
Modular State Spaces for Prioritised Petri Nets

C. Lakos1 and L. Petrucci2

1 University of Adelaide
Adelaide, SA 5005

AUSTRALIA
Charles.Lakos@adelaide.edu.au

2 LIPN, CNRS UMR 7030, Université Paris XIII
99, avenue Jean-Baptiste Clément
F-93430 Villetaneuse, FRANCE

Laure.Petrucci@lipn.univ-paris13.fr

Abstract. Verification of complex systems specification often encoun-
ters the so-called state space explosion problem, which prevents exhaus-
tive model-checking in many practical cases. Many techniques have been
developed to counter this problem by reducing the state space, either by
retaining a smaller number of relevant states, or by using a smart rep-
resentation. Among the latter, modular state spaces [CP00,LP04] have
turned out to be an efficient analysis technique in many cases [Pet05].
When the system uses a priority mechanism (e.g. timed systems [LP07]),
there is increased coupling between the modules — preemption between
modules can occur, thus disabling local events. This paper shows that
the approach is still applicable even when considering dynamic priorities,
i.e. priorities depending both on the transition and the current marking.

Keywords: Modular state spaces, prioritised Petri Nets

1 Introduction

State space exploration is a convenient technique for the analysis of concurrent
and distributed systems. Its chief disadvantage is the so-called state space ex-
plosion problem where the size of the state space can grow exponentially in the
size of the system.

One way to alleviate the state space explosion problem is to use modular
analysis, which takes advantage of the modular structure of a system specifica-
tion. The internal activity of the modules is explored independently rather than
in an interleaved fashion. Modular state space exploration has yielded significant
efficiency gains in the analysis of systems where the modules exhibit strong co-
hesion and weak coupling [LP04,Pet05]. The benefits arise because the internal
activity of individual modules can be explored independently without consider-
ing the many possible interleavings of this internal activity. Interaction between
modules is only considered at synchronisation (or fused) transitions.

If the system has some form of priority, e.g. time, then the internal activity
of the modules is no longer independent. An earlier internal event in one module



will precede a later internal event in another. In this way, a high priority module
may preempt all activity of a low priority module, even without interaction. If
the priority scheme is dense, e.g. real number priorities, then the priorities may
eliminate many possible interleavings of activity and modular state space explo-
ration will yield few benefits. However, if the priority scheme is coarse grained,
then modular state space exploration may still be of value. This is the situation
that we explore in this paper.

We consider Modular Petri Nets which incorporate a dynamic priority scheme
similar to that of Bause’s work [Bau97]. The scheme is termed dynamic because
the priority of a transition depends on the current marking, not just on the
firing mode. Bause considered the constraints on the priority scheme so that the
prioritised net would preserve liveness and home properties of the non-prioritised
net, despite having a reduced state space. By contrast, we are interested in the
possible benefits of modular state spaces for prioritised nets.

We choose a priority scheme where the greater priority value implies a higher
priority. Equally well, we could choose a priority scheme where lower priority val-
ues indicate a higher priority. For example, if the priority value was given by an
enabling time, earlier timed events would preempt later ones.

The paper is organised as follows. After introducing the basic definitions and
notations in section 2, we adapt, in section 3, the modular state space exploration
technique from [CP00,LP04] to modular nets with dynamic priorities. Associated
algorithms are given in section 4, together with the formal results on which they
depend. Section 5 presents experimental results, showing the benefits of the
approach. Finally, section 6 summarises the contributions and gives perspectives
for future work.

2 Basic Definitions

This section introduces the basic concepts and notations used in the paper. A
parallel is drawn between the definitions of Petri nets and prioritised Petri nets,
and then between their modular extensions.

2.1 Petri Nets

We first recall the basic definitions and notations for Petri nets:

Definition 1 (Petri nets).
A Petri net is a tuple PN = (P, T,W,M0), where:

– P is a finite set of places.
– T is a finite set of transitions such that T ∩ P = ∅.
– W is the arc weight function mapping from (P × T ) ∪ (T × P ) into N.
– M0 is the initial marking, namely a function mapping from P into N.



The elements defining the Petri net behaviour can now be expressed:

Definition 2 (Markings, enabling rule).

– A marking is a function M mapping from P into N. The set of all markings
is denoted by M.

– A transition t ∈ T is enabled in a marking M , denoted by M [t〉, iff ∀p ∈ P :
W (p, t) ≤M(p).

– When a transition t ∈ T is enabled in a marking M1, it may occur, changing
the marking M1 to another marking M2, denoted by M1[t〉M2 and defined
by: ∀p ∈ P : M2(p) = (M1(p) − W (p, t)) + W (t, p). The set of markings
reachable from a marking M is: [M〉 = {M ′ | ∃σ ∈ T ∗ :M [σ〉M ′} where T ∗
is the transitive closure of T .

2.2 Prioritised Petri Nets

We extend the above definitions to prioritised Petri nets, where the priority of
transitions is dynamic, i.e. it depends on the current marking [Bau97].

Definition 3 (Prioritised Petri net).
A Prioritised Petri net is a tuple PPN = (P, T,W,M0, ρ), where:

– (P, T,W,M0) is a Petri net.
– ρ is the priority function mapping a marking and a transition into R+.

The behaviour of a prioritised Petri net is now detailed, markings being
those of the associated Petri net. Note that the firing rule is the same as for non-
proritised Petri nets, the priority scheme influencing only the enabling condition.

Definition 4 (Prioritised enabling rule).

– A transition t ∈ T is priority enabled in marking M , denoted by M [t〉ρ, iff:
• it is enabled, i.e. M [t〉, and
• no transition of higher priority is enabled, i.e. ∀t′ : M [t′〉 ⇒ ρ(M, t) ≥
ρ(M, t′).

– The definition of the priority function ρ is extended to sets and sequences of
transitions (and even markings M):
• ∀X ⊆ T : ρ(M,X) = max{ρ(M, t) | t ∈ X ∧M [t〉}
• ∀σ ∈ T ∗ : ρ(M,σ) = min{ρ(M ′, t′) | M ′[t′〉ρ occurs in M [σ〉ρ}.

In the definition of ρ(M,X), the setX will often be the set T of all transitions,
in which case the T could be omitted and we could view this as a priority of
the marking, i.e. ρ(M). The definition of ρ(M,X) means that we can write the
condition under which transition t is priority enabled in marking M as M [t〉ρ,
or in the expanded form M [t〉 ∧ ρ(M, t) = ρ(M,T ). We prefer the latter form if
the range of transitions is ambiguous.

If the priority function is constantly zero over all markings and all transi-
tions, then the behaviour of a Prioritised Petri Net is isomorphic to that of the



underlying Petri Net. With this in mind, the subsequent presentation only in-
cludes definitions of prioritised constructs — the non-prioritised versions can be
deduced by setting the priority function to a constant zero value.

Note that we choose to define priority as a positive real-valued function over
markings and transitions — the higher the value, the greater the priority. We
could equally define priority in terms of a rank function which maps markings
and transitions to positive real values, but where the smaller value has the higher
priority. This would be appropriate, for example, if the rank were an indication
of earliest firing time. Note that the dependence of the priority function on the
markings (as well as the transitions) means that the priority is dynamic.

2.3 State Spaces of (Prioritised) Petri Nets

The state space (also named occurrence graph) of a Petri net is represented as
a graph which contains a node for each reachable marking and an arc for each
possible transition occurrence. Since state spaces are defined similarly for Petri
nets without and with priorities, only the latter definition is given. The sole
difference is whether there are priorities or not for the firing rule.

Definition 5 (State space of a prioritised Petri net).
Let PPN = (P, T,W,M0, ρ), be a prioritised Petri net. The Prioritised State
Space of PPN is the directed graph PSS = (V,A), where:

1. V = [M0〉ρ is the set of vertices.
2. A = {(M1, t,M2) ∈ V × T × V |M1[t〉ρM2} is the set of arcs.

Example: The Petri net in figure 1(a) is equivalent to the modular Petri net of
figure 4. Its (full) state space is shown in figure 1(b). Note that the initial state
is shown as A1B1C1, thus indicating that place A1 is marked with a token in
module A, place B1 is marked with a token in module B, and place C1 is marked
with a token in module C. In this initial state, only transition F1 is enabled, its
occurrence leading to state A2B2C1.

Example: The Petri net in figure 2 is a simplified version of the one considered
in more detail in figure 51. It captures part of the message-handling of a device,
such as those used on a factory floor in the Fieldbus protocol [MSF+99]. The
device cycles through states A, B and C. Place U holds one token for each
urgent message that is waiting to be sent. At each cycle, the device can send
an urgent message (if one is available) by firing transition SU, or it can choose
not to send a message by firing transition noS. Similarly, in each cycle, it can
generate an urgent message (by firing transition GU ), or choose not to generate
such a message by firing transition noGU.

The state space for this system is shown in figure 3. Here, the states are
annotated with the places which hold a token, and place U is flagged with the
1 The state space for the modular prioritised Petri net of figures 5 and 6 is too large
to be represented here.



A1

F1

A2

A3

C1

F3

tA

B1

C2

F2

Module A Module B Module C

B2

tB

(a) Petri net equivalent to the mod-
ular Petri net of figure 4.

A1B1C1

A2B2C1A2B2C1

A3B3C2

F1

F2

tB

F3

A2B3C2 A3B2C1

tA

F2tA

tB

(b) The full state space.

Fig. 1. The Petri net and state space of the system in figure 4.

A B CnoS(1) noGU(1) tick(1)

SU(2) GU(1)

U

Fig. 2. Simplified Petri net for device message generation.

number of tokens in the place. If the net is not prioritised, then the number of
urgent messages can grow without limit, as indicated by the incomplete state
space. If the transitions are prioritised (with the priorities shown in parentheses),
then transition SU has higher priority than noSU, and the greyed-out part of
the state space will be omitted.

This partial example only illustrates the value of a static priority scheme.
The value of a dynamic priority scheme is shown in the extended example of
figure 5.

2.4 Modular Petri Nets

Modular Petri nets are defined in a similar manner to Petri nets. Unlike the
definitions of [CP00] we only consider communication through transitions.

Definition 6 (Modular Petri Net).
A modular Petri net is a pair MN = (S,TF ), satisfying:



A B

C

CU AU BU CU2 AU2 BU2
noS GU

noGUtick

tick

SU

tickGU GUnoS

SU

noS

noGU noGU

Fig. 3. State space for simplified Petri net for device message generation.

1. S is a finite set of modules such that:
– Each module, s ∈ S, is a Petri net:
s = (Ps, Ts,Ws,M0s).

– The sets of nodes corresponding to different modules are pair-wise dis-
joint: ∀s1, s2 ∈ S : [s1 6= s2 ⇒ (Ps1 ∪ Ts1) ∩ (Ps2 ∪ Ts2) = ∅].

– P =
⋃
s∈S

Ps and T =
⋃
s∈S

Ts are the sets of all places and all transitions

of all modules, and W =
⋃
s∈S

Ws is the composite weight function defined

on all arcs.
2. TF ⊆ 2T \ {∅} is a finite set of non-empty transition fusion sets.

In the following, TF also denotes ∪tf∈TF tf .
We now introduce transition groups for the actions of the Modular Petri Net,
both simple and composite.

Definition 7 (Transition group). A transition group tg ⊆ T consists of ei-
ther a single non-fused transition t ∈ T \ TF or all members of a transition
fusion set tf ∈ TF . The set of transition groups is denoted by TG. The transi-
tion groups which consist only of transitions in a set T ′ ⊆ T is denoted TG |T ′ .

A transition can be a member of several transition groups as it can be syn-
chronised with different transitions (a sub-action of several more complex ac-
tions). Hence, a transition group corresponds to a synchronised action. Note
that all transition groups have at least one element.

Next, we extend the arc weight function W to transition groups:

∀p ∈ P ,∀tg ∈ TG :W (p, tg) =
∑
t∈tg

W (p, t), W (tg , p) =
∑
t∈tg

W (t, p).

Markings of modular Petri nets are defined as markings of Petri nets, over the
set P of all places. The restriction of a marking M to a module s is denoted by
Ms.

The enabling and occurrence rules of a modular Petri net can now be ex-
pressed.

Definition 8 (Modular Petri net firing rule).

– A transition group tg is enabled in a marking M , denoted by M [tg〉, iff
∀p ∈ P :W (p, tg) ≤M(p).



– When a transition group tg is enabled in a markingM1, it may occur, chang-
ing the marking M1 to another marking M2, defined by ∀p ∈ P : M2(p) =
(M1(p)−W (p, tg)) +W (tg , p).

Example: Figure 4 depicts a modular Petri net consisting of three modules A,
B and C. Modules A and B both contain transitions labelled F1 and F3, while
modules B and C both contain transition F2. These matched transitions are
assumed to form three transition fusion sets.

A1

A2

B1

B2

B3

C1

C2

F1

F3

F2F1

tB

F3

F2

Module A Module B Module C

A3

tA

Fig. 4. Modular PT-net with modules A, B and C.

2.5 Prioritised Modular Petri Nets

Similar to modular Petri nets, prioritised modular Petri nets can now be defined:

Definition 9 (Prioritised Modular Petri Net).
A Prioritised Modular Petri net is a tuple PMN = (S,TF , ρ), where:

– (S,TF ) is a Modular Petri net.
– ρ is the priority function mapping a marking and a transition into R+.

Transition groups are defined as for non-prioritised Petri nets. They also have
an associated priority function:

Definition 10 (Priority of transition groups). The priority function ρ is
extended to transition groups by defining it to be the minimum priority of its
elements, i.e. ρ(M, tg) = mint∈tg ρ(M, t).

Note that the definition of the priority of a transition group is somewhat
arbitrary. A simpler approach would have been to insist that all elements of
a transition group have the same priority. This would mean that the priority
allocations in one module would need to take account of the priority allocations in



all other modules with which this one might synchronise. This seems excessively
onerous in practical applications, especially since the priorities must agree for
all reachable markings. The decision to define the priority of a transition group
as the minimum over the elements has been guided by timed systems — if one
transition in a group is enabled earlier than the others, then it must wait till the
others are also enabled.

The arc weight function W is extended to transition groups, and markings
are defined as for modular Petri nets. The firing rule in prioritised modular Petri
nets takes into account the priority of transition groups.

Definition 11 (Priority enabling of transition groups). A transition group
tg ∈ TG is priority enabled in a marking M , denoted by M [tg〉ρ iff:

– it is enabled, i.e. M [tg〉, and
– no transition group of higher priority is enabled, i.e. ∀tg ′ ∈ TG : M [tg ′〉 ⇒
ρ(M, tg) ≥ ρ(M, tg ′).

Example: Figure 5 depicts a module of a prioritised modular Petri net. It cap-
tures the message-handling of a device, such as those used on a factory floor in
the Fieldbus protocol [MSF+99]. Messages are generated by the device — ur-
gent messages (indicated by U ) need to be processed in a timely manner, while
normal messages (indicated by N ) can wait, but not too long. The device cycles
through states A, B, C and D. Place U holds one token for each urgent message
that is waiting to be sent, with a maximum of 2 (to limit the size of the state
space). The capacity can be imposed by a capacity constraint, or by the use of a
complementary place. If place N is non-empty, then there is a normal message
to be sent, and the number of tokens indicates how long it has been delayed —
it is incremented each time transition tick is fired. (This is shown as a double-
ended, dashed arc between transition tick and place N. The precise notation is
not shown to avoid clutter and because it will depend on the specific kind of
Petri net.) Again we impose an arbitrary capacity of 2 on this place.

Transition noS is local and indicates that no message is to be sent, while
transitions SU and SN are fused to others in the environment (as indicated by
the bold outlines) and denote that an urgent or a normal message is sent to
some controller module. Transition noGU indicates that no urgent message is
generated in this cycle, while transition GU indicates that an urgent message
is generated. Similarly, transitions noGN and GN relate to the generation of
normal messages. (Note that the diagram is again simplified to avoid clutter.)

We attach a priority of 1 to all local transitions. The priority of transition
SU is set to the number of pending urgent messages plus 1, while the priority
of transition SN is set to the number of ticks that the normal message has been
waiting. Thus, if an urgent message is waiting and no normal messages, then
transition SU has priority over noS. However, if the controller is not ready to
receive the urgent message, then transition noS will fire. Similarly, if there is no
urgent message but there is a pending normal message, then that message will
be sent (by firing transition SN ) if it has been waiting for more than 1 cycle,



A B C DnoS noGU noGN tick

SU

SN

GU GN

U

N

Fig. 5. Module of a prioritised PT-net for the message-handling of a device.

Idle

HandleUrgent HandleNormal

Fig. 6. Module of a controller to receive messages from the devices.

or it may be sent if it has been waiting only 1 cycle. Again, a normal message
which has been waiting at least 2 cycles, may compete for processing with an
urgent message which has only just been generated.

Figure 6 depicts a trivial controller for accepting the messages from a device.
It has one transition to handle each of the urgent and normal messages, and we
may assume that these transitions have the same priority.

3 Modular State Spaces

In the definition of modular state spaces, we denote the set of states reachable
fromM by occurrences of local (non-fused) transitions only, in all the individual
modules, by [[M〉.

The notation with a subscript s means the restriction to module s, e.g. [M〉s
is the set of all nodes reachable from global markingM by occurrences of transi-
tions in module s only (excluding fused transitions). We will also use lower case
m to refer to the local marking of a module.

We use M1[[σ〉〉M2 to denote that M2 is reachable from M1 by a sequence
σ ∈ (T \ TF )

∗
TF of internal transitions, followed by a fused transition, i.e.

σ = σ′tf and M1[[σ
′〉M ′1[tf 〉.

The definition of a modular state space consists of two parts: the state spaces
of the individual modules and the synchronisation graph. We can now present



the definition of modular state spaces for prioritised modular Petri nets. The
definition of a modular state space for modular Petri nets given in [CP00] uses
strongly connected components for optimisation and efficiency purposes. How-
ever, the computational benefits of using local strongly connected components
are negated by the need for local activity to abide by the global priority function.
Hence, strongly connected components are not used in prioritised modular state
spaces. Therefore, we will avoid cluttering the paper with the definition of mod-
ular state spaces (see [CP00,LP04]), and will directly formulate the prioritised
version.

In order to be able to focus on the local context of an individual module,
we need to have a localised priority function which is consistent with the global
priority function.

Definition 12 (Consistency and locality of priority functions).
Let PMN = (S,TF , ρ) be a prioritised modular Petri net.

– The priority function ρ is consistent iff ∀s ∈ S : ∀t ∈ Ts : ∀M,M ′ : Ms =
M ′s ⇒ ρ(M, t) = ρ(M ′, t).

– Given a consistent priority function ρ, we define local priority functions ρs as
the projection onto the local marking, i.e. ∀t ∈ Ts,M : ρs(Ms, t) = ρ(M, t).

Thus, with a consistent priority function, the priority of a local transition is
determined solely by the local marking. If this were not the case, the modularity
of the system would be seriously flawed, and the local state space could not be
explored without reference to the global state of the system. If it were desired
for a local transition to have a priority depending on some global state, then
that transition ought to be synchronised with another transition having access
to that state.

We can now define the modular state space for prioritised modular Petri nets.

Definition 13 (Prioritised modular state space). Let PMN = (S,TF , ρ)
be a Prioritised Modular Petri net with the initial marking M0. The prioritised
modular state space of PMN is a pair PMSS = ((PSS s)s∈S ,PSG), where:

1. PSS s = (Vs, As) is the prioritised local state space of module s:

(a) Vs =
⋃

v∈(VPSG)s

[v〉ρss .

(b) As = {(M1, t,M2) ∈ Vs × (T \ TF )s × Vs |M1[t〉ρsM2}.
2. PSG = (VPSG , APSG) is the prioritised synchronisation graph of PMN :

(a) VPSG = [[M0〉〉ρ ∪ {M0}.
(b) APSG = {(M1, (M

′
1, tf ),M2) ∈ VSG × ([M0〉ρ × TF )× VSG |

M ′1 ∈ [[M1〉ρ ∧M ′1[tf 〉ρM2}.



Explanation:
(1) The definition of the state space graphs of the modules is a generalisation of
the usual definition of state spaces.

(1a) The set of nodes of the state space graph of a module contains all states
locally reachable from any node of the synchronisation graph.

(1b) Likewise, the arcs of the state space graph of a module correspond to
all priority enabled internal transitions of the module.
(2) Each node of the synchronisation graph is a representative for all the nodes
reachable from M by occurrences of local transitions only, i.e. [[M〉ρ. The syn-
chronisation graph contains the information on the nodes reachable by occur-
rences of fused transitions.

(2a) The nodes of the synchronisation graph represent all markings reachable
from another marking by a sequence of internal transitions followed by a fused
transition. The initial node is also represented.

(2b) The arcs of the synchronisation graph represent all occurrences of fused
transitions.

The state space graphs of the modules only contain local information, i.e. the
markings of the module and the arcs corresponding to local transitions but not
the arcs corresponding to fused transitions. All the information concerning these
is stored in the synchronisation graph.

It is important to note that the above definition, in contrast to [CP00], intro-
duces a disconnect between the local state spaces and the synchronisation graph.
It is not immediately apparent how the computation of the local state spaces in
Def. 13 part 1, and specifically of [v〉ρss , is used to compute the synchronisation
graph in Def. 13 part 2, and specifically [[M1〉ρ. This is a significant algorithmic
issue which is addressed Section 4.

Example: The modular state space for the modular PT-net of figure 4 is shown
in figure 72. Note that there is a local state space for each module, as well as a
synchronisation graph which captures the occurrence of fused transitions.

In [Pet05], several experiments were conducted, showing that the size of the
modular state space is significantly reduced (compared to the size of the flat
state space) when the modules exhibit strong cohesion and weak coupling.

The efficiency gains achievable from modular state spaces arise from the ability to
explore local state spaces (of modules) independently, and then combine them
via the synchronisation graph to form a composite state space. If desired, a
full unfolded state space can be generated from the modular state space (as
in Def. 14), though it is computationally more efficient to analyse the system
without enumerating all possible interleavings.
2 The example being a modular Petri net without priorities, the definition of modu-
lar state spaces (with strongly connected components) from [CP00] should be used.
However, since in that particular case, strongly connected components always con-
tain a single node, the modular state space is also obtained using Def. 13 without
considering priorities.



A1B1C1

A2B2C1

A2B3C2A2B3C2

A1B1C1,F1

A2B2C1,F2

A3B3C2,F3

Sync. GraphModule A Module B Module C

A1 B1

B2 tB

C1

C2

B3

A2

A3

tA

B2

Fig. 7. The modular state space of the system in figure 4.

Definition 14 (Unfolded state space). Given a prioritised modular Petri
net PMN = (S,TF , ρ) and its modular state space PMSS = ((PSS s)s∈S ,PSG),
then the unfolded state space of PMSS is SS = (V,A) where:

1. V =
⋃

v∈VPSG

[[v〉ρ.

2. A =
⋃

(v,(m,tf ),v′)∈APSG

{(m, tf , v′)} ∪⋃
m∈V,s∈S,(ms,t,m′s)∈As,ρ(m,t)=ρ(m,TG)

{(m, t, (m+m′∗s )−m∗s)},

where m∗s(p) = ms(p) for p ∈ Ps and m∗s(p) = 0 for p ∈ P \ Ps.

The above definition is similar to that of [CP00], except for the addition
of priorities. Specifically, part 1 considers states reachable from v by transitions
respecting the global priority function, and part 2 considers individual transitions
satisfying the same constraint, captured as ρ(m, t) = ρ(m,TG).

The theorem which states the equivalence of the above unfolded state space
and the state space of the equivalent non-modular Petri net carries over with
only minor changes since both state spaces reflect the priority scheme.

4 Algorithms

In general, modular state spaces can alleviate the state space explosion provided
it is possible to construct the modular state space and determine properties
based on this state space without needing to explore the possible interleavings of
activity between multiple modules, i.e. without having to generate the unfolded
state space of Def. 14.

With prioritised modular nets, this is less straightforward because the priority
function imposes a global constraint on the behaviour of individual modules. The
use of prioritised modular state spaces to determine system properties is the
subject of further work. Here, we consider the construction of these prioritised
modular state spaces.

The definitions of section 3 are consistent with the definitions of [CP00] but
they hide a key computational issue — it is assumed that the computation of



[[M1〉ρ in Def. 13 part 2 is supported by the computation of the local state
spaces in part 1. (A similar comment applies to the computation of [[v〉ρ in
Def. 14 part 1.) In other words, the computation of local state spaces is as-
sumed to help determine the global markings reachable from a synchronisation
node by the firing of non-fused transitions alone. In the case of non-prioritised
modular nets, this is straightforward — localised transition sequences from a
synchronisation node can be interleaved in any order. With prioritised modu-
lar nets, the interleaving is constrained by the priority function. Accordingly, we
need to know whether the local state space, computed with the localised priority
function ρs, contains all the information necessary to compute the interleaved
sequences, and then we need to know how to compute such priority-respecting
interleaved sequences in an efficient manner. These two questions are addressed
in Lemma 1 and Proposition 1, respectively.

Lemma 1. Given a prioritised modular Petri net PMN = (S,TF , ρ) with a
consistent priority function ρ, M [[σ〉ρM ′ implies Ms[σs〉ρss M ′s for all s ∈ S,
where σs is the restriction of σ to the internal transitions of module s.

Proof. If one ignores the priorities, then it clearly follows that M [[σ〉M ′ implies
Ms[σs〉sM ′s forall s ∈ S. In other words, we can split the composite sequence into
subsequences for each module. Now, if the priorities are taken into account, then
the only way that the result would not hold is that one of the local sequences
includes a transition which is not (locally) of maximum priority. But, if it is of
maximum priority in the global sequence, then it must be of maximum priority
in the local sequence (without fused transitions), in view of the fact that ρ is
consistent. ut

A consequence of the lemma is that any priority-respecting transition se-
quence formed from non-fused transitions has its counterpart in local priority-
respecting transition sequences of the individual modules. In other words, the
local state spaces of Def. 13 part 1 contain all the information necessary to
compute [[M1〉ρ in Def. 13 part 2, and sometimes even more information.

It is important to note that the above lemma means that transitions in local
state spaces are provisional, in the sense that they will not necessarily appear
in the unfolded state space. This is because their enabling in the unfolded state
space depends on the priorities of transitions in other modules. On the other
hand, transitions in the synchronisation graph do carry over into the unfolded
state space, because these already consider global conditions.

Example: The (abbreviated) state space of Fig. 8 captures both the local state
space for the Device module of Fig. 5 and the unfolded state space for the system
consisting of the Device and Controller modules of Figs. 5 and 6. The states are
encoded as a letter (to indicate which of the places A to D is marked), followed
by the number of tokens in place U (which is the number of pending urgent
messages), followed by the number of tokens in place N (which is the number of
ticks that a normal message, if any, has been waiting). For example, state C12
means that place C is marked, there is one urgent message pending, and there



is a normal message that has been waiting for at least 2 ticks. Note that dashed
arcs indicate that the state is dealt with elsewhere (to avoid many crossing arcs).

For the local state space of the Device module, the synchronised transitions
SU and SN of Fig. 8 would not be included — they would only appear in the
synchronisation graph. Further, based solely on local information, we cannot be
sure whether the transitions shown with dotted arcs will be preempted or not.
Thus, in state A01, the sending of the normal message competes at the same
priority as the transition not to send a message. On the other hand, in state A02,
transition SN is of higher priority, but its enabling depends on the enabling of
the fusion partners, and hence the alternative noS needs to be included as well.

The fusion of the Controller net with the Device net leads to the same net
structure except for the addition of the place Idle. Hence the unfolded state space
of the composite system is as shown in Fig. 8, except that the dotted arcs (with
italic annotations) are omitted because global knowledge of the priorities allows
us to deduce that these transitions are preempted by others of higher priority.

Lemma 1 showed that the local state spaces of Def. 13 part 1 capture all the
behaviour required to compute [[M〉ρ of part 2. We now identify a property that
allows it to be computed in an efficient manner.

We first introduce some auxiliary terminology:

Definition 15. Given a prioritised modular Petri net PMN = (S,TF , ρ), and
given a local execution sequence m[σ〉ρss m′ in module s, m′ is a synchronisa-
tion point if m′ priority enables the local component of a fused transition, i.e.
∃f ∈ Ts ∩ TF : m′[f〉ρss . Intermediate synchronisation points are (potential)
synchronisation points in σ prior to m′. A realised synchronisation point is one
that is matched by appropriate synchronisation partners.

The above definition may be clarified by the example of Fig. 9. Having ar-
rived at local marking m′ (which is part of a global marking M ′), we may find
both a local transition t and a transition f , part of a fused transition tf , en-
abled. If ρs(m′, f) < ρs(m

′, t), then f cannot be priority enabled whatever the
situation with the synchronisation partners. (Recall Def. 10 where the priority
of a transition group is the minimum of the priorities of the constituent transi-
tions.) Alternatively, if ρs(m′, f) ≥ ρs(m

′, t), then f is priority enabled locally
but tf may not be priority enabled globally. This may be because the synchro-
nisation partners do not enable their component of the fused transition at the
same time, or because the priority of the transition group is decreased so that
ρ(M ′, tf ) < ρs(m

′, t).

Proposition 1. Given a prioritised modular Petri net PMN = (S,TF , ρ), and
given local execution sequences σ1, σ2, ... such that M1[σ1〉ρ11 M ′1, M2[σ2〉ρ22 M ′2,
... then there is a composite execution sequence σ with M [σ〉ρM ′ if ∃s ∈ S :
ρs(Ms, σs) = min{ρ1(M1, σ1), ρ2(M2, σ2), ...} ≥ ρ(M ′,TG |T\Ts

), provided no
preempting intermediate synchronisation points of σ1, σ2, ... are realised in σ.

Proof. The local sequences can be combined using a simple merge algorithm
— at each step, the transition at the head of the local sequence with highest



A0- B0- C0- D0- A0-
noS noGU noGN tick

C1- D1- A1-

GU

noGN tick

D00 A01GN
tick

D10 A11GN
tick

A01 B01 C01 D01 A02
noGU noGN tick

C11 D11 A12GU
noGN tick

A02 B02
noS

B0-

SN

A1- B1- C1-
noS noGU

C02 D02 A02
noGU noGN tick

C12 D12 A12GU
noGN tick

B0-

SN

C2- D2- A2-GU
noGN tick

D20 A21GN
tick

B0-

SU

A11 B11
noS

C21 D21 A22GU
noGN tick

B01

SU

C11 D11
noGU noGN

A12 B12
noS

C22 D22 A22GU
noGN tick

B02

SU

C12 D12
noGU noGN

B1-

SN

B1-

SN

noS

A2- B2- C2-
noS noGU

B1-SU

A21 B21
noS

B11SU

C21 D21
noGU noGN

A22 B22
noS

B12

SU

C22 D22
noGU noGN

B2-

SN

B2-

SN

D20GN

Fig. 8. Local state space of a prioritised PT-net.



t f

m'

Fig. 9. A synchronisation point.

priority is removed and added to the composite sequence. The choice is only
non-deterministic when multiple local sequences have, as head, transitions with
the same maximum priority. In this case, choose any one not in module s. Note
that the non-deterministic choice only affects the order of interleaving and not
the final reached marking.

Recall from Def. 3 that the priority of a sequence is the minimum priority
of its constituent transitions. So, if the marking M ′ has priority less than or
equal to the priority of all the local sequences, then the transitions of every
local sequence will be added to the composite sequence before any transition
enabled in marking M ′. If this is not the case, we can still allow a module to
have a sequence with minimum priority less than ρ(M ′,TG), provided that that
sequence enables the relevant transitions in marking M ′, i.e. those with priority
ρ(M ′,TG). ut

Corollary 1. In determining whether a fused transition is enabled, we only need
to know the priority of the sequences leading to the synchronisation point and
not the sequences themselves.

We are normally interested in merging local sequences only when it comes
time to consider whether a fused transition is enabled. The above proposition
and corollary mean that we need only consider the priority of the local sequences
leading from one synchronisation point to the next, together with the priorities
of the associated sequences.

Further, if we have a priority scheme where the priorities are non-increasing,
then the priority of a sequence is given by the priority of the last element of the
sequence.

The above formal results provide the foundation for the following algorithms to
compute the modular state space. These algorithms are refined versions of those
presented in [LP07] for Modular Timed Petri Nets.

Algorithm 1 computes the synchronisation graph, while algorithm 2 com-
putes the local state space for module i. Both follow the common pattern of
maintaining a set of as-yet unexplored markings, called Waiting. Each iteration
of the main loop explores the transitions enabled in these markings, adds new
arcs to the relevant state space with the function Arc.Add(...), and adds new
nodes to the state space and to Waiting with the function Node.Add(...).

In algorithm 2 the local markings are stored together with their preceding
synchronisation point — the notation M ′i [〉pM ′′i represents local marking M ′′i



which is reached from a preceding synchronisation point M ′i with a local transi-
tion sequence of priority p. For consistency, a zero length sequence has priority
∞. Lines 8–11 consider the local components of fused transitions — if they are
(locally) enabled, then they are added to the eventual result trysynchi and the
marking is identified as a synchronisation point. Lines 12–20 then consider inter-
nal transitions. The first alternative deals with the situation where the transition
enabling is not dependent on the realisation of a synchronisation point, while
in the second alternative, the enabling is dependent on such a realisation, and
hence the new marking is paired with this synchronisation point. The result of
a call to Explore(Si,Mi) is a set of candidate synchronisations which record
the preceding synchronisation point and the priority of the transition sequence
leading from one to the other.

In algorithm 1, the central loop (in lines 8–22) tries to match up the candidate
synchronisations so that they satisfy the condition of proposition 1. It considers
a subset of the elements returned by each call to Explore(Si,Mi), treating
them as a composite sequence from local marking Mi to local marking M ′i with
all intermediate synchronisation points identified. In detail:

– Line 9 identifies one of the synchronisation participants — as we shall see
below, it is the one with minimum priority sequence.

– Line 10 considers the sequences of local transitions for all modules. In an
abuse of terminology, a set of abstract edges from the module is concatenated
together to form a sequence, which we then refer to as σj which technically
should be the sequence of transitions (without the intermediate markings).

– Lines 11–12 consider modules participating in the synchronisation — the
end of the returned sequence enables tf locally, the priority of the sequence
is greater than that from module i, and at the end of the sequence, no local
transition will (necessarily) preempt the firing of tf .

– Line 13 considers modules not participating in the synchronisation — they
reach an end point which can lead locally to a marking compatible with the
synchronisation, i.e. where the module will wait for the synchronisation.

– Line 14 requires that the minimum priority of module i is greater than the
other priorities at the synchronisation point, i.e. so that module i can catch
up.

– Line 15 requires that no intermediate synchronisation points are realised,
the intermediate synchronisation points being the markings identified in the
sequences at line 10. We can determine whether any of these intermediate
synchronisation points are realised by applying the same logic as above.

5 Results

The Maria tool [Mäk02] was extended with dynamic priorities along the lines
of the algorithms in Section 4. Here, we consider some of the results produced
with this prototype implementation. The results were produced on a Mac Pro



Algorithm 1: prioritised synchronisation graph.
set Waiting ← ∅;1
Node.Add(M0,∞);2
repeat3

forall (M,p) ∈ Waiting do4
Waiting ← Waiting \{(M,p)};5
∀i : trysynchi ←Explore(Si,Mi);6
forall tf ∈ TF do7

forall M ′ s.t.8
∃i : (tf ∩ Ti 6= ∅ ∧9

∀j : (σj =Mj [〉qj1Mj1[〉qj2 ...[〉qjnMjnj ⊆ trysynchj ∧10
((tf ∩ Tj 6= ∅ ∧Mjnj =M ′

j ∧M ′
j [tf 〉 ∧11

ρj(σj) ≥ ρi(σi) ∧ ρ(M ′, tf ) ≥ ρj(M ′
j , Tj \ TF )) ∨12

(tf ∩ Tj = ∅ ∧M ′
j ∈ [Mj,nj 〉j ∧ ρj(M ′

j) ≤ ρi(σi) ≤ ρj(σj))) ∧13
ρi(σi) ≥ ρ(M ′,TG|T\Ti

) ∧14
no preempting intermediate synch points are realised))15

do16
if M ′[tf 〉M ′′ ∧ ρ(M ′, tf ) = ρ(M ′,TF ) then17

Node.Add(M ′′,min(p, ρ(M ′, tf )));18

Arc.Add(M [(M ′, tf )〉ρ(M
′,tf )M ′′);19

endif20

endfall21

endfall22

endfall23

until stable ;24

with two 2.66 GHz dual-core Intel Xeon processors and 2 GB memory. Note that
this is not a complete implementation but it is sufficient to provide a proof of
concept.

A simple example of message-handling for devices, such as those used on the
factory floor in the Fieldbus protocol [MSF+99], was introduced in Section 2.
The state space sizes and machine resource requirements are shown in Table 1.

On the left are the results for the modular state space for between 1 and 5
devices. The number of nodes and arcs are the figures for the synchronisation
graph, while the time and space requirements (in seconds and kilobytes) are for
the construction of the entire modular state space. The size of the state space
for each module is 39 nodes and 48 arcs. This is similar to the flat state space
for 1 device. Note, however, that the local state space does not include the fused
transitions, while the flat state space will record their occurrence.

On the right of the table are the results for a flattened system, i.e. the un-
folded state space. Note that memory was exhausted for 5 devices.

It might be argued that if the devices were identical, then symmetry reduction
would probably give similar, if not better, results. However, if the devices were
not identical, then the modular state space exploration would still be effective.



Algorithm 2: prioritised local state space — Explore(Si,Mi).
set Waitingi ← ∅;1
set trysynchi ← ∅;2
Node.Add(Mi[〉∞Mi);3
repeat4

forall (M ′
i [〉pM ′′

i ) ∈ Waitingi do5
Waitingi ← Waitingi \ {(M ′

i [〉pM ′′
i )};6

synchpt ← false;7
forall tf ∈ TF ∩ Ti, M ′′

i [tf 〉, ρi(M ′′
i , tf ) ≥ ρi(M ′′

i , Ti \ TF ) do8
trysynchi ← trysynchi ∪ {(M ′

i [〉pM ′′
i , tf )};9

synchpt ← true;10

endfall11
forall ti ∈ Ti \ TF , M ′′

i [ti〉M ′′′
i , ρi(M

′′
i , ti) = ρi(M

′′
i , Ti \ TF ) do12

if ¬synchpt ∨ρi(M ′′
i , ti) = ρi(M

′′
i , Ti) then13

Node.Add(M ′
i [〉min(p,ρi(ti))M ′′′

i );14

Arc.Add(M ′′
i [ti〉ρi(ti)M ′′′

i );15

else16
Node.Add(M ′′

i [〉ρi(ti)M ′′′
i );17

Arc.Add(M ′′
i [ti〉ρi(ti)M ′′′

i );18

endif19

endfall20

endfall21

until stable ;22
return trysynchi23

6 Conclusions

The modular state space technique [CP00] proves to give good results in practical
cases [LP04,Pet05] to alleviate the state space explosion problem. This technique
is designed to handle nets where modules communicate through transition fusion,
i.e. synchronise. The technique is particularly efficient when the system modules
exhibit strong cohesion and weak coupling.

In practice many systems use some kind of priority mechanism, either im-
plicit or explicit. This is the case when there are timing constraints or when
some events should be executed before others, once they are enabled (e.g. in
scheduling problems). The priority used may either be static, i.e. it is fixed for a

Table 1. State space results for device message handling.

Modular state space Unfolded state space
Devices Nodes Arcs Sec KB Nodes Arcs Sec KB

1 7 42 0.009 2.8 39 58 0.005 3.7
2 39 48 0.061 11.4 1441 3482 0.074 100.2
3 343 6,174 0.565 101.9 51,304 156,609 3.643 4,205.5
4 2,401 57,624 5.412 912.6 178,2011 6,264,028 196.140 164,439.5
5 16,807 504,210 51.856 7,902.5 — — > 3320 > 2,570,457.13



given transition and will never change during the life of the system, or dynamic,
meaning that it does not depend solely on the transition involved, but also on
the current marking.

In this paper, we have first introduced modular Petri nets with dynamic
priorities and then adapted the modular state space technique to these nets. This
involved defining the priority for synchronisation transitions in a way which is
consistent with both practical and theoretical concerns. The resulting modular
state space with priorities contains more states than necessary since part of the
preemption due to priorities cannot be known a priori. Some preliminary results
have been generated from a partial implementation. These results provide a
proof of concept for the proposals. A fully-fledged implementation is required to
produce more extensive comparative results.

One could consider other alternatives for the priority of synchronisation tran-
sitions. Motivated by a consideration of timed systems, we set the priority of syn-
chronisation transitions to be the minimum of the priorities of the constituent
transitions. Instead, it could be set to the maximum. In this case, the preemption
rules would change — if the local component of a synchronisation transition had
priority greater than that of a local transition, then preemption would always
occur. On the other hand, if the local component of a synchronisation transition
had lesser priority than that of a local transition, then preemption may still
occur. This change would not affect the propositions, but would require changes
to the logic of the presented algorithms.

Further work is required on both theoretical and practical issues. We should
study the use of prioritised modular state spaces to prove system properties.
In order to verify some properties, it will be necessary to locally unfold part of
the state space, so as to get rid of the spurious states, while other properties
will be directly verified on the modular structure. Then, we intend to apply
the technique to a large case study. An appropriate example is the avionics
mission system from [PKBQ03], which includes both timing constraints and
explicit priorities of tasks to be scheduled on CPUs within a certain time frame.
Another example with both timing constraints and priorities is the Fieldbus
protocol [MSF+99], which provided the motivating example of message handling
in Section 2.

References

[Bau97] Falko Bause. Analysis of Petri nets with a dynamic priority method. In
Azéma, P. and Balbo, G., editors, Proc. 18th International Conference on
Application and Theory of Petri Nets, Toulouse, France, June 1997, volume
1248 of LNCS, pages 215–234, Berlin, Germany, June 1997. Springer-Verlag.

[CP00] S. Christensen and L. Petrucci. Modular analysis of Petri nets. The Com-
puter Journal, 43(3):224–242, 2000.

[LP04] C. Lakos and L. Petrucci. Modular analysis of systems composed of semi-
autonomous subsystems. In Proc. 4th Int. Conf. on Application of Concur-
rency to System Design (ACSD’04), Hamilton, Canada, June 2004, pages
185–194. IEEE Comp. Soc. Press, June 2004.



[LP07] C. Lakos and L. Petrucci. Modular state space exploration for timed Petri
nets. Journal of Software Tools for Technology Transfer, 9(3–4):393–411,
June 2007.

[Mäk02] M. Mäkelä. Model Checking Safety Properties in Modular High-Level Nets.
In W. van der Aalst and E. Best, editors, 24th International Conference
on the Application and Theory of Petri Nets, volume 2679 of LNCS, pages
201–220, Eindhoven, The Netherlands, 2002. Springer.

[MSF+99] A.B. Mnaouer, T. Sekiguchi, Y. Fujii, T. Ito, and H. Tanaka. Colored
Petri nets based modeling and simulation of the static and dynamic allo-
cation policies of the asynchronous bandwidth in the fieldbus protocol. In
J. Billington and M. Diaz, editors, Advances in Petri Nets, volume 1605 of
LNCS, pages 93–130. Springer-Verlag, 1999.

[Pet05] L. Petrucci. Cover picture story: Experiments with modular state spaces.
Petri Net Newsletter, 68:Cover page and 5–10, April 2005.

[PKBQ03] L. Petrucci, L. M. Kristensen, J. Billington, and Z. H. Qureshi. Developing
a formal specification for the mission system of a maritime surveillance
aircraft. In Proc. 3rd Int. Conf. on Application of Concurrency to System
Design (ACSD’03), Guimarães, Portugal, June 2003, pages 92–101. IEEE
Comp. Soc. Press, 2003.


