFIP (1989)
613-618.

