http://www-lipn.univ-paris13.fr/ petrucci/PAPERS
In Proc. International Workshop on Petri Nets and Software Engineering (PNSE’07, associated with Petri Nets’07),
Sieldlce, Poland, University of Podlasie, pages 175-190, june 2007.

Modular State Spaces and Place Fusion *

C. Lakos' and L. Petrucci?

! University of Adelaide
Adelaide, SA 5005
AUSTRALIA
Charles.Lakos@adelaide.edu.au
2 LIPN, CNRS UMR 7030, Université Paris XIIT
99, avenue Jean-Baptiste Clément
F-93430 Villetaneuse, FRANCE
petrucci@lipn.univ-parisi13.fr

Abstract. Modular state spaces [CP00,LP04| turned out to be an effi-
cient analysis technique in many cases [Pet05]. However, it is designed for
modules communicating through shared transitions. Since several mod-
els, e.g. Hierarchical Coloured Petri Nets [Jen94], rather use a place shar-
ing mechanism, we investigated the possibility of adapting the modular
state space technique to such models. This paper reports the different
trials and experiments before drawing conclusions.

1 Introduction

State space exploration is a convenient technique for the analysis of concurrent
and distributed systems. Its chief disadvantage is the so-called state space ex-
plosion problem where the size of the state space can grow exponentially in the
size of the system.

One way to alleviate the state space explosion problem is to use modular
analysis, which takes advantage of the modular structure of a system specifica-
tion. The internal activity of the modules is explored independently rather than
in an interleaved fashion. Experiments have indicated [Pet05] that modular anal-
ysis can produce a significant reduction in the size of the state space, particularly
for systems where the modules exhibit strong cohesion and weak coupling. How-
ever, these techniques are designed for systems where modules share transitions,
whereas some common formalisms (e.g. hierarchical CP-nets) use a place fusion
mechanism. Our goal is then to benefit from modular techniques when place
fusion is present.

After introducing the basic definitions in section 2, we recall, in section 3, the
modular state space exploration technique from [CP00,LP04]. We then discuss,
in section 4, different possibilities for adapting it to systems sharing places rather
than transitions. These are evaluated, and lead to a solution to deal with such
systems, explained and experimented in section 5.

* This work is supported by the French-Australian Science and Technology programme
09872RF.

2 Basic Definitions

2.1 Petri Nets

We first recall the basic definitions and notations for Petri nets, their markings,
enablings and occurrence rules:

Definition 1. A Petri net is a tuple PN = (P, T, W, M), where P is a finite
set of places, T is a finite set of transitions such that T NP = (), W is the
arc weight function mapping from (P x T) U (T x P) into N, and My is the
initial marking, namely a function mapping from P into N.

Definition 2. A marking is a function M mapping from P into N. The set
of all markings is denoted by M. A transition t is enabled in a marking M,
denoted by M|t), iff Vp € P: W(p,t) < M(p). When a transition t is enabled in
a marking My, it may occur, changing the marking My to another marking M,
defined by: Vp € P : My(p) = (M1(p) — W(p,t)) + W (t,p). The set of markings
reachable from a marking M is: [M) ={M'|Jo € T* : M[o)M'}.

2.2 Modular Petri Nets

Modular Petri nets are defined in a similar manner. As in the definitions of [CP00]
we consider communication through places as well as transitions.

Definition 3. A modular Petri net is a triple MN = (S, PF, TF), satisfying:

1. S is a finite set of modules such that:
— Fach module, s € S, is a Petri net:
S 21(}2,7;,LV;,A4b8)
— The sets of nodes corresponding to different modules are pair-wise dis-
joint: Vsy,89 € S :[s1 # s2 = (Ps, UTs,) N (Ps, UTs,) = 0].
- P = U P, and T = U T are the sets of all places and all transitions

ses sES
of all modules.

2. PF C 2P\ {0} is a finite set of non-empty place fusion sets such that:

— For nodes x € PUT we use S(x) to denote the module to which x belongs.
For all p in P we define My(p) = Moy, (p).
— Members of a place fusion set have identical initial markings:

Vpf € PF :Vp1,p2 € pf : [Mo(p1) = Mo(p2)].

3. TF C 2T\ {0} is a finite set of non-empty transition fusion sets.

In the following, TF also denotes U rrif.
We now introduce place groups and transition groups.

Definition 4. A place group pg C P is an equivalence class of the smallest
equivalence relation containing all pairs (p1,p2) € P x P where:

dpf € PF :p1,p2 € pf.

A transition group tg C T consists of either a single non-fused transition
t € T\ TF or all members of a transition fusion set tf € TF.

The set of place groups is denoted by PG, and the set of transition groups by
TG.

A place is a member of exactly one place group, which represents e.g. a shared
resource. Place groups form a partition of the set of places. A transition can be
a member of several transition groups as it can be synchronised with different
transitions (a sub-action of several more complex actions). Hence, a transition
group corresponds to a synchronised action. Note that all transition groups have
at least one element.

Next, we extend the arc weight function W to place groups and transition
groups, i.e. Vpg € PG,Vtg € TG :

W(pg, tg) = > W(p,t), W(tg,pg) = >_ W(t,p).

et et
Markings of modular Petri nets are defined as markings of Petri nets, over the
set PG of all place groups. The restriction of a marking M to a module s is
denoted by M. The enabling and occurrence rules of a modular Petri net can
now be expressed.

Definition 5. A transition group tg is enabled in a marking M, denoted by
Mitg), iff:
Vpg € PG : W(pg, tg) < M(pg).

When a transition group tg is enabled in a marking My, it may occur, changing
the marking My to another marking Ms, defined by:

Vpg € PG : Ma(pg) = (M1(pg) — W(pg, tg)) + W(tg, pg).

Ezample: Figure 1 depicts a modular PT-net consisting of three modules A, B
and C. Modules A and B both contain transitions labelled F1 and F3, while
modules B and C both contain transition F2. These matched transitions are
assumed to form three transition fusion sets. Note that in this example, there is
no place fusion set.

2.3 State Spaces of Petri Nets

The state space (also named occurrence graph) of a Petri net is represented as
a graph which contains a node for each reachable marking and an arc for each
possible transition occurrence.

Module A Module B Module C

Al B1 C1
F1 F1 F2
tA
A2 B2 c2
F3 F2 tB

A3

B3

F3

Fig. 1. Modular PT-net with modules A, B and C.

Definition 6. Let PN = (P,T,W, M), be a Petri net. The State Space of
PN s the directed graph SS = (V, A), where:

1. V = [My) is the set of vertices.
2. A={(My,t,M3) € V x T x V| Mq[t)Ms} is the set of arcs.

Ezample: The (full) state space for the modular PT-net of figure 1 is shown in
figure 2. Note that the initial state is shown as A1B1Cl1, thus indicating that
place Al is marked with a token in module A, place Bl is marked with a token
in module B, and place C1 is marked with a token in module C. In this initial
state, only transition F1 is enabled, its occurrence leading to state A2B2C1.

Fig. 2. The full state space of the system in figure 1.

When considering the modular state space, as well as checking properties of
the system, we will use Strongly Connected Components. The set of all strongly
connected components is denoted by SCC'. For a node v and a component ¢ €
SCC we use v € ¢ to denote that v is one of the nodes in ¢. A similar notation
is used for arcs. We use v¢ to denote the component to which v belongs.

3 Modular State Spaces and Transition Fusion

In this section, we consider modular Petri nets with transition fusion only, i.e.
PF = 0.

In the definition of modular state spaces, we denote the set of states reachable
from M by occurrences of local (non-fused) transitions only, in all the individual
modules, by [[M).

The notation with a subscript s means the restriction to module s, e.g. [M)
is the set of all nodes reachable from global marking M by occurrences of tran-
sitions in module s only.

We use Mi[[o))Ms to denote that Ms is reachable from M; by a sequence
o € (T\ TF)" TF of internal transitions followed by a fused transition.

For any reachable marking M, we use M7 to denote the product (or tuple)
of Strongly Connected Components (SCCs) M¢ of the individual modules:

VM € [My) : M7= [Mg
seS

The definition of a modular state space consists of two parts: the state spaces of
the individual modules and the synchronisation graph.

Definition 7. Let MN = (S, TF) be a modular Petri net with the initial mark-
ing My. The modular state space of MN is a pair MSS = ((555)ses, SG),
where:

1. 8Ss = (Vi, A) is the local state space of module s:

(@) Vi= J s
vE(Vsa)s
(b)) Ay ={(My,t, M) € Vo x (T \ TF)s x Vs | My[t)Ms}.
2. SG = (Vgg, Asc) is the synchronisation graph of MN:
(a) Vs = [[Mo))? U{M¢}.
(b) Asa = {(MY, (M, 1f), Mf) € Vs x (IMo)? x TF) x Vg |
M] € [[My) A M[1f) My},

Ezxplanation:
(1) The definition of the state space graphs of the modules is a generalization of
the usual definition of state spaces.

(1a) The set of nodes of the state space graph of a module contains all states
locally reachable from any node of the synchronisation graph.

(1b) Likewise the arcs of the state space graph of a module correspond to all
enabled internal transitions of the module.
(2) Each node of the synchronisation graph is labelled by a M7 and is a repre-
sentative for all the nodes reachable from M by occurrences of local transitions
only, i.e. [[M). The synchronisation graph contains the information on the nodes
reachable by occurrences of fused transitions.

(2a) The nodes of the synchronisation graph represent all markings reachable
from another marking by a sequence of internal transitions followed by a fused
transition. The initial node is also represented.

(2b) The arcs of the synchronisation graph represent all occurrences of fused
transitions.

The state space graphs of the modules only contain local information, i.e. the
markings of the module and the arcs corresponding to local transitions but not
the arcs corresponding to fused transitions. All the information concerning these
is stored in the synchronisation graph.

Ezample: The modular state space for the modular PT-net of figure 1 is shown
in figure 3. Note that there is a local state space for each module, as well as a
synchronisation graph which captures the occurrence of fused transitions. We do
not distinguish between nodes and SCCs since, in this case, all SCCs consist of
a single node (which is seldom the case in practice).

Module A Module B Module C Sync. Graph

A3B3C2,F3

Fig. 3. The modular state space of the system in figure 1.

In [Pet05], several experiments were conducted, showing that the size of the
modular state space is significantly reduced (compared to the size of the flat
state space) when the modules exhibit strong cohesion and weak coupling.

4 Modular State Spaces and Place Fusion

Some tools, e.g. CPNTooOLs [CPNa, allow for place fusion instead of transition
fusion. Therefore, one of our goals is to evaluate the possibility of adapting the
modular state space technique to cater for modular Petri nets with place fusion
only. Hence, in this section, we consider modular nets such that TF = ().

4.1 Problems due to Place Fusion

The composition of state space graphs is more complex when sharing places
rather than transitions. This can be seen on the example of figure 4, where the
grey place po, initially empty, is the shared one: in this case, we are guaranteed
that if at least one of the modules has an infinite state space graph, the Modular

PT-net also has an infinite state space graph. But it is impossible to tell anything
about the state space graph of the modular PT-net if those of the modules are
finite. This is due to the fact that a module can provide enough tokens in a place
fusion set to allow some transitions, in another module, to be enabled. And then
this second module can provide some more tokens for the first one and so on.

Fig. 4. Two modules each with finite graphs, but a Modular PT-net with infinite graph.

Several approaches to state spaces for modular nets with place fusion have
been considered. In the following subsections, we briefly describe their pros and
cons.

4.2 Dedicated Algorithm to construct the State Space

The first approach consists in designing a dedicated algorithm to construct the
state space. The background considered was both the technique with transitions
fusion explained in section 3 [CP00,LP04] and the compositional construction of
the covering graphs from [FP92,FP94|.

To meet efficiency, memory usage and properties verification methods similar
to those provided by Modular State Spaces, the following requirements should
be satisfied:

— The state space must not be the complete flat state space but a collection
of state spaces or abstractions of these.

— All behaviour and reachable states should be represented.

— An unfolding to the flat state space must be possible, which could serve as
a basis for property verification.

When building a modular state space, the fused places can either be part of
local state space graphs, or of a global structure similar to the synchronisation
graph for transition fusion.

Let us consider the case where the shared places are considered in the local
graphs. The graphs can be build step by step, as in [FP92|, but it is necessary
to keep track of the synchronisation points between the modules. An identical
marking is not sufficient, as shown in the example of figure 6, corresponding to
modules A and B in figure 5 where the dotted arrows indicate that a move in
the other module changes the local state. In this example, finding state AsBs
from the local modules is not obvious.

Module A Module B

Al B1

P1 P1

A2 B2

P2 P2

t2 t4

Fig. 5. Example with shared places

Module A ModuleB Full State Space

Fig. 6. Shared places in local state spaces

Hence, we consider the construction of a global structure to handle the shared
places and synchronisations between modules. A small example is given in fig-
ure 7. This structure contains the shared places and the transitions they are
connected to, plus the corresponding markings in the local state spaces. One
can note that the structure obtained is similar to what we would get if the mod-
ular net was using transition fusion only with one module containing all fused
places and their connected transitions.

Module A ModuleB Synchronisation

Fig. 7. Shared places in global structure

4.3 Transforming Place Fusion into Transition Fusion

Therefore, designing a specific algorithm to handle place fusion does not appear
worthwhile. Instead, our approach leads us to consider an appropriate transfor-
mation from a modular net with place fusion to a modular net with transition
fusion only, in order to apply the modular state space technique.

Transforming place fusion into transition fusion can be achieved in many
ways. However, as shown in [Pet05], the benefits of the modular state space
technique depend on the level of coupling between modules. In the following
section, after indicating different approaches, we show some experimental results
and then derive guidelines as to how to proceed.

5 From Place Fusion to Transition Fusion

We first present different possibilities to transform a general modular net (i.e.
with place fusion and transition fusion) into a modular net with place fusion
only. The fused transitions remain fused, so we will focus on the fused places.

5.1 Different possibilities

Isolating fused places A first and rather straighforward way of dealing with
fused places is to isolate them into a single or several dedicated modules. In the
first case, all fused places are grouped into a single module together with their
connected transitions. These transitions become shared transitions, that have to
be fused with a corresponding copy in their origninal module. The second case is
similar, but places can be scattered in several modules which contain only fused
places and their connected transitions.

Ezxample: The example of figure 5 can be transformed into a modular net with
one module for shared places (figure 8) or one module per shared place (figure 9).

Module A Module P1P2 Module B
Al Bl
P1
tl t3
tl - - t3
A2 B2
P2
t2 t2 t4 t4

Fig. 8. Shared places in a single module (net imodule)

Module A Module P1 Module B
Al B1
Pl
" i tl t3 _ 3
A2 B2
P2
t2 7 t2 t4 - t4
Module P2

Fig. 9. Shared places in separate modules (net 2modules)

However, as we shall see in section 5.2, this approach, although simple, is not
very efficient. Indeed, all the activity of the module(s) holding only fused places
only happens in the synchronisation graph, i.e, as shared activity.

Integrating fused places within modules In order to avoid modules with-
out any local activity, it is desirable to keep the fused places in one of their
original modules. The transitions connected to the place which are not already
in the module lead to a new copy which is fused. The place is removed from
the other modules, and the transitions they are connected to become shared.
As the original place has a copy in several modules, the question is: in which
module should the place remain. We will see, in section 5.2, that the different
possibilities can be more or less efficient.

Ezample: For the example of figure 5, both places P1 and P2 can be integrated
within module A (figure 10) or module B. Otherwise one place can be integrated
in each module, i.e. P1 in module A and P2 in module B (figure 11) or vice
versa.

5.2 Experiments

Before presenting results for an elaborate case study, we first show the experi-
mental results for the small examples from section 5.1. Even though the modular
state spaces are very small and present slight differences (see table 1), they are
quite relevant to what happens more generally. They already show that integrat-
ing a place to one of its original modules might give better results.

We have also experimented with a more extensive case study — that of a
sliding window protocol. A version of the protocol is depicted in figure 12. This
is adapted from the stop-and-wait protocol in [Jen94|, where places A, B, C
and D connected the various modules by place fusion. We have extended that

Fig. 10. Both places integrated in module A (net AP1P2)

Module A Module B

Fig. 11. One place integrated in each module (net AP1BP2)

protocol to a sliding window protocol, and have used transition fusion so as to
be amenable to modular state space exploration.

This version of the protocol was analysed as a timed system using the Maria
reachability analyser [M02]. Maria supports modular analysis but not time.
Consequently, the analysis of this timed system was achieved by incorporat-
ing a generic timing infrastructure. A description of that timing infrastructure
together with the associated results are reported elsewhere [LP07]. Here, we con-
sider different modular decompositions of the system in line with the proposals
considered earlier in this paper.

Briefly, the protocol operates as follows. It is composed of four modules rep-
resenting the sender, the message channel of the network, the acknowledgement

[Example[|imodule|2modules|[AP1P2[BP1P2[|AP1BP2[AP2BP1|

Nodes 11 12 9 8 8 9
Arcs 4 4 5 4 4 5
Table 1. Modular State Space sizes for the small example

INTXDATA

if n=lo

andalso p<>stop
then str"p

else str

(if n>=lo andalso n<=hi st
then 1(n,p)
else empty)@+Tmes

INTXDATA
(n.p)

.| Transmit ln,p)@ffmul'd‘ Receive

Packet Packet
d

then 1o

Deliver
Packet

[n>=lo,

[n<=lo]

it n=lo
then 1" (n+1)
else empty

(lo,hi)
1,0

then (lo,hi+1)
else (Io,hi) NetDelay
if n=lo

then(lo+1,hi+1)

NetDelay else (lo,hi)

don) | then (b NetDelay (DeIA)
else (lo,h) d
Receive Transmit
n

Acknow. n@+Tmurd Acknow.

(Io,hi)

| L]

(1.Wrecv)

@+Tack

Sender Network Receiver

Fig. 12. Timed sliding window protocol.

channel of the network and the receiver. These are displayed on the left-hand
side, the center and the right-hand side of the figure, respectively. Here, the four
modules communicate with their neighbours through fused transitions: Send
Packet, Receive Packet, Send Ack and Receive Ack.

The sender module can only send packets or receive acknowledgements. The
packets to send are initially stored in place Send. They are represented by a
pair (n,p) where n is the packet number and p the data. We can refer to a
packet consisting of the sequence number 1 and data “a”, available at time 0 by
the notation (1,“¢”)@0. The sending operation takes some time as indicated by
the @+Tmes label attached to transition Send Packet. When a packet is sent,
its token remains in place Send, but its timestamp is incremented by the time-
out retransmission delay Twait. With Twait set to 80 and Tmes set to 8, the
token (1,“4”)@0 would be replaced by (1,“0”)@Tmes+Twait=(1,“a”)@88. The
packets that can be sent must have a number falling between the lowest not
yet acknowledged (variable lo) and the first non-sent packet (hi+1). Moreover,
the difference between these two bounds cannot exceed the window size Wsend.
These conditions are all gathered in the guard of transition Send Packet. The
lower and upper bounds are stored as a pair (lo,hi) in place NextSend.

The reception of an acknowledgement (transition Receive Ack) takes some
time specified by a constant Tack. This is expressed by attaching @+Tack to the
transition. The values of the bounds in place NextSend are updated if a message
with a number n greater than 1o is acknowledged. (Note that in this simple case
study, we do not consider cyclic sequence numbers.)

The network stores packets sent in place A. Then, it can either lose them
(transition LoseP) or transmit them (transition Transmit Packet). In that case,
a delay corresponding to the time spent for transmission is applied to the packet,
denoted (n,p)@ + T'mul * d. The packet is then ready to be received. A simi-
lar scheme is applied to the acknowledgements. The main difference is that an
acknowledgement is put in the network only if the packet n has not yet been ac-

knowledged. This is indicated by the term associated with the arc from transition
Send Ack to place C.

Finally, the module Receiver can receive packets numbered from the first ex-
pected one (1o) up to the size of the reception window (hi=lo+Wrecv-1). (Note
that this allows for packets to arrive out of sequence.) Such a received packet is
stored in place Buffer until the processing time Tmes has elapsed. Moreover, if
the message is not the first one expected (n>1o), an acknowledgement numbered
lo is prepared in place SendAck. This informs the sender that the number of
the next message expected is 1o. When a packet is in the receiver buffer, it can
effectively be accepted and processed, via transition Deliver Packet. If it has
a sequence number less than lo, then it has already been delivered and this is
a duplicate that needs to be discarded. If its sequence number is equal to lo,
then it is delivered and the receiving window is advanced — the contents p of
the packet are concatenated with the contents previously received, thus forming
a string stored in place Received; the receiving window is updated by incre-
menting both bounds; and an acknowledgement for the new lower bound (n+1)
is prepared. When an acknowledgement is sitting in place SendAck, it can be
transmitted to the sender via the network module.

In order to give intuitive names to the various modular decompositions, we
use the following abbreviations:

Snd The Sender, including transitions Send Packet, Receive Acknow and the
neighbouring places, but not including places A and D.

Rcv The Receiver, including transitions Receive Packet, Deliver Packet, Send
Ack and the neighbouring places, but not including places B and C.

Msg The Message Channel, including transitions LoseP, Transmit Packet, and
the neighbouring places, but not including places A and B.

Ack The Acknowledgement Channel, including transitions LoseA, Transmit Ac-
know, and the neighbouring places, but not including places C' and D.

We have then experimented with the following configurations:

Prot 3: One reference configuration with modules {Snd}, {A, Msg, B}, {Rcv},
{C, Ack, D}.

Prot 3b: Another reference configuration with modules {Snd, A, Msg, B}, {Rcv,
C, Ack, D}.

Prot 3d: Variant of Prot 3 with places B and D in modules by themselves, i.e.
modules are {Snd}, {A, Msg}, {B}, {Rev}, {C, Ack}, {D}.

Prot 3e: Variant of Prot 3b with places B and D in modules by themselves, i.e.
modules are {Snd, A, Msg}, {B}, {Rev, C, Ack}, {D}.

Prot 3g: Variant of Prot 3d with both places B and D in the same module, i.e.
modules are {Snd}, {A, Msg}, {B, D}, {Rev}, {C, Ack}.

Prot 3h: Variant of Prot 8e with both places B and D in the same module, i.e.
modules are {Snd, A, Msg}, {B, D}, {Rev, C, Ack}.

We have run two sequences of tests. The results in figure 13 are for a sliding
window size of 1, while the results in figure 14 are for a sliding window size of
2. In both cases, the total simulation time ranges from 60 to 200 time units.

We make the following observations:

Nodes

1200

1000 ’

39
3d
800
~&—Prot 3
3 / Prot 3b
—f— Prot 3d
600 3e Prot 3e
=+ Prot 3g
Prot 3h
) //// / :
200 / 7

60 80 100 120 140 160 180 200
MaxTime

3b

Fig. 13. Variants with sliding window size of 1.

— Asin the earlier published results [LP07], version 3b has a much smaller state

space than that of version 3. It takes advantage of the cohesion between the
Sender and the Message Channel, and the relatively loose coupling with the
other components. It is clear that this is still optimum amongst the other
variations we have since considered.

— Version 3d is significantly worse than version 3, and similarly for versions 3e

and 3b. In other words, putting the places B and D in modules by themselves
results in a significantly larger synchronisation graph, to the extent that only
smaller problem sizes can be explored. This is not too surprising because both
addition and removal of tokens to these places will now add nodes and edges
to the synchronisation graph.

— Versions 3d and 3g are almost identical, i.e. places B and D are essentially

independent. Whether they are placed in separate modules or in the one
module makes little difference to the size of the synchronisation graph.

— Versions 3e and 3h exhibit some difference, i.e. places B and D are no longer

independent because of the merging of the channels with the Sender and
Receiver.

Further experiments have been performed, giving similar results. They are

not presented here. From all these experiments, in the next section, we derive
guidelines for transforming place fusion into transition fusion.

5.3 Guidelines

As shown in the results of table 1 and figures 13 and 14, creating a specific module
for shared places is the worst solution: the number of nodes in the modular state

6000000

5000000 r

3d
4000000 ,
3 ~&—Prot 3
Prot 3b
—— Prot 3d
3000000 Prot 3e
=+ Prot 3g
Prot 3h
2000000 /

1000000
3h
3b
0 e —

60 80 100 120 140 160 180 200

Nodes

Fig. 14. Variants with sliding window size of 2.

space is large. This is due to the extreme situation of the new module(s) having
no internal behaviour. Hence, all the behaviour concerned with these places is
shown in the synchronisation graph.

On the contrary, when the shared places are incorporated within one of their
original modules, the size of the modular state space is much smaller. Here, some
of the related behaviour is then local, and less synchronisation is represented in
the synchronisation graph.

The choice of optimum module will depend on the connectivity with the place
— the greater the connectivity, the better the results when including the place
in that module. However, our experiments show that best results are obtained
when the question of where to instantiate the fused place is superceded by the
question of how to maximise cohesion and minimise coupling. In the protocol
example, our best results were obtained by combining the sender module and
the message channel. Thus, sending a message and then losing it becomes purely
local activity.

6 Conclusions

A lot of Petri nets, designed with modular concepts, are structured using a
mechanism similar to place fusion. This is in particular the case for Hierarchical
Coloured Petri nets, which are quite popular [CPNb| due to their tool support
(DESIGN/CPN [CPNc¢|] and CPNTooLs [CPNal).

The modular state space technique [CP00] proves to give good results in prac-
tical cases [LP04,Pet05] to alleviate the state space explosion problem. However,
this technique is designed to handle nets where modules communicate through
transition fusion.

In this paper, we have investigated the possibility of using modular state
spaces when modules communicate through place fusion. We first investigated
the possibility of designing an ad-hoc algorithm. It turned out that this would
lead to a complex design and to results very close to those obtained with transi-
tion fusion. Therefore, the work was refocussed on transforming a modular net
with place fusion into a net with transition fusion only. Several tranformation
schemes were studied, using examples ranging from simple to rather elaborate.
The sizes of the different modular state spaces were analysed to understand
which characteristics are involved in getting better results.

This study led to some guidelines which could be partially automated. How-
ever, they are quite general and should not be considered as always giving the
best results. Putting fused places into modules by themselves or with other fused
places gives the worst results. The best results are obtained not by simply fo-
cussing on where to put the fused places, but by carefully considering how to
maximise cohesion and minimise coupling between the modules.

References

[CPOO0] S. Christensen and L. Petrucci. Modular analysis of Petri nets. The Computer
Journal, 43(3):224-242, 2000.

[CPNa| epntools. http://wiki.daimi.au.dk/cpntools/cpntools.wiki.

[CPNb| Ezamples of Industrial Use of CP-nets. http://www.daimi.au.dk/CPnets/
intro/example_indu.html.

[CPNc¢| DEsieN/CPN online. http://www.daimi.au.dk/designCPN.

[FP92] A. Finkel and L. Petrucci. Avoiding state explosion by composition of mini-
mal covering graphs. In Proc. 3rd Int. Workshop Computer Aided Verification
(CAV’91), Aalborg, Denmark, July 1991, volume 575 of Lecture Notes in Com-
puter Science, pages 169—180. Springer, 1992.

[FP94] A. Finkel and L. Petrucci. Propriétés de la composition/décomposition de
réseaux de Petri et de leurs graphes de couverture. RAIRO Informalique
Théorique et Applications, 28(2):73-124, 1994.

[Jen94]| K. Jensen. Coloured Petri Nets: Basic concepts, analysis methods and practical
use. Volume 2: analysis methods. Monographs in Theoretical Computer Science.
Springer, 1994.

[LP04] C. Lakos and L. Petrucci. Modular analysis of systems composed of semiau-
tonomous subsystems. In Proc. 4th Int. Conf. on Application of Concurrency to
System Design (ACSD’04), Hamilton, Canada, June 2004, pages 185-194. IEEE
Comp. Soc. Press, June 2004.

[LP07] C. Lakos and L. Petrucci. Modular state space exploration for timed Petri nets.
Journal of Software Tools for Technology Transfer, 2007. To appear.

[M02] M. Mikeld. Model Checking Safety Properties in Modular High-Level Nets. In
W. van der Aalst and E. Best, editors, 24th International Conference on the
Application and Theory of Petri Nets, volume 2679 of LNCS, pages 201-220,
Eindhoven, The Netherlands, 2002. Springer.

[Pet05] L. Petrucci. Cover picture story: Experiments with modular state spaces. Petri
Net Newsletter, 68:Cover page and 5-10, April 2005.

