
Precise Robustness Analysis of Time Petri Nets

with Inhibitor Arcs

Étienne André, Giuseppe Pellegrino�, and Laure Petrucci

Université Paris 13, Sorbonne Paris Cité, LIPN
F-93430, Villetaneuse, France

Abstract. Quantifying the robustness of a real-time system consists in
measuring the maximum extension of the timing delays such that the
system still satisfies its specification. In this work, we introduce a more
precise notion of robustness, measuring the allowed variability of the
timing delays in their neighbourhood. We consider here the formalism of
time Petri nets extended with inhibitor arcs. We use the inverse method,
initially defined for timed automata. Its output, in the form of a para-
metric linear constraint relating all timing delays, allows the designer
to identify the delays allowing the least variability. We also exhibit a
condition and a construction for rendering robust a non-robust system.

Keywords: Time Petri nets, Quantitative robustness, Parameter
synthesis.

1 Introduction

Formalisms for modelling real-time systems, such as time Petri nets [10] or timed
automata [3], have been extensively used in the past decades, and led to useful
and efficient implementations. Time Petri nets (TPNs for short) are an extension
of Petri nets where firing conditions are given in the form of intervals [a, b]. Each
transition can only fire at least a time units and at most b time units after it
is enabled. ITPNs extend TPNs with inhibitor arcs, i.e. arcs that disable their
outgoing transition if their incoming place is not empty.

However, these formalisms allow for modelling in theory delays arbitrarily
close (or even equal) to zero; this implies that the real system must be arbitrarily
fast, which may be unrealistic in practice, where response times may not be
neglected. These formalisms also allow for simultaneous occurrence of events,
which may not be realistic in practice either, due to slightly different clock rates
of several processors. And similarly, they allow for arbitrary precision, which is
unrealistic: For example, a system where some component performs an action
for e.g. 2 seconds can be implemented with a delay greater but very close to 2
(e.g. 2.0001 s), in which case the formal guarantee may not hold anymore.

The implementation in practice of a real-time system (modelled, e.g. by an
ITPN) can lead in particular to two kinds of undesired consequences: the oc-
currence of behaviours that were proven impossible in theory, and the unlikely
occurrence of behaviours that were proven possible in theory.

� This work is partially supported by an Erasmus grant.

V. Braberman and L. Fribourg (Eds.): FORMATS 2013, LNCS 8053, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 É. André, G. Pellegrino, and L. Petrucci

t1[1, 2] t2(2, 3]

A

B C

(a) Example of undesired reachability

A

t1[1, 1]

B

t2[1, 1]

C D

t3[0,∞)

E

(b) Example of unlikely reachability

Fig. 1. Examples of non-robust ITPNs

Consider the simple TPN in Fig. 1a (from [2]). According to the semantics
of TPNs (e.g. defined in [13]), place C is unreachable, that is, there exists no
reachable marking such that the number of tokens in C is greater than 0. Indeed,
starting from marking A (i.e. a marking with 1 token in place A), t1 can fire
anytime between 1 and 2 time units after the system start. At time 2, t1 must
fire if it has not yet fired, because its associated interval is about to expire and
no other transition is firable (t2 will be firable right after time 2). Hence, C is
unreachable. Now suppose that the upper bound of the firing interval of t1 is
increased, even by an infinitesimal duration. Then, t2 is firable immediately after
time 2, and C can be reached in some executions.

Now consider the ITPN in Fig. 1b. According to the semantics of ITPNs,
place E is reachable. Indeed, starting from a marking AB (i.e. a marking with 1
token in place A and 1 token in place B), t1 can fire at time 1, giving marking
CB. Then, after a null duration, t3 can fire due to the absence of token in D. This
sequence of transitions is unlikely to happen in practice due to delays exactly
equal to zero; if the bounds of t1 or the lower bound of t3 become slightly larger,
or the bounds of t2 becomes slightly smaller, E becomes unreachable.

In this work, we use techniques based on parameter synthesis to compute a
precise quantitative analysis of the admissible variability of the timing bounds
of an ITPN with respect to linear-time properties. We use PITPNs, that is ex-
tensions of ITPNs where timing bounds are parameters, i.e. unknown constants.
Our contributions are as follows:

1. We define the notion of covering constraint for parametric time Petri nets
with inhibitor arcs (PITPNs), and characterise it;

2. We extend the inverse method to PITPNs (initially defined in the setting
of parametric timed automata [4]), and prove that it preserves linear-time
properties, based on the notion of covering constraint; and

3. We exploit the constraint output to obtain a precise quantitative measure of
the system robustness for linear-time properties.

Given in the form of a constraint on the timing bounds seen as parameters, our
robustness condition allows a designer (i) to relate the variability of the timing
bounds with each other, (ii) to exhibit the critical timing bounds that do not
allow any variability, and (iii) to render a system robust under certain conditions.

Precise Robustness Analysis of TPNs with Inhibitor Arcs 3

Related Work. Robustness in the setting of timed automata has received much
attention in the past decade (see [9] for a survey). Most previous works (see
e.g. [5,9,8,2,12,6]) consider that all timing constraints can be enlarged by a sin-
gle very small (but positive) variation Δ. This robustness condition considers a
unique positive parameter Δ; hence, roughly speaking, the robustness is guar-
anteed as long as the different clocks remain in intervals [a−Δ, b+Δ] instead of
[a, b]. In a geometrical context, the admissible variability can be seen as a simple
hypercube (called “Δ-cube” from now on) in 2∗n dimensions, with n the number
of timing constraints. In contrast, we give a precise measure of the robustness,
by considering possible local variations of each lower and upper bound of the
firing intervals of a time Petri net. This is given in the form of a polyhedron
in 2∗n dimensions, where n is the number of transitions. Hence, each bound can
vary independently of the others. Our approach has the following advantages: (1)
it identifies the most critical interval bounds, and helps the designer in tuning
them (when possible) so that the system becomes robust; (2) it relates bounds in
a parametric way, identifying bounds that should, for example, remain smaller
than others; (3) it also outputs a constraint even when some bounds cannot tol-
erate any variation, whereas Δ-based approaches would just classify the system
as non-robust (i.e. synthesise a Δ = 0). Since parameter synthesis is undecidable
for PITPNs [13], our algorithm may not terminate in the general case; however,
we give sufficient termination conditions for subclasses of PITPNs.

In [6], it is shown that parameterised robust reachability in timed automata
is decidable, again for a single Δ. In [8], computing the greatest acceptable vari-
ation Δ is proven decidable for flat timed automata with progressive clocks.
In [12], a counter-example refinement approach is used with parametric tech-
niques to evaluate the greatest acceptable variation Δ for parametric timed
automata (although not decidable in the general case). These works share sim-
ilarities with ours in the problem addressed and in the use of parametric tech-
niques. However, beyond the fact that these works consider (a restriction of)
timed automata whereas we consider (an extension of) time Petri nets, the main
difference lies in the number of dimensions, since they all consider a simple Δ.

Recent work also considered robustness issues in time Petri nets. In [2], the
quantification of robustness is performed by considering that the firing intervals
can be enlarged by a (positive) parameter. Two problems are considered: the
robust boundedness of the net (a bounded net remains bounded even in pres-
ence of small time variations) and the robust untimed language preservation (the
untimed language remains preserved in presence of small time variations). Our
work is close to [2], with notable differences. First, we use here a technique
based on parameter synthesis. Second, we give a condition for trace preser-
vation, where traces are defined as alternating markings and actions. Hence,
the robustness condition in our work is different from the boundedness and
language preservation of [2]. Last but not least, the robustness condition in [2]
again considers a unique positive parameter Δ, whereas we compute a polyhe-
dron in 2 ∗ n dimensions. In [1], a more general notion of robustness is used for
time Petri nets, that includes not only a robustness with respect to time, but

4 É. André, G. Pellegrino, and L. Petrucci

also with constraints on the resources (e.g. memory), scheduling schemes (in a
multi-processor environment) and possible system failures.

Outline. Section 2 recalls PITPNs and related results. In Section 3, we introduce
and characterise covering constraints. In Section 4, we introduce the inverse
method for PITPNs and prove its correctness. In Section 5, we exhibit a precise
quantitative measure of the system robustness, and use it to turn some non-
robust systems robust. We give directions of future research in Section 6.

2 Preliminaries

We denote by N, Q+ and R+ the sets of non-negative integers, non-negative
rational and non-negative real numbers, respectively.

2.1 Firing Times, Parameters and Constraints

Throughout this paper, we assume a set {θ1, θ2, . . . } of firing times. A firing
time is a variable with value in R+, encoding the time remaining before a given
transition fires. In the following, Θ will denote a finite set {θ1, . . . , θH} of firing
times, for some H ∈ N. A firing time valuation is a function ν : Θ → R

H
+

assigning a non-negative real value with each firing time.
We also assume a set {λ1, λ2, . . . } of parameters, i.e. unknown constants. In

the following, Λ = {λ1, . . . , λl} denotes a finite set of parameters for some l ∈ N.
A parameter valuation π is a function π : Λ → R+ assigning with each parameter
a value in R+. A valuation π can be seen as a point (π(λ1), . . . , π(λl)).

Constraints are defined as a set of inequalities. A (linear) inequality over Θ
and Λ is lt ≺ lt′, where ≺∈ {<,≤}, and lt, lt′ are two linear terms of the form∑

1≤i≤N αizi + d where zi ∈ Θ ∪ Λ, αi ∈ Q+, for 1 ≤ i ≤ N , and d ∈ Q+.
We define similarly inequalities over Θ (resp. Λ). A constraint is a conjunction
of inequalities. In particular, a constraint over the parameters can be seen as a
polyhedron in l dimensions. We denote by L(Λ) the set of all constraints over
the parameters. In the sequel, J denotes an inequality over the parameters, E
a constraint over the firing times, K a constraint over the parameters, and D a
constraint over firing times and parameters. Often, given a PITPN transition ti,
we will denote its parametric lower and upper bounds by λ−

i and λ+
i , respectively.

Given an inequality J of the form lt < lt′ (respectively lt ≤ lt′), the negation
of J , denoted by ¬J , is the inequality lt′ ≤ lt (respectively lt′ < lt).

Given a constraintE and a firing time valuation ν, �E�ν denotes the expression
obtained by replacing each firing time θ in E with ν(θ). A firing time valuation ν
satisfies constraint E (denoted by ν |= E) if �E�ν evaluates to true.

Given a parameter valuation π and a constraint D, �D�π denotes the con-
straint over Θ obtained by replacing each parameter λ in D with π(λ). Likewise,
given a firing time valuation ν, ��D�π�ν denotes the expression obtained by re-
placing each firing time θ in �D�π with ν(θ). We say that a parameter valuation π
satisfies a constraint D, denoted by π |= D, if the set of firing time valuations
that satisfy �D�π is non-empty.

Precise Robustness Analysis of TPNs with Inhibitor Arcs 5

A parameter valuation π satisfies a constraintK over the parameters, denoted
by π |= K, if the expression obtained by replacing each parameter λ in K
with π(λ) evaluates to true. Given two constraints K1 and K2, K1 is included
in K2, denoted by K1 ⊆ K2, if ∀π : π |= K1 ⇒ π |= K2. We consider true as a
constraint over Λ, corresponding to the set of all possible values for Λ.

We denote by D↓Λ the constraint over Λ obtained by projecting D onto Λ,
i.e. after elimination of the firing times. Formally, D↓Λ = {π | π |= D}.

We finally define intervals as in [13]. An interval I of R+ is a Q+-interval if its
left endpoint ↑I belongs to Q+ and its right endpoint I↑ belongs to Q+ ∪ {∞}.
We denote by I(Q+) the set of Q+-intervals of R+. A parametric time interval
is a function J : Q+

Λ → I(Q+) that associates with each parameter valuation
a Q+-interval. The set of parametric time intervals over Λ is denoted by J (Λ).
As for I, we define ↑J and J↑ as the minimum and maximum bounds of J ,
respectively. They can both be represented using a constraint over Λ.

2.2 Parametric Time Petri Nets with Inhibitor Arcs

Parametric time Petri nets with inhibitor arcs (PITPNs) are a parametric exten-
sion of ITPNs, where the temporal bounds of the transitions can be parameters.
We slightly adapt the notations defined in [13] to fit our setting.

Definition 1. A parametric time Petri nets with inhibitor arcs (PITPN) is a
tuple N = 〈P, T, Λ, •(.), (.)•, (.)◦,M0, Js,K0〉 where
– P = {p1, . . . , pm} is a non-empty finite set of places,
– T = {t1, . . . , tn} is a non-empty finite set of transitions,
– Λ = {λ1, . . . , λl} is a finite set of parameters,
– •(.) (resp. (.)•) ∈ (NP)T is the backward (resp. forward) incidence function,
– (.)◦ ∈ (NP)T is the inhibition function,
– M0 ∈ N

P is the initial marking,
– Js ∈ J (Λ))T is the function that associates a parametric firing interval with

each transition, and
– K0 ∈ L(Λ) is the initial constraint over Λ.

K0 is a constraint over Λ giving the initial domain of the parameters, and must
at least specify that the minimum bounds of the firing intervals are lower than
or equal to the maximum bounds. Additional linear constraints may of course
be given. Sometimes, given a constraint K0, we will denote a PITPN by N (K0)
when clear from the context, and to emphasise the value of K0 in N .

Given a PITPNN and a valuation π, we denote by �N �π the (non-parametric)
ITPN where each occurrence of a parameter has been replaced by its con-
stant value as in π. Formally, given N = 〈P, T, Λ, •(.), (.)•, (.)◦,M0, Js,K0〉, then
�N �π = 〈P, T, Λ, •(.), (.)•, (.)◦,M0, Js,K0 ∧Kπ〉, where Kπ =

∧
λ∈Λ

(
λ = π(λ)

)
.

For example, the ITPN in Fig. 2b corresponds to the PITPN in Fig. 2a valuated
with π = {λ−

1 → 5, λ+
1 → 6, λ−

2 → 3, λ+
2 → 4, λ−

3 → 1, λ+
3 → 2}.

6 É. André, G. Pellegrino, and L. Petrucci

A B

t1[λ
−
1 , λ+

1] t2[λ
−
2 , λ+

2] t3[λ
−
3 , λ+

3]

C D E

(a) A PITPN N

A B

t1[5, 6] t2[3, 4] t3[1, 2]

C D E

(b) A valuated (P)ITPN �N �π

Fig. 2. A PITPN and its valuation

Semantics. We mostly reuse here the definitions and semantics from [13]. The
reachable states of a PITPN are parametric state-classes (or simply classes),
i.e. pairs c = (M,D) where M is a marking of the net and D is a parametric
firing domain, that is, a constraint over Θ and Λ. Given a class c = (M,D), a
transition t is enabled in c if M ≥ •t (i.e. if the number of tokens in M in each
input place of t is greater than or equal to the value on the arc between this
place and the transition). Transition t is inhibited if the place connected to one
of its inhibitor arc is marked with at least as many tokens than the weight of
the considered inhibitor arc between this place and t. Transition t is active if it
is enabled and not inhibited. Transition t is firable if it has been active for at
least ↑Js(t) time units.

For a given class, the firing times in Θ correspond to variables encoding the
time remaining before an active transition can fire. Hence, these variables de-
crease with time. The initial class ofN (K) is c0 = (M0, D0), withD0 = K∧{θk ∈
Js(tk)|(tk ∈ enabled(M0)}, where enabled(M0) denotes the enabled transitions
in M0. For example, suppose that K = λ−

1 ≤ λ+
1 ∧ λ−

2 ≤ λ+
2 ∧ λ−

3 ≤ λ+
3 ; then

the initial class of N in Fig. 2a is:

c0 = (AB, λ−
1 ≤ θ1 ≤ λ+

1 ∧ λ−
2 ≤ θ2 ≤ λ+

2 ∧ λ−
3 ≤ θ3 ≤ λ+

3).

We consider a (classical) semantics where a transition must fire before its upper
interval bound, unless another transition fires first and disables it; for example,
in Fig. 2a, t1 must fire before t3 if λ+

1 < λ−
3 , t3 must fire before t1 if λ+

3 < λ−
1 ,

and both orders are possible otherwise. Given a class c = (M,D) and a firable
transition tf , c

′ = (M ′, D′) can be reached from c in one step via transition tf

(denoted by c
tf⇒ c′) if the following holds:

– M ′ = M − •tf + t•f
– D′ is computed along the following steps:

1. intersection with the firability constraints: ∀j s.t. tj is active, θf ≤ θj ,
2. variable substitutions for all enabled transitions tj that are active, i.e.

θj = θf + θ′j ,
3. elimination (using for instance the Fourier-Motzkin method) of all vari-

ables relative to transitions disabled by the firing of tf ,

Precise Robustness Analysis of TPNs with Inhibitor Arcs 7

4. addition of inequalities relative to newly enabled transitions1: ∀tk ∈
NewlyEnabled(M, tf),

↑Js(tk) ≤ θ′k ≤ Js(tk)
↑, with NewlyEnabled(M, tf)

denoting the set of transitions newly enabled by firing the transition tf
from marking M .

The full semantics can be found in [13].

A run of N is a sequence c0
t0⇒ · · · tn−1⇒ cn. Given a run r of N of the form

(M0, D0)
t0⇒ · · · tn−1⇒ (Mn, Dn), the trace associated with r is the alternating

sequence of markings and actions M0
t0⇒ · · · tn−1⇒ Mn. The trace set of N is the

set of all traces associated with the runs of N . This corresponds to the discrete
(or time-abstract) behaviour of N . PostN (K)(C) (resp. PostiN (K)(C)) is the set
of classes reachable from a set C of classes in exactly one step (resp. i steps)
in N (K). Furthermore, we define Post∗N (K)(C) as

⋃
i≥0 Post

i
N (K)(C). We define

Reach(N (K)) as the set of reachable classes of N (K), that is Post∗N (K)({c0}).
Finally, we define G(N (K)) as the parametric reachability graph of N (K), that
is the set of reachable parametric state-classes with the transition relation ⇒.

Results. The following lemma, recalled from [13], states that the projection
onto the parameters of the constraint associated with a class always gets stronger
(i.e. more restricted) along a run of the system.

Lemma 1 (Lemma 14 in [13]). Given a PITPN N , let c = (M,D) and

c′ = (M ′, D′) be two classes in G(N). If c
t⇒ c′, then D′↓Λ ⊆ D↓Λ.

The following result states that the valuation with π of a class c of N belongs
to the graph of N valuated with π if and only if π belongs to the constraint
associated with c.

Theorem 1 (Theorems 12 and 13 in [13]). Given a PITPN N (K) and
a valuation π |= K, let c = (M,D) be a class in G(N (K)). Then: �c�π ∈
G(�N �π) iff π |= D↓Λ.

3 Covering Constraint

We introduce the notion of covering constraint as the constraint resulting from
the intersection of the projection onto the parameters of the constraints associ-
ated with all the reachable classes of a PITPN.

Definition 2. Let N be a PITPN. The covering constraint of N is:⋂
(M,D)∈Reach(N) D↓Λ.

In the general case, it is possible that the covering constraint of a PITPN will be
empty, due to the intersection of disjoint constraints over the parameters. But
in the setting of the inverse method (see Section 4), it will not be.

The following lemma relates parametric and non-parametric runs, and derives
from Theorem 1.
1 For sake of simplicity, we only consider here closed intervals of the form [a, b]. For
open intervals (e.g. (2, 3] in Fig. 1a), one should use strict instead of large inequalities.

8 É. André, G. Pellegrino, and L. Petrucci

Lemma 2. Let N be a PITPN, let π be a parameter valuation. Let r be a run
of N reaching a class (M,D) in G(N). Then there exists an equivalent run in
�N �π reaching class (M, �D�π) in G(�N �π) iff π |= D↓Λ.

Proof. Let (M0, D0)
t0⇒ . . .

tk−1⇒ (Mk, Dk) be a run of N . From Theorem 1, we
have that �(Mk, Dk)�π ∈ �G(N (K))�π iff π |= Dk↓Λ. Now consider transition

(Mk−1, Dk−1)
tk−1⇒ (Mk, Dk) in G(N). Then, from the semantics of PITPNs, for

all π |= �Dk�π , then (Mk−1, �Dk−1�π)
tk−1⇒ (Mk, �Dk�π) ∈ G(�N �π). The result

then derives from a reasoning by induction on k, with (M,D) = (Mk, Dk). ��
Conversely, the following lemma states that, given a PITPN N , a run in a
valuation of N always has an equivalent run in N .

Lemma 3. Let N (K) be a PITPN, let π be a parameter valuation such that
π |= K. Let r be a run of �N �π. Then there exists an equivalent run in N (K).

Proof. �N �π can be seen as a PITPN (hence parametric) with an initial con-
straint Kπ. Since Kπ ⊆ K, from the semantics of PITPNs, the set of behaviours
of N (K) includes the behaviours of N (Kπ). Hence any run in N (Kπ) has an
equivalent in N (K). ��
We now state below a general result that will be used to prove Lemma 5.

Lemma 4. Let N (K) be a PITPN. Then for all (M,D) ∈ G(N (K)), D↓Λ ⊆ K.

Proof. By induction on Lemma 1, with K0 ⊆ K as the base case. ��
The following result states that, for a PITPN with its own covering constraint
Kcov as initial constraint, the projection onto the parameters of the constraint
associated with a reachable class is always the same, and equal to Kcov .

Lemma 5. Let N (K) be a PITPN, let Kcov be the covering constraint of N (K).
Then for all (M,D) ∈ G(N (Kcov)) : D↓Λ = Kcov .

Proof. If Kcov is empty, G is empty too and the result trivially holds. Suppose
Kcov is non-empty. Let c = (M,D) ∈ G(N (Kcov)). Let π |= D↓Λ. By Lemma 4,
D↓Λ ⊆ Kcov . By construction of Kcov , we have that Kcov ⊆ K. Hence π |=
D↓Λ ⇒ π |= K. Since π |= D↓Λ, from Lemma 2, there exists an equivalent run
in �N �π reaching class (M, �D�π) in G(�N �π). Since π |= K, from Lemma 3,
there exists an equivalent run in N (K) reaching class (M,D′) for some D′.

Let π′ |= Kcov . By construction,Kcov ⊆ D′↓Λ, hence π′ |= D′↓Λ. By Lemma 4,
D↓Λ ⊆ K, hence π′ |= K. Since π′ |= K and π′ |= D′↓Λ, applying Theorem 1
to N (K) gives that �c�π′ ∈ G(�N �π′). Since π′ |= Kcov by hypothesis, and
�c�π′ ∈ G(�N �π′), then applying Theorem 1 to N (Kcov) gives that π′ |= D↓Λ.
Hence Kcov ⊆ D↓Λ. (Lemma 4 gives the other direction.) ��
Finally, Theorem 2 states that the trace set of a PIPTN valuated with any
parameter valuation satisfying its covering constraint Kcov is the same as the
trace set of this PITPN with Kcov as initial constraint.

Precise Robustness Analysis of TPNs with Inhibitor Arcs 9

Theorem 2. Let N be a PITPN, let Kcov be the covering constraint of N . Let
π |= Kcov . Then the trace sets of N (Kcov) and �N �π are equal.

Proof. Let π |= Kcov . Consider a run of N (Kcov) reaching a class (M,D) in
G(N (Kcov)). By Lemma 5, it holds that D↓Λ = Kcov . Since π |= Kcov , then
π |= D↓Λ. Hence, by Lemma 2, there exists an equivalent run in G(�N �π).
Conversely, since π |= Kcov , by lemma 3, any run in �N �π has an equivalent run
in N (Kcov). ��
We can derive from Theorem 2 that the trace set of a PIPTN with any parameter
valuation satisfying its covering constraint is always the same. This result will
be used to prove the correctness of the inverse method (see Section 4).

Corollary 1. Let N be a PITPN, let Kcov be the covering constraint of N .
Then for all π, π′ |= Kcov , the trace sets of �N �π and �N �π′ are equal.

4 The Inverse Method for Time Petri Nets

We extend to PITPNs the inverse method initially proposed for timed au-
tomata [4]. The algorithm relies on the following definition of π-compatibility.

Definition 3. Given a parameter valuation π, a class (M,D) is said to be π-
compatible if π |= D↓Λ, and π-incompatible otherwise.

4.1 Principle

We introduce in Algorithm 1 IMPN (i.e. the Inverse Method for time Petri
Nets with inhibitor arcs). It uses 3 variables: an integer i measuring the depth
of the state space exploration, the current constraint Kc, and the set C of ex-
plored classes. Starting from the initial class c0, IMPN iteratively computes
classes. When a π-incompatible class is found, an incompatible inequality is non-
deterministically selected within the projection of the constraint onto Λ (line 5);

Algorithm 1. IMPN (N , π)

input : PITPN N of initial class c0 and initial constraint K0, valuation π
output: Constraint Kr

1 i← 0 ; Kc ← K0 ; C ← {c0}
2 while true do
3 while ∃ π-incompatible classes in C do
4 Select a π-incompatible class (M,D) of C
5 Select a π-incompatible J in D↓Λ
6 Kc ← Kc ∧ ¬J ; C ← ⋃i

j=0 Post
j
N (Kc)

({c0})
7 if PostN (Kc)(C) ⊆ C then return Kr ←

⋂
(M,D)∈C D↓Λ

8 i← i+ 1 ; C ← C ∪ PostN (Kc)(C)

10 É. André, G. Pellegrino, and L. Petrucci

its negation is then added to Kc (line 6). The set of reachable classes is then
updated. When all successor classes have already been reached (line 7), IMPN
returns the intersection Kr of the projection onto Λ of the constraints associated
with all the reachable classes.

4.2 Results

Lemma 6. Let N be a PITPN, and π be a parameter valuation. Suppose that
algorithm IMPN (N , π) terminates with output Kr. It holds that π |= Kr.

Proof. By construction, at the end of the inner while loop, all classes of C are
π-compatible, that is for all (M,D) ∈ C, π |= D. As a consequence, π |= D↓Λ.
Recall that Kr =

⋂
(M,D)∈C D↓Λ. Hence π |= Kr. ��

The correctness of IMPN mainly relies on the fact that Kr is the covering
constraint of N . Hence, the results of Section 3 can be applied.

Theorem 3 (Correctness). Let N be a PITPN, and π be a parameter valua-
tion. Suppose IMPN (N , π) terminates with output Kr. Then:

1. π |= Kr, and
2. ∀π′ |= Kr, �N �π′ and �N �π have the same trace set.

Proof. Item 1 comes from Lemma 6. For item 2, since Kr is the covering con-
straint of N , then we can apply Corollary 1, which gives the result. Also note
that the covering constraint cannot be empty since π |= Kr. ��

Non-termination. Parameter synthesis is undecidable for PITPNs [13] and
IMPN may not always terminate. Consider the PITPN N in Fig. 3a; then,
IMPN applied to N and a reference valuation with all parameters equal to 0
will generate an infinite set of classes with constraints of the form i ∗ λ−

1 ≤ λ+
2 ,

with i infinitely growing. Intuitively, t1 can fire an arbitrary number of times
before t2 fires. Of course, this is a typical Zeno-behaviour (an infinite number of
transitions within a null duration) and, in the case of non-null reference parame-
ter valuations, an inequality i ∗λ−

1 ≤ λ+
2 will eventually be π-incompatible, thus

ensuring termination. Also note N is a bounded L/U (lower/upper bounds)
PTPN [13], showing that termination of IMPN is not guaranteed for general
bounded L/U PTPNs (although emptiness and reachability problems are decid-
able in theory). Studying the decidability of this problem, and adapting IMPN
to ensure termination in this case is the subject of ongoing work.

We can exhibit subclasses for which IMPN terminates. This is obviously the
case of loopless PITPNs (in which no syntactical loop exists in the model). This
is also the case of parametric sequential TPNs [2]; this subclass of TPNs is such
that each time a discrete transition is fired, each transition that is enabled in
the new/resulting marking is newly enabled. Hence, the problem of infinitely
concurrent loops such as in Fig. 3a cannot happen.

Non-confluence and Non-completeness. Due to the non-deterministic se-
lection of an inequality, IMPN is non-confluent (i.e. different applications of the

Precise Robustness Analysis of TPNs with Inhibitor Arcs 11

A

t1[λ
−
1 , λ+

1]

B

t2[λ
−
2 , λ+

1]

C

(a) Non-termination

A

t1[λ
−
1 , λ

+
1]

B

t2[λ
−
2 , λ

+
2] t3[λ

−
3 , λ

+
3]

C D E

(b) Non-completeness

Fig. 3. Counter-examples PITPNs

algorithm can yield different outputs). As a consequence, it is also non-complete
(i.e. the resulting constraint may not be the maximal one). Formally:

Proposition 1 (Non-completeness). There may exist π′ �|= Kr such that
�N �π′ and �N �π have the same trace set.

An example for non-completeness is the PITPN N in Fig. 3b, with the reference
parameter valuation π = {λ−

1 → 5, λ+
1 → 6, λ−

2 → 1, λ+
2 → 3, λ−

3 → 2, λ+
3 → 4}.

In �N �π , either t2 or t3 can fire first, but not t1, due to the fact that we have
both ↑I(t1) > I↑(t2) and ↑I(t1) > I↑(t3).

When applying the inverse method to N and π, a class will be generated
with BC as a marking, and an associated constraint containing in particular
inequalities λ−

1 ≤ λ+
2 ∧ λ−

1 ≤ λ+
3 . Since both are π-incompatible, the algorithm

can add to the current constraint either λ−
1 > λ+

2 or λ−
1 > λ+

3 . Either of them
is sufficient to prevent BC to be reachable. Then the result of the application
of IMPN to N and π is both non-confluent and non-complete. Also note that,
due to the absence of inhibitor arc in N , the non-completeness of IMPN also
holds for PTPNs.

Nevertheless, it can be shown (as it was the case for timed automata [4])
that a sufficient (but non-necessary) condition for completeness is that IMPN
does not perform non-deterministic selections of inequalities, i.e. at most one
π-incompatible class is met at each iteration.

5 Precise Robustness Analysis

5.1 Local Robustness

Throughout this section, we assume an ITPN N , as well as a parameterised
versionN ofN where each lower (resp. upper) bound of a transition ti is replaced
with a fresh parameter λ−

i (resp. λ+
i). Let π be the reference valuation such that

�N �π = N . We assume that IMPN (N , π) terminates with output Kr.
We will exploit Kr to characterise the precise robustness of the system, i.e. the

admissible variability of each timing bound. The original trace set is preserved
by any valuation satisfying Kr. Hence, any linear-time (LTL) property that is
true in �N �π is also true in �N �π′ , for π′ |= Kr. Thus, if the correctness is given
in the form of an LTL property, the timing delays can safely vary as long as they
satisfy Kr.

12 É. André, G. Pellegrino, and L. Petrucci

We use here several examples in order to better illustrate the notions. For
the PITPN in Fig. 2a, with π = {λ−

1 → 5, λ+
1 → 6, λ−

2 → 3, λ+
2 → 4, λ−

3 →
1, λ+

3 → 2} as a reference valuation, IMPN outputs the constraint Kr = λ−
1 ≤

λ+
1 ∧λ−

2 ≤ λ+
2 ∧λ−

3 ≤ λ+
3 ∧λ+

3 < λ−
1 . For a parameterised version of the ITPN in

Fig. 1a, IMPN outputs the constraint Kr = λ−
1 ≤ λ+

1 ∧λ−
2 ≤ λ+

2 ∧λ−
2 ≥ λ+

1 . For
a parameterised version of the ITPN in Fig. 1b, IMPN outputs the constraint
Kr = λ−

1 ≤ λ+
1 ∧ λ−

2 ≤ λ+
2 ∧ λ−

3 = 0 ∧ 0 ≤ λ+
3 ∧ λ+

1 = λ−
2 .

Definition 4. An ITPN N is robust with respect to linear-time properties (or
LT-robust) if there exists γ > 0 such that for any linear time property ϕ, N ′ |= ϕ
if and only if N |= ϕ, where N ′ is an ITPN similar to N where each timing
bound c can be replaced with any value within [c− γ, c+ γ].

For example, the ITPN in Fig. 2a is LT-robust (with e.g. γ = 1), whereas the
ITPNs in Fig. 1 are not.

Local Robustness. The resulting constraintKr is given in the form of a convex
(possibly unbounded) polyhedron. For each interval bound λi in N , its local
robustness LR(λi) is defined as the distance between π(λi) and the closest border
of the polyhedral representation of Kr. For example, in Fig. 2a, LR(λ−

1) = 1.
In Fig. 1a, LR(λ−

1) = 1 whereas LR(λ+
1) = 0, showing that this latter bound

renders the system non-robust. The following lemma follows from Definition 4,
from the definition of LR and the correctness of IMPN .

Lemma 7. If for each parameter λ in N , LR(λ) > 0, then N is LT-robust.

Ranging Interval. For each interval bound λi in N , its ranging interval RI (λi)
is defined as its minimum and maximum admissible values within Kr. It is
computed by valuating all parameters but λi in Kr, and converting the resulting
inequality in the form of an interval. For example, in Fig. 2a, RI (λ−

1) = (2, 6].
In Fig. 1a, RI (λ+

1) = [1, 2].
The local lower (resp. upper) variability is defined as the distance between

the parameter valuation and the lower (resp. upper) bound of RI ; formally,
given RI (λi) = (a, b), LLV (λi) = π(λi) − a and LUV (λi) = b − π(λi). Note
that the local robustness can be obtained from the local variability: LR(λi) =
min(LLV (λi),LUV (λi)).

Computation of Δ. Our approach also allows to retrieve the value of the “Δ”
ofΔ-based approaches. It is defined as the minimum over the set of parameters of
the distance between a parameter and the closest border of the polyhedron. For-
mally, Δ = min

(
mini∈Δ− LLV (λi),mini∈Δ+ LUV (λi)

)
, where Δ− (resp. Δ+)

denotes the set of parameters appearing in an interval lower (resp. upper) bound.
This distinction is necessary, since Δ-based approaches only consider the posi-
tive enlarging of intervals. For the ITPN in Fig. 2a, the maximum possible Δ is
1.5 (see Section 5.3). And, obviously, Δ = 0 for the ITPNs in Fig. 1.

Precise Robustness Analysis of TPNs with Inhibitor Arcs 13

5.2 Improving the System Robustness

Identifying Critical Timing Bounds. Our approach allows to exhibit critical
timing bounds: critical timing bounds are those rendering the system non-robust,
i.e. with a null local robustness. For example, in Fig. 1a, λ+

1 and λ−
2 are the

critical timing bounds. In Fig. 1b, λ+
1 , λ

−
2 and λ−

3 are the critical timing bounds.

Relaxing Bounds. For some systems, it is possible to refine the values of the
critical timing bounds so that the system becomes robust, with the same discrete
behaviour. In practice, this may in particular be the case of hardware systems,
where the timing bounds come from the traversal time of micro components:
One can change the timing bounds by replacing a component with another one.
In software, one can also refine the values of some timers if needed.

In that case, one can exploit the precise robustness analysis to synthesise
values for the timing bounds so that the system is robust. A system is said to be
potentially robust if all timing bounds λi have a ranging interval non-reduced
to a point (even if their local robustness may possibly be null, i.e. LR(λi) = 0).

Definition 5. An ITPN N is potentially robust if, for all timing bounds λi,
LLV (λi) �= LUV (λi).

This notion of potential robustness is a sufficient condition so that an ITPN
becomes robust with the same discrete behaviour.

Theorem 4. If N is potentially robust, then there exists πR such that �N �πR is
LT-robust, and has the same trace set as N .

Proof. By Lemma 7, only the timing bounds λi such that LR(λi) = 0 render N
non-LT-robust. For all λi such that LR(λi) > 0, we set πR(λi) = π(λi). Now
consider a λi such that LR(λi) = 0. By definition of LR, either LLV (λi) = 0 or
LUV (λi) = 0. Consider the former case (the latter case is dual). Let πR(λi) =
π(λi) +

(
LLV (λi) + LUV (λi)

)
/2. Since N is potentially robust, LLV (λi) �=

LUV (λi); hence LLV (λi) < πR(λi) < LUV (λi). As a consequence, in πR, we
have LR(λi) > 0. By construction, and from the convexity of Kr, πR(λi) is
in Kr; hence, from Theorem 3, �N �πR and �N �π have the same trace set. ��
Note that this is a sufficient but non-necessary condition, since the notion of
potential robustness is based on LLV and LUV , that come from Kr, which is
non-complete. Furthermore, one can find further conditions (and constructions)
to render a system robust. For example, the ITPN in Fig. 1b is not potentially
robust; but it can be made robust with the same discrete behaviour, e.g. by
replacing the intervals associated with both t1 and t2 with [0, 1].

5.3 Comparison with Δ-Based Approaches

The main drawback of our approach is that it does not terminate in the gen-
eral case, although we exhibited cases for which termination is guaranteed (see

14 É. André, G. Pellegrino, and L. Petrucci

λ−
1

λ+
3

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6

(a) Representation of Kr

λ−
1

λ+
3

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6

(b) Representation of the Δ-cube

Fig. 4. Graphical comparison for the example in Fig. 2a

Section 4.2). In contrast, related work show that deciding only whether a sys-
tem is robust is decidable in most cases. However, beside the fact that we give a
quantitative measure of the robustness in the form of a constraint in 2∗n dimen-
sions (with n the number of transitions), our approach is particularly interesting
in the case of a non-robust system. First, we exhibit which timing bounds are
responsible for the non-robustness. Second, we give a condition to render the
system robust without changing its discrete behaviour.

Furthermore, our approach may output a significantly larger constraint than
the Δ-cube output by Δ-based approaches. Actually, when the result of IMPN is
complete, the resulting polyhedron is necessarily at least as large as the Δ-cube.
Consider again the example in Fig. 2a. In order to enable a graphical comparison
in 2 dimensions, we assign all parameters but λ−

1 and λ+
3 to their value as in π.

Hence the constraint becomes λ−
1 ≤ 6 ∧ 1 ≤ λ+

3 ∧ λ+
3 < λ−

1 . This constraint
is depicted in Fig. 4a. As of Δ-based approaches, they cannot compute a value
for Δ greater than 1.5 in this situation. Indeed, with Δ = 1.5, λ+

3 becomes
λ+
3 +Δ = 3.5, λ−

1 becomes λ−
1 −Δ = 3.5, in which case the discrete behaviour

becomes different (t1 can fire before t3). This Δ is given in Fig. 4b.
The interpretation of the much larger parametric domain covered by Kr com-

pared to the Δ-cube can be explained as follows: (1) The parametric domain
below λ+

3 = 2 and above λ−
1 = 5 is not covered by the Δ-cube, because Δ-

based approaches consider a positive parameter Δ ≥ 0. Hence, it is not possible
to study, e.g. by how much an upper bound can be decreased. (2) The con-
straint Kr allows to relate parameters. Whereas the value of Δ prevents λ−

1 and
λ+
3 to vary by more than 1.5, the inequality λ+

3 < λ−
1 states that λ−

1 may vary
by more than 1.5, as long as λ+

3 varies less (i.e. λ+
3 < λ−

1). This is of particular
interest in systems where some bounds are more likely to vary than others. (3)
This small example is a “good” example for Δ-based approaches. In the case
where at least one parameter cannot vary, Δ would be inevitably equal to 0,
whereas Kr would still give an output for other dimensions. This is the case of
the ITPNs in Fig. 1.

6 Final Remarks

In this paper, we extended the inverse method to PITPNs and showed how
to exploit its output to obtain a precise quantitative measure of the system

Precise Robustness Analysis of TPNs with Inhibitor Arcs 15

robustness for linear-time properties. This paper considers the quantification of
the system robustness with respect to linear-time (hence time-abstract) proper-
ties only. Nevertheless, timed properties can also be considered, by adding an
observer net. This observer synchronises with the system ITPN, and can reduce
timed properties to time-abstract properties.

Our algorithms should be implemented and compared with similar tools, such
as Shrinktech [11]. Finally, we only addressed here the variability of the timing
delays (Δ), but not the admissible variations of the clock speed (usually called
“ε”). Our approach could be extended to this setting using extensions of the
inverse method for parameterised hybrid systems [7], by adding for each clock
two additional parameters ε−i and ε+i measuring the admissible decrease and
increase speed rate.

Acknowledgment. We are grateful to an anonymous reviewer for his/her very
detailed comments.

References

1. Akshay, S., Hélouët, L., Jard, C., Lime, D., Roux, O.H.: Robustness of time petri
nets under architectural constraints. In: Jurdziński, M., Ničković, D. (eds.) FOR-
MATS 2012. LNCS, vol. 7595, pp. 11–26. Springer, Heidelberg (2012)

2. Akshay, S., Hélouët, L., Jard, C., Reynier, P.-A.: Robustness of time Petri nets
under guard enlargement. In: Finkel, A., Leroux, J., Potapov, I. (eds.) RP 2012.
LNCS, vol. 7550, pp. 92–106. Springer, Heidelberg (2012)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

4. André, É., Soulat, R.: The Inverse Method. FOCUS Series in Computer Engineer-
ing and Information Technology. ISTE Ltd and John Wiley & Sons Inc. (2013)

5. Bouyer, P., Larsen, K.G., Markey, N., Sankur, O., Thrane, C.: Timed automata
can always be made implementable. In: Katoen, J.-P., König, B. (eds.) CONCUR
2011. LNCS, vol. 6901, pp. 76–91. Springer, Heidelberg (2011)

6. Bouyer, P., Markey, N., Sankur, O.: Robust reachability in timed automata: A
game-based approach. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R.
(eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 128–140. Springer, Heidelberg
(2012)

7. Fribourg, L., Kühne, U.: Parametric verification and test coverage for hybrid au-
tomata using the inverse method. IJFCS 24(2), 233–249 (2013)

8. Jaubert, R., Reynier, P.-A.: Quantitative robustness analysis of flat timed au-
tomata. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 229–244.
Springer, Heidelberg (2011)

9. Markey, N.: Robustness in real-time systems. In: SIES, pp. 28–34. IEEE Computer
Society Press (2011)

10. Merlin, P.M.: A study of the recoverability of computing systems. PhD thesis,
University of California, Irvine, CA, USA (1974)

11. Sankur, O.: Shrinktech: A tool for the robustness analysis of timed automata. In:
CAV. LNCS. Springer (to appear, 2013)

12. Traonouez, L.-M.: A parametric counterexample refinement approach for robust
timed specifications. In: FIT. EPTCS, vol. 87, pp. 17–33 (2012)

13. Traonouez, L.-M., Lime, D., Roux, O.H.: Parametric model-checking of stopwatch
Petri nets. Journal of Universal Computer Science 15(17), 3273–3304 (2009)

	Precise Robustness Analysis of Time Petri Nets with Inhibitor Arcs
	Introduction
	Preliminaries
	Firing Times, Parameters and Constraints
	Parametric Time Petri Nets with Inhibitor Arcs

	Covering Constraint
	The Inverse Method for Time Petri Nets
	Principle
	Results

	Precise Robustness Analysis
	Local Robustness
	Improving the System Robustness
	Comparison with -Based Approaches

	Final Remarks

