Designing coloured Petri net models: a method

Christine Choppy!, Laure Petrucci', and Gianna Reggio®

L LIPN, Institut Galilée - Université Paris XIII, France
2 DISI, Universita di Genova, Italy

Abstract. When designing a complex system with critical requirements
(e.g. for safety issues), formal models are often used for analysis prior
to costly hardware/software implementation. However, writing the for-
mal specification starting from the textual description is not easy. An
approach to this problem has been developed in the context of algebraic
specifications [5]. Here, we present a similar method, giving precise and
detailed guidelines for writing coloured Petri nets.

Keywords: specification method, modelling method, coloured Petri net

1 Introduction

While formal specifications are well advocated when a good basis for further
development is required, they remain difficult to write in general. Among the
problems are the complexity of the system to be developed, and the use of a
formal language. Hence, some help is required to start designing the specification,
and then some guidelines are needed to remind some essential features to be
described. [5] proposes a method, providing detailed and precise guidelines, for
the development of specifications written using CASL [1], the Common Algebraic
Specification Language, and CASL-LTL [13], an extension for dynamic systems
specification, as target languages. However, this method could be used with quite
a variety of target languages.

Petri nets have been successfully used for concurrent systems specification.
Among their attractive features, is the combination of a graphical language and
an effective formal model that may be used for formal verification. Expressiveness
of Petri nets is dramatically increased by the use of high-level/coloured Petri
nets, and also by the addition of modularity features allowing for quite large
case studies.

While the use of Petri nets becomes much easier with the availability of
high quality environments and tools, to our knowledge, little work has been
devoted to a specification method for Petri nets. The aim of this work is to
provide guidelines for coloured Petri net specification on the grounds of the
aforementioned specification method. An initial approach was presented in [2].
In this paper, further work is achieved in different directions. We show how the
relevant items can be identified in the description. We adapted in detail the
method so as to encompass the coloured Petri net target, and achieved a full
treatment of properties.

It is important to mention some facts about this work. First, the example
developed here (which is classical for Petri nets) was designed by the authors
of the paper who are not specialists in Petri nets. Hence, they had no prior
knowledge of the usual coloured net modelling the problem, and were only given
a textual description of the problem. Actually, the model obtained is slightly
different from the usual one. Second, they have also tried out other examples,
starting with place/transition nets. The other author did validate their approach
afterwards. Third, this approach was successfully used by our master students.
Therefore, its application to a large category of problems seems rather promising.
It can however still be refined, so as to take into account more detailed features
such as hierarchy/modularity, as mentioned in our conclusions.

The paper is structured as follows. The different steps of our method (finding
events and state observers, looking for properties, modelling with a coloured net,
checking the properties) are explained and illustrated on a case study, in sections
3, 4, 5 and 6 respectively. Finally, section 7 concludes and indicates issues for
future work.

2 The method

The goal of the proposed method is to obtain a ®
coloured Petri net modelling a given system here-
after denoted by the System. The general approach
is described in Fig. 1.

The proposed method is based on two key ingre-
dients (or constituent features, using the termi-
nology of [5]) that are events and state observers.
FEvents are, as usual, something happening in the
life of the System (e.g. an action of some com-
ponent, or a change in some part of the System
or in the value of a condition) and are consid-
ered as atomic, with zero-duration, and no two
events may happen simultaneously (thus, in the
case two actions are happening together, there will
be a unique event). A state observer instead de-
fines something that may be observed on the states
of the System, defined by the values of some type.

Find Events and State
Observers

Find Properties

[need to modify
state observers/events]

Build the Coloured
Petri net

Check the
properties

[need to modify
state observers/events]

Fig.1: Design method

A first step consists in deriving the state observers and the events characterising
the System from its textual description (Sect. 3). Associated properties are then
determined and expressed, leading to possible modifications of state observers
and events (Sect. 4). When reaching a stable set of events, state observers and
properties, the coloured net can be built (Sect. 5) and the properties checked
(Sect. 6). This analysis may lead to modifications of the model, in which case
the process should be repeated.

3 Identifying events and state observers

3.1 Guidelines to find events and state observers

The first task of the proposed method is then to find the events and the state
observers that are relevant for the System. We propose a standard technique to
perform this activity: a grammar-based analysis of an informal description of
the System, as advocated by classical object-oriented methods (see e.g. [6]).

More precisely, the starting point should be a processing narrative, as used in
[12], for the System, that is a text in natural language describing its behaviour.
If the informal description does not completely present the behaviour of the
System, but, for example, motivates the need for building the System or just
justifies some of its features, then it should be modified both eliminating and
adding new parts.

The text should then be examined, and the verbs, the nouns (or better the
verbal and the noun phrases), and the adjectives should be outlined. Unless the
same words are used for different meanings, phrases are outlined only once.

This may be achieved on two copies of the text, one where the verb phrases
are outlined, and the other for the noun phrases. To save space in this paper we
used only one copy of our case study, using two different compatible styles, and
this lead us to note that verb phrases and noun phrases can be nested.

In general, the outlined verbs (or verbal phrases) should lead to find out the
events, while the outlined nouns and adjectives should lead to find out the state
observers and the datatypes. The style used has an influence, e.g. the use of
active/passive forms. Since events are also changes in parts of the System, and
some actions may not be explicit (e.g. the water reaches the maximum level, or
the engine is broken), a careful attention should be paid to verbs like “to be”, “to
become”, “to reach”, etc. Thus all outlined verbs are listed, grouping together
the synonyms or different phrases refering to the same concept, and each one
is examined in order to decide whether it should yield an event. Each event
should then be given a name (an identifier), and should be accompanied by a
short sentence describing it. If two events are always simultaneous, they should
be joined into a unique event. Similarly, the outlined nouns and adjectives are
listed, grouping synonyms, and examined in order to decide whether they yield
datatypes or state observers.

Some potential cases are given below:

— if the noun denotes an active subpart of the System, it should not become
a state observer, however it may be the case that the state of this subpart
should be observed (e.g. if there is a user sending messages, check if the state
of the user is relevant)

— similarly, for names of structural parts (or passive subparts) of the System
(e.g. if two processes communicate by means of a channel, check if the status
of the channel is relevant, for example, if it matters that it may be broken)

— the noun denotes data, it may be that it refers to some aspect of the System,
and thus there should be an associated state observer.

— if the adjective refers to the System or to part of it, it should become a state
observer of the form “is the adjective applicable to the System/its part?”

Each outlined state observer should then be given a name (an identifier)
and a type, and should be accompanied by a short sentence describing what it
observes in the System.

All the datatypes needed to type the state observers should be listed apart,
together with a (chosen) name and if possible a definition or some operations.

Note 1. It may be quite helpful to group the events and the state observers, and,
if these lists are not short, to add a title to these groups (e.g. events concerning
the sender, or the receiver). These groupings are of course adopted in the above
lists, and should be kept in further tables and formulas, so as to facilitate reading,
eye-checking, and future modifications.

Note 2. To have to decide if a verbal phrase should be an event, and a noun
phrase a state observer may lead to ask questions about the behaviour of the
system (e.g. to decide if two actions are simultaneous).

Three lists are resulting from this step: (i) events, (ii) state observers, (iii)
datatypes.

3.2 Case study: identifying events and state observers

The distributed database is a small example taken from [10] (vol. 1, pp. 21—
25) which describes the communication among a set of database managers in
a distributed system. The managers are supposed to keep their databases as
identical as possible. Hence, each update must be followed by broadcasting the
update to all the other managers, asking them to perform a similar update.

Even though this well-known example is small, it is complex enough to show
how our method could help to specify it and obtain a coloured net model.

The informal description of this case study is given below with emphasis on
verbal phrases, noun phrases, or both (when nested).

Informal description This example describes a very simple distributed database
with n different sites (n is a positive integer, which is assumed to be greater than
or equal to 2). Each site maintains its own copy of the whole database. On
each site, a local database manager handles all operations.

Each manager is allowed to update its own copy of the database.
Then, in order to keep subsequent consistency among all copies, it must
send a message to all the other managers (so that they can perform the
same update on their own copy of the database). In this example we are not
interested in the actual update data.

Hence the messages sent on the network to ensure the cooperation be-
tween the different database managers require to keep track only of the
header information, i.e. the sender and the receiver that are two dif-
ferent database managers. When a database manager makes an update, it

must then inform (by sending a message) all other (n—1) managers. Be-
fore a similar operation can take place again, all the updates should be
finished. Therefore, the manager who has asked for an update has to wait
until all other managers have sent back an acknowledgement. When a
database manager is informed of a new update, it must achieve the cor-
responding update on its local copy and send back an ackowledgement.

Informal description analysis The first task to achieve is to analyse the tex-
tual description (as described in Sect. 3.1) so as to find out relevant elements
about the events, the state of the system (expressed in terms of state observers),
and the data involved (either directly mentioned in the text, or returned by the
state observers). We first list the verb phrases and the noun phrases and dis-
cuss for each whether it leads to relevant information. Redundant texts (that
describe the same thing) are grouped together. Then, the events, state observers
and datatypes lists are extracted.

Verbs (verbal phrases)
— maintains its own copy = no event (a qualification of site)
— handles all operations = no event (a qualification of database manager)
— allowed to update its own copy of the database = no event (a quali-
fication of database manager)
— keep subsequent consistency = no event (a motivation of some actions)
— for the following verbal phrases
e send a message to all the other managers
e inform (by sending a message) all other (n — 1) managers
e has asked for an update
= the inform EVENT is to inform that an initial update was done and that
a manager has asked for an update (corresponding to the one it just did)
— perform the same update = the corrUpd EVENT is that a similar update
(corresponding to the new one) is achieved
— to ensure the cooperation between the different database managers
= no event (a motivation of some actions)
— keep track only of the header information, i.e. the sender and the
receiver = this qualifies what is considered in the messages
— Before a similar operation can take place again, all the updates
should be finished = two EVENTS here,
one (allUpd) is that all updates are finished, and the other (update) is to
perform an initial update (referred to by similar operation)
— wait until all other managers have sent back an acknowledgement
= wait cannot be associated with an event
— all other managers have sent back an acknowledgement = recAllAck
EVENT
— a database manager is informed of an initial update = informed
EVENT

— it must achieve the corresponding update = the corrUpd EVENT is
that a database manager achieves the update corresponding to the initial
one made (already mentioned)

— and send back an ackowledgement = the updAck EVENT is that a
local database manager sends back an acknowledgement

List of events
— inform: a database manager informs (by sending a message) all other (n — 1)
managers that an initial update was made
— allUpd: all updates are finished
— update: a database manager performs an initial update
— recAllAck: all other managers have sent back an acknowledgement, thus all
acknowledgements are received
— informed: a database manager is informed of an initial update
— corrUpd: a database manager achieves the update corresponding to the initial
one made
— updAck: a database manager sends back an acknowledgement

Note that since communication is asynchronous, to inform and to be informed
are two different events. The issue whether there should be a distinction between
events allUpd and recAllAck should be solved.

Nouns (noun phrases)
— distributed database with n different sites = this refers to the whole system,
so it does not apply to a state observer or data
— n s a positive integer, greater than or equal to 2 = a constant value of type
integer (or natural)
— sites of the distributed database and the local managers

e site = this is a “structural part”, each site is referred to by its identi-
fier (that is a datatype), and a question is whether its state should be
characterised

e local database manager = associated with each site, and a question is
whether its state should be characterised

e its local copy = it is managed by the local database manager

— several parts of the description mention messages, and will lead to the defi-
nition of the MESSAGE datatype

e message ... so that they can perform the same update = a datatype
for messages requiring an update;

e messages sent on the network = one question is whether the commu-
nication is synchronous or not, and it is decided in this case that it is
asynchronous. Therefore, a state observer provides the messages sent in
the network.

o the header information, i.e. the sender and the receiver = the message
datatype should include the sender and the receiver

e acknowledgement = a datatype for another kind of messages

List of state observers
— inTransit: Set(MESSAGE) returns the messages in transit in the network

Let us note that, given the study of the noun phrases reported above, we have
only one state observer at this point which is not much. More state observers
will emerge from the next step when working on properties.
List of datatypes
— DBM: identities of the sites
— INT: integers, with a constant value n greater than 2
— MESSAGE: messages that are either update requests or acknowledgements, and
provide only the sender and the receiver of the message. At this stage, we can
provide a provisional definition for this type:

MESSAGE::= Req (DBM,DBM) | Ack (DBM,DBM)

4 Finding the properties

4.1 Guidelines to find the properties

Let us assume that we have the three lists (events, state observers and datatypes)
produced in the previous step. Now we consider the task of finding the most
relevant /characteristic properties of the System and of its behaviour, and to
express them in terms of the identified events and state observers (using also the
identified datatypes). Our method helps to find out these properties by providing
precise guidelines (inspired by [5]) for the net designer to examine all relevant
relationships among events and state observers, and all aspects of events and
state observers.

The behaviour of the System can be seen as the set of all its possible “lives”,
where a life is a sequence of states and events

S0 €1 S1 €2 ... Sp—1 €En Sp €ntl Sp+1 - .-
where each state s; defines the values of the state observers, and sq is an initial
state.

For each state observer SO returning a value of type DT (declared as SO:

DT), we look for:
— properties on the values returned by SO (e.g. assuming DT = INT, SO should

always return positive values);

— properties relating the values observed by SO with those returned by other
state observers (e.g. the value returned by SO is greater than the value
returned by state observer SOy).

For each event EV we look for pre and postconditions and there may be other
properties (e.g. liveness and incompatibility between events).

precondition is what must hold before EV happens, i.e. a condition on the
state observers such that if s is a state of the System in which EV happens,
then this condition holds on s

postcondition is what must hold after EV happened, i.e. a condition on the
state observers such that if s is a state of the System after EV happened,
then this condition holds on s

more properties Consider a life of the System where EV happens

S0 €181 €3 ... Sp—1 €n S EV 8| €] shel ...

S0 €1 81 €2 ... Sp—1 €n Sy 1S a possible past of EV, whereas s} €| s e, ...

is a possible future of EV.

on the past properties on the possible pasts of EV (e.g. the System was in
a state such that the values returned by the state observers satisfy some
condition, or a given event happened)

on the future properties on the possible futures of EV (e.g. the System
will reach a state such that the values returned by the state observers
satisfy some condition, or a given event will happen)

vitality when it should be possible for EV to happen (e.g. if state s satis-
fies some condition, then EV may happen in s, if state s satisfies some
condition, then eventually EV will happen, ...)

incompatibility the events EV; such that there cannot exist a state of the
System in which both EV and EV; may happen

Obviously, there may be some conditions fulfilled by the possible initial states
of the System. Conversely, we propose to characterise the final states when rele-
vant.

initial condition a property about state observers that must hold in any initial
state of the System.

final condition a property about state observers that must hold in any final
state of the System (irrelevant if the System never terminates).

While writing the properties it may happen that:

— we discover the need for operations over the datatypes, or that their defini-
tion should be made more precise and detailed = modify the definition of
the data types accordingly

— we need new state observers and perhaps new datatypes to express what
they observe (e.g. to express some property about an event) = add them

— we need new events, or an event has to be split into several other ones, or
different events turn out to be the same = add/split/identify the events as
required.

4.2 How to find the properties: case study

The text analysis did not bring much in terms of state observers, therefore event
properties are first expressed in natural language, and once the properties are
identified, the corresponding state observers will emerge. The only event lead-
ing to properties other than the pre/postconditions is update. When expressing
properties, we use primed notations for the value of state observers after an event
has taken place. Recall that - and + denote deletion and addition of an element
to a set or to a multiset.

Event properties
update: (a database manager d performs an initial update)

precondition no update is taking place (thus we introduce the state ob-
server updating: BOOL) and d is inactive, i.e. in the inactive state (thus
we introduce the state observer inactive: Set(DBM)):
updating = false A d € inactive
postcondition d performed an update (thus we introduce the state observer
updated: DBM+-, where the values of datatype DBM+ are those of DBM
plus None), d is not inactive anymore, and an update is taking place:
inactive’ = inactive - d A updated’ = d A updating’ = true
more it should always be eventually possible to make an initial update
inform: (a database manager d informs, by sending a message, all other man-
agers that an initial update was performed)
precondition d performed an initial update:
updated = d
postcondition d is waiting for the other sites to perform the subsequent
updates (thus we introduce the state observer waiting: DBM+), and the
messages sent to require the subsequent updates are in transit on the
network. Moreover, we add to the datatype DBM an operation AllUp-
dReq producing all update request messages:
updated’ = None A waiting’ = d A inTransit’ = inTransit + AllUpdReq (d)
informed: (a database manager d is informed of an initial update)
precondition there is a message in transit requiring d to make a subsequent
update from the site d1, and site d is inactive:
Req (d1,d) € inTransit A d € inactive
postcondition the request message is received by site d, i.e. it is included
in the received messages, thus we introduce the state observer recMsg:
Set(MESSAGE), and d is performing the required update, i.e. it is in
the performing state, thus we introduce the state observer performing:
Set(DBM):
inTransit’ = inTransit - Req (d1,d) A inactive’ = inactive - d A
performing’ = performing 4+ d A recMsg’ = recMsg + Req (d1,d)
corrUpd: (a database manager makes the update corresponding to the initial
one)
The occurrence of this event corresponds to a database manager reaching
the state performing, thus it is useless and we drop it from the events list.
updAck: (a database manager d sends back an acknowledgement)
precondition the database manager d performed the update, so it was in
the performing state, and has received a request message from some d1:
d € performing A Req (d1,d) € recMsg
postcondition the database manager d is now in the inactive state, and an
acknowledgement message is in transit on the network:
performing’ = performing - d A inactive’ = inactive + d A
recMsg’ = recMsg- Req (d1,d) A inTransit’ = inTransit + Ack (d ,d1)
allUpd: (all subsequent updates are finished)
This is the same as recAllAck, since an acknowledgement is sent when an
update is done. Thus this event will be removed form the event list.
recAllAck: (all acknowledgements are received by database manager d)

precondition d is waiting for the acknowledgments, and all acknowledge-
ment messages are in transit on the network (we assume that they are
all received together):
waiting = d A AllAcks (d) C inTransit

postcondition d is not waiting, the update acknowlegment messages are
not in transit on the network anymore, and no update is taking place.
waiting’ = undefined A updating = false A
inTransit’ = inTransit- AllAcks (d) A inactive’ = inactive + d

Thus, while expressing the properties of the events, we have identified the
following new state observers:
(New) List of state observers

inTransit: Set(MESSAGE) returns the messages in transit on the network

inactive: Set(DBM) returns the set of the inactive database managers.

updated: DBM+ returns the database manager that did the initial update, or
None

waiting: DBM+ returns the database manager that is waiting, after having in-
formed the others that a subsequent update is required, or None.

performing: Set(DBM) returns the database managers performing the subse-
quent updates

recMsg: Set(MESSAGE) returns the update request messages received by the
database managers

updating: BOOL returns true if an update is taking place, and false otherwise.

(New) datatypes and operations over the DBM datatype

— DBM+::= __: DBM | None
— AllUpdReq: DBM — Set(MESSAGE)

AllUpdReq (d)= { Req (d,d1) | d1:DBM, d # d1 }
— AllAcks: DBM — Set(MESSAGE)

AllAcks (d)= { Ack (d1,d) | d1:DBM, d # d1 }

State observers properties

inTransit: Set(MESSAGE) (returns the messages in transit on the network)
— Requests from two different database managers are not in transit simulta-
neously:
Req(d1,d1’) € inTransit A Req(d2,d2’) € inTransit = d1 = d2
— Acknowledgements to two different database managers are not in transit
simultaneously:
Ack(d1,d1") € inTransit A Ack(d2,d2’) € inTransit = d1’ = d2’
— There are messages in transit on the the network iff an update is taking
place:
inTransit # () = updating = true

inactive: Set(DBM) (returns the set of the inactive database managers)
— An inactive database manager is neither waiting nor performing nor did
an update:
d € inactive = (d # waiting A d & performing A d # updated)
— A database manager is either inactive, performing, waiting or just did an
initial update:
d € inactive V d € performing VV d = waiting VV d = updated

updated: DBM+ (returns the database manager that did the initial update, or
None)
— A database manager that did the initial update is neither waiting nor
performing nor inactive:
updated # None —
(updated # waiting A updated ¢ performing A updated ¢ inactive)
— If there is a database manager that did the initial update then no other
one is waiting, and vice versa
—(updated # None A waiting # None)

waiting: DBM+ (returns the database manager that is waiting, after having
informed the others that a subsequent update is required, or None)
— A database manager that is waiting neither just did an initial update nor
is performing nor is inactive:
waiting # None —
(waiting # updated A waiting & performing A waiting ¢ inactive)

performing: Set(DBM) (returns the database managers performing the subse-
quent updates)
— A performing database manager is neither waiting, nor inactive nor just
did an initial update:
d € performing = (d # waiting A d ¢ inactive A d # updated)

recMsg: Set(MESSAGE) (returns the update request messages received by the
database managers)
— A message cannot be received and in transit on the network simultaneously:
recMsg N inTransit = ()

updating: BOOL (returns true if an update is taking place, and false otherwise)
If an update is taking place, not all database managers are inactive, and if
one of them is waiting then there are messages travelling on the network or
received:
updating = true —
(3d.d & inactive) A (waiting # None = inTransit U recMsg #)

initial state Initially all database managers are inactive, no update is taking
place, and there is no message in transit on the network nor received
[(Vd.d € inactive) A waiting = None A updated = None A performing = (}] A
updating = false A inTransit =) A recMsg = ()

final state There should not be any final state, since the distributed database
system will never terminate.

5 Modelling using coloured Petri nets

5.1 Building the Coloured Petri Net

At this point, we can assume that we have the list of state observers and events
(plus the list of used dataypes with their operations) resulting from the previous
steps, and that for each event the pre/postconditions have been expressed. Recall
that we have collected also other properties about the state observers and the
events, that will be checked in the last step of the method, once the net is built.

We now show how starting from the
above elements, derived from the analysis of
the System, we can build a coloured Petri net
modelling the System itself. Obviously, the
net cannot be built in all cases, so we present
a canonical form for events, state observers
and pre/postconditions that allow the pro-
cedure to result in a coloured net. Whenever
the form is not canonical, it is possible to
do some refactoring replacing the used state
observers, events, and datatypes with other

Examine state observers, events,
and pr iti

[no canonical form |

[canonical form]

Build the coloured net

Fig. 2: Deriving the coloured net

ones able to model the System in an equivalent way; analogously it is possible to
replace the pre/postconditions with equivalent formulae. This scheme is sketched
in Fig 2. We present later various patterns showing how to do the refactoring in

some quite common cases.
The canonical form requires that:

1. each state observer has type MSet(T) for some type T;

2. the pre/postconditions have the following form

1

pre (Ai=1,.n €xp; < SO;) A (Nj=nt1,...m exp; < SO;) A cond,
post (Ai=1,...n SO; = SO; — exp; + exp}) A (Nj=n1,...m SOj = SO; — exp;)A
(Ah=m+1,...r SO}, = SO, + exp),) A cond,

where

SO; (I=1,...,r) are all distinct,

cond and in cond’,

the free variables occurring in exp; and exp; (I =1,...,r) may occur in

— no state observer occurs in cond, cond’, exp; and exp; (I=1,...,7),
— and cond and cond’ are first order formulae.

The pre/postconditions on event EV in canonical form require that:

- before EV occurs some values are contained in SO+, ..., SO,, and that such
values are deleted and that other values are added when EV occurs;

- before EV occurs some values are contained in SO, 41, ..., SO,, and that
such values are deleted when EV occurs, but nothing is added;

- some values are added to SO,,41, ..., SO, when EV occurs.

1 <, + and — denote respectively the inclusion, union and the difference between

multisets.

S0, S0,

S0, ... 80, et ... S0,

expy exp'y expy expy, eXPp 44 exPry

cond A cond'

P el
som+1 SO,
Fig. 3. Deriving arcs from pre/post-conditions
— whereas cond expresses some condition over expi,. .. ,exp,,, and cond’ some
condition over expj,. .. exp..

Thus it will be possible to realise the behaviour of EV described by these
pre/postconditions by the flowing of valued tokens throughout the places of a
coloured net.

Assume that all elements are in the canonical form. The coloured Petri net
is defined as follows. The state observers and the events determine the places
and the transitions, while the pre/postconditions determine the arcs. Each state
observer SO : MSet(T) becomes a place named SO coloured by T, and each event
EV becomes a transition, named EV. If the pre/postconditions of an event EV
have the same form as in (2), then the set of arcs is as pictured in Fig. 3.

Petri net design patterns The method proposed in this paper offers various
patterns that may help to refactorise the state observers, the events and the
pre/postconditions to reach a canonical form, and thus to be able to generate
a coloured Petri net. Similar to design patterns in [8] in a specific case several
patterns may be applicable. In this subsection we present the two patterns that
will be applied in the case study.

Black-Box Value Pattern This pattern may be applied whenever we want to
reflect in the Petri net that a state observer SO : T observes values considered
as black-blox, that is we are not interested in exploiting the structure (if any) of
the observed values, i.e. of T.

Assume we have a state observer SO : T where SO appears in the pre/
postconditions only in atoms having either the form SO = exp or SO’ = exp/,
and SO does not appear in exp nor exp’.?

2 This is not restrictive at all, since a complex formula cond in which SO appears can
always be transformed into an equivalent one SO = exp A cond[exp/SO].

The logical specification of the System may be refactorised by replacing SO
with SO : MSet(T), while the pre/postconditions should be transformed as fol-
lows:

— pre: SO = exp A cond post: SO’ = exp’ A cond’ should become:
pre: exp < SO Acond post: SO’ = SO — exp + exp’ A cond’

— pre: SO = exp A cond post: cond where SO does not appear, should
become:
pre: exp < SO A cond post: SO’ = SO — exp A cond’

— pre: cond where SO does not appear, post: SO’ = exp’ A cond’ should
become:
pre: X < SO A cond (X having type T) post: SO’ = SO — X + exp’ A cond’

We can prove that if initially SO = exp, and thus SO = {exp}, then always
size(SO) = 1 (thus we are sure that SO is correctly realised to return in each
state a unique value).

Set Value Pattern This pattern may be applied to a state observer SO : Set(T)
whenever we want the elements of the observed sets to be realised as tokens
typed by T flowing in the Petri net.

Assume we have the state observer SO : Set(T), and that the pre/postcondtion
have the form:

pre: (exp; Uexpy) € SO A cond post: SO' = (SO — expy) U exps A cond’
where expy, exps and exps are sets (also empty), and SO does not appear in
exp1, expa, exps, cond and cond’.

The precondition requires that SO includes the elements in exp; U expo,
whereas the occurrence of EV requires that only the elements in exp, are removed
from SO, and that the elements of exps are newley added to SO.

The logical specification of the System may be refactorised by replacing SO
with SO : MSet(T), and transforming the pre/postconditions as follows:

pre: (exp; + exps) < SO A cond

post: SO" = SO — (exp; + expy) + (expy + exps) A cond’ Note that to get the
canonical form exp; should first be deleted and then added again to SO.

Unfortunately this refactoring does not guarantee that SO always returns a
set, thus we should add the following property to the System, to be checked at a
later stage:

-3z . {x,2} < SO (i.e. SO is a set).

5.2 Modelling with coloured Petri nets: Case study

In Tab. 1 and 2, we summarise the events, their pre/postconditions, the state
observers and the datatypes used to model the distributed database system.
The logical specification of the database system produced up to now is not
in the canonical form that allows to generate a coloured Petri net, first of all
because it uses state observers not typed by multisets. Hence, we now apply the
patterns proposed in Section 5.1. For the sake of simplicity, we use the same

Events |State Observers Datatypes
update |inTransit: Set(MESSAGE)|DBM

inform |inactive: Set(DBM) MESSAGE::=

Req(DBM, DBM) | Ack(DBM, DBM)
informed |updated: DBM+ DBM+::= __: DBM | None
updAck |waiting: DBM+ BOOL::= true | false

recAllAck|performing: Set(DBM)
recMsg: Set(MESSAGE)
updating: BOOL

Table 1. Elements of the distributed database specification

Event |pre post
update |updating = false A updating” = true A
d € inactive inactive’ = inactive — {d} A
updated’ = d
inform |updated =d updated’ = None A waiting’ =d A

inTransit’ = inTransit U AllUpdReq(d
informed |Req(d1,d) € inTransit AlinTransit’ = inTransit — {Req(d1,d)
d € inactive inactive’ = inactive — {d} A
performing’ = performing U {d} A
recMsg’ = recMsg U {Req(d1,d)}
updAck |d € performing A performing’ = performing — {d} A
Req(dl,d) € recMsg recMsg’ = recMsg — {Req(d1,d)} A
inactive’ = inactive U {d} A
inTransit’” = inTransit U Ack(d, d1)
recAllAck|waiting = d A waiting’ = None A updating = false A
AllAcks(d) C inTransit |inTransit’ = inTransit — AllAcks(d) A
inactive’ = inactive U {d}

)
A

Table 2. Pre/postconditions of the distributed database specification

names for the new state observers introduced by the refactoring. In Tab. 3 and 4
present the resulting events, state observers, datatypes and pre/postconditions.
Note that the datatypes are unchanged.

The coloured net derived from this canonical form is presented in Fig. 4.
We used the coloured Petri nets tool CPNtools [7], and its associated CPNML
language. The declarations are shown in Fig. 5. The DBM+- colour set is declared
DBMP as a union of database managers (man:DBM) and value None.

6 Checking the properties

6.1 Checking the properties of the System

The previous steps of our design method did exhibit several properties which
must be satisfied by the System. These properties should be expressed accord-

Events |State Observers Datatypes
update |inTransit: MSet(MESSAGE) DBM

inform |inactive: MSet(DBM) MESSAGE::=
Req(DBM, DBM) | Ack(DBM, DBM)
informed |updated: MSet(DBM+) DBM+:= __: DBM | None

updAck |waiting: MSet(DBM+) BOOL::= true | false
recAllAck|performing: MSet(DBM)
recMsg: MSet(MESSAGE)
updating: MSet(BOOL)

Table 3. Elements of the distributed database specification, in canonical form

Event |pre post

update |false < updating A updating’ = updating — false + true A
d < inactive A inactive’ = inactive —d A
X < updated updated’ = updated — X +d

infform |d < updated A updated’ = updated — d + None A
X < waiting waiting’ = waiting — X +d A

inTransit’ = inTransit + AllUpdReq(d)
informed |Req(dl,d) < inTransit AlinTransit’ = inTransit — Req(d1,d) A
d < inactive inactive’ = inactive —d A
performing’ = performing +d A
recMsg’ = recMsg + Req(d1,d)

updAck |d < performing A performing” = performing —d A
Req(dl,d) < recMsg recMsg’ = recMsg — Req(d1,d) A
inactive’ = inactive +d A
inTransit’ = inTransit + Ack(d, d1)
recAllAck|d < waiting A waiting’ = waiting — d + None A
AllAcks(d) < inTransit AlinTransit’ = inTransit — AllAcks(d) A
X < updating updating’ = updating — X + false A

inactive’ = inactive +d

Table 4. Pre/postconditions of the canonical distributed database specification

ing to the language accepted by the coloured Petri nets tool to be used. Then
the properties should be checked using the tool. One possibility is to build the
occurrence graph and check that all states generated satisfy the properties.

In case some properties do not hold, the designer should look up for the causes
of the problem by e.g. closely examining the states not satisfying the property
and the paths leading to these states. This will give insight to locate the source
of the problem. The model will then have to be modified accordingly, and the
properties check repeated until all properties hold. It might also be the case
that some properties derived from the informal specification are not correctly
expressed. Then the properties should be changed and the new ones checked.

MESSAGE

<
<

inTransit

Y

Req(d1.d)

v 1°D(1)++H
@ [None] Gaiting) 1Dy
None 1'D(3) MESSAGE DBM

.d)

AllUpdReq(d)
None
update UpdAck
DBMP man(d) Ack(d.d1)
@ [Cone]
Fig. 4. Distributed database coloured Petri net
val nbdbm=3;

colset DBM=index D with 1..nbdbm;

colset DBMP=union man:DBM + None;

colset PAIRDBM = product DBM * DBM;

colset MESSAGE=union Req:PAIRDBM + Ack:PAIRDBM;

var d,d1:DBM;

var X: DBMP;

var b:BOOL;

fun A11UpdReq d = filter (fn Req(x,y) => (x<>y) andalso (x=d) | Ack(_,_) => false)

(MESSAGE.all());

fun AllAcks d = filter (fn Req(_,_) => false | Ack(x,y) => (x<>y) andalso (y=d))

(MESSAGE.all());

Fig. 5. Declared types and functions for the distributed database Petri net

6.2 Checking the properties of the case study

The various properties were checked on the state space graph. For most of them,
it boils down to checking that the set of graph nodes satisfying the negated
property is empty. We now explain a representative excerpt of the properties,
the others are given in [4], together with a picture of the analysis page.

The property of Fig. 6 is part of the state observers properties. It states that
a database manager is either inactive, performing, waiting or just did an initial
update:

d € inactive V d € performing V d = waiting V d = updated

DBM.all() is the set of database managers, thus the union (denoted ++) of the
places (inactive, performing, updated and waiting) database manager multisets
should be equal (negated by <><>) to DBM.all(). Note that places waiting and
updated may contain value None and this value should not be considered, and
this is taken care of by function RemoveNone ().

fun RemoveNone dbms =
ext_col (fn man db => db) (filter (fn None => false | _ => true) dbms);

fun alldbmsonce() = PredAllNodes(fn n =>
Mark.Database’inactive 1 n ++
Mark.Database’performing 1 n ++
RemoveNone (Mark.Database’updated 1 n) ++
RemoveNone (Mark.Database’waiting 1 n) <><> DBM.all());

Fig. 6. Property: state of all database managers

The following property refers to one of the properties brought up by the
description analysis. There is at most one site waiting or that did an initial
update (updated):

—(updated # None A waiting # None)

To check this property, we find the maximum number of tokens in places
waiting and updated together, without considering the None value. This is done
by checking this number for each state in the graph and taking the maximum
of the previous result and the value for the current state, using the function
in Fig. 7. After examining all states, the result is 1, therefore the property is
satisfied.

fun maxupdate () = SearchAllNodes(fn _ => true,
fn n => size(RemoveNone(Mark.Database’waiting 1 n)) +
size (RemoveNone (Mark.Database’updated 1 n)),
0, Int.max);

Fig. 7. Property: only one database manager did an initial update

Finally, if an update is taking place, not all database managers are inactive,
and if one of them is waiting then there are messages travelling on the network
or received:

updating = true = (3d.d ¢ inactive) A (waiting # None = inTransit U
recMsg # ()

This property, expressed in Fig. 8 is split into two functions: upd1 () to check
the first part concerning the database managers, and upd2 () to check the second
part concerning the messages on the network.

7 Conclusion

Designing a formal specification has proved to be important to check properties
of a system prior to hardware and software costly implementation. However,
even if such an approach reduces both the costs and the experimenting time,
designing a formal model is difficult in general for an engineer.

As mentioned in the introduction, to our knowledge little work was devoted
to a specification method for Petri nets. However, we would like to mention
some work done by M. Heiner and M. Heisel in [9] to combine place/transition

fun updi() = PredAllNodes(fn n =>
if (Mark.Database’updating 1 n == 1‘true andalso
Mark.Database’waiting 1 n <><> 1‘None)
then (Mark.Database’inTransit 1 n ++
Mark.Database’recMsg 1 n == empty)
else false);

fun upd2() = PredAllNodes(fn n =>
if (Mark.Database’updating 1 n == 1‘true)
then (Mark.Database’inactive 1 n == DBM.all())
else false);

Fig. 8. Property: an update is taking place

nets with Z specifications so as to reduce the net complexity. In [11], another
approach is to rely on problem frames concepts to structure the problem before
developing the Petri net.

This paper gives guidelines to help with the design process. It has proven
successful with people who are not used to model with Petri nets, hence a positive
point w.r.t. the applicability of the design methodology.

The main idea is to derive key features from the textual description of the
problem to model, in a rather guided manner so as to deduce the important enti-
ties handled, and then to transform all this into Petri net elements. At the same
time, some properties inherent to the system appear, that are also formalised
and should be proven valid on the model at an early stage. When a coloured net
is obtained, with these properties satisfied, further analysis can be carried out,
leading to possible changes in the specification.

Our method is inspired by the one developed in [5] for simple dynamic sys-
tems specification with the CASL-LTL algebraic specification language, which
also requires to look for state observers, events (or rather elementary interac-
tions), and datatypes, but in addition provides an extensive list of potential
properties one should look for. This way of handling properties has the advan-
tage of giving ideas on the potential properties, with the drawback of systematic
long lists.

While in [2], the initial approach presented kept these properties list, here
we adapted the method so as to guide the search for properties in a ”light” way.

In [3], we developed this method for place/transition nets with several ex-
amples. Place/transition nets could easily be used when the involved datatypes
are boolean or natural numbers (and of course if the size and complexity of the
problem is reasonable). Since this is a simpler case (tokens do not have a value,
and the matching mechanism with the arc labels is very simple), we could de-
velop a more systematic guidance of the specification development. In [4], we
address also the issue of the choice of the appropriate family of Petri nets that
may be hinted by the datatypes needed in a case study.

In this paper, we have used the classical distributed database problem as a
running example so as to explain the design methodology step by step.

For this case study we present a choice for state observers that take the whole
state of the system as an argument. We could have taken another option, to have

a function yielding, for any database manager site, its state, and clearly the way
to the coloured net would have been less straight. Future work will detail even
more the different ways to transform a state observer into a place.

In this work, we have stuck to commonly used datatypes, but a designer
could write his own complex types and functions to be used by his coloured net.
Reflecting them in the net is then more complex and must be done in a rigorous
way so as to ensure the applicability and the success of the approach.

Moreover, a large specification is often designed in a modular way. This is
not tackled here, but including such features, e.g. hierarchies in coloured nets,
is an important issue that we plan to address in the future. For instance, if
repeated patterns are found in the Petri net, then they can be put in subnets,
and a hierarchy may be introduced. If the net exhibits some symmetries, some
folding may occur, and the appropriate colors are introduced. An evaluation of
the method will be carried out in the near future.

Acknowledgements We thank the anonymous referees for their careful reading
and fruitful comments.

References

1. M. Bidoit and P. Mosses. CASL User Manual, Introduction to Using the Common
Algebraic Specification Language. LNCS 2900. Springer-Verlag, 2004.

2. C. Choppy and L. Petrucci. Towards a methodology for modelling with Petri nets.
In Proc. Workshop on Practical Use of Coloured Petri Nets, Aarhus, Denmark,
pages 39-56, Oct. 2004. Report DAIMI-PB 570, Aarhus, DK.

3. C. Choppy, L. Petrucci, and G. Reggio. @A method for modelling with
place/transitions nets. Technical report, Université Paris 13, 2006.

4. C. Choppy, L. Petrucci, and G. Reggio. A method for modelling with coloured
nets. Technical report, Université Paris 13, 2007.

5. C. Choppy and G. Reggio. A formally grounded software specification method.
Journal of Logic and Algebraic Programming, 67(1-2):52-86, 2006.

6. P. Coad and E. Yourdon. Object-Oriented Analysis. Prentice-Hall, Englewood
Cliffs, N.J., 1991.

7. The CPN Tools Homepage. http://www.daimi.au.dk/CPNtools.

8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

9. M. Heiner and M. Heisel. Modelling Safety-Critical Systems with Z and Petri Nets.
In Proc. SafeComp ’99, LNCS 1698, pages 361 — 374. Springer-Verlag, 1999.

10. K. Jensen. Coloured Petri nets: basic concepts, analysis methods and practical use,
vol. 1, vol. 2 et vol. 3. Monographs in Theoretical Computer Science, Springer-
Verlag, London, UK, 1995.

11. J. Jorgensen. Addressing Problem Frame Concerns Using Coloured Petri Nets and
Graphical Animation. In International Workshop on Advances and Applications
of Problem Frames, 2006.

12. R. S. Pressman. Software Engineering: A Practitioner’s Approach, 6th edition.
McGraw-Hill, 2005.

13. G. Reggio, E. Astesiano, and C. Choppy. CASL-LTL : A CasL Extension for Dy-
namic Reactive Systems Version 1.0- Summary. Technical Report DISI-TR-03-36,
DISI — Universita di Genova, Italy, 2003. Available at ftp://ftp.disi.unige.it/
person/ReggioG/ReggioEtA1103b. pdf.

