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Abstract—Parametric timed automata are a powerful formal-
ism to reason about, model and verify real-time systems in
which some constraints are unknown, or subject to uncertainty.
Parameter synthesis using parametric timed automata is very
sensitive to the state space explosion problem. To mitigate
this problem, we propose two new exploration orders, i. e.,
the “ranking strategy” and the “priority based strategy”,
and compare them with existing strategies. We consider both
complete parameter synthesis, and counterexample synthesis
where the analysis stops as soon as some parameter valuations
are found. Experimental results using IMITATOR show that our
new strategies significantly outperform existing approaches,
especially in the counterexample synthesis.

Index Terms—parametric timed automata, exploration order,
parametric model checking, IMITATOR

1. Introduction

Real-time systems are notoriously difficult to design
due to the complicated use of timing constraints, and must
therefore be verified, e. g., using model checking. Model
checking is a common approach to formally verify that
a system which is described by a model, satisfies some
property, described using formalisms such as properties
expressed using, e. g., temporal logics.

Timed automata (TAs) [1] are a widely formalism used
to model and verify real-time systems. TAs were successful
in verifying models of complex distributed systems using
power model checkers. TAs also have some limits when ver-
ifying systems only partially specified (typically when the
timing constants are not yet known at an early design stage)
or when timing constants are known with a limited precision
only (although the robust semantics can help tackling some
problems, see e. g., [2]). Parametric timed automata (PTAs)
[3] leverage these drawbacks by allowing the use of timing
parameters, hence allowing for modeling constants unknown
or known with some imprecision.

By using parameters in the model, the model checking
problem with a binary answer (“yes/no”) becomes the pa-
rameter synthesis problem with a richer answer: a set of
valuations for which a property holds. Parameter synthesis
algorithms usually rely on the parametric zone graph (a
parametric extension of the zone graph of TAs [4]) where
states are pairs consisting of a discrete location and a
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parametric zone describing the set of possible parameter
and clock valuations in this state (see e. g., [5], [6], [7]). The
parametric zone graph is not only subject to the well-known
state space explosion problem, but is usually even infinite.
Indeed, most problems for PTAs are undecidable [8], includ-
ing the emptiness of the parameter valuation set for which a
given location is reachable (“EF-emptiness problem”) [3]. A
popular subclass of PTAs (called L/U-PTAs) was proposed
in [5] with additional results in [7], [9], [10] but, despite
decidability of the EF-emptiness problem, exact synthesis
is intractable in practice [7], and the parametric zone graph
is infinite for this subclass too.

Depth-first search (DFS) and breadth-first search (BFS)
are popular exploration orders of model checking algo-
rithms. By observation in practice, many authors (e. g., [11],
[12]) showed that using BFS is much more efficient than
DFS for checking reachability properties in TAs.

In [13], the authors show that in some cases, BFS can
explore an exponential number of unnecessary states in TAs:
this happens when a zone is found after another state with
a strictly smaller zone (and the same discrete location) is
found. We call this state with smaller zone a redundant state
and this phenomenon an inefficient phenomenon.

Contribution. We study here various exploration orders to
address efficient parameter synthesis for PTAs. By taking
a different exploration to reach the larger zone first, we
propose two main exploration strategies to reduce the ineffi-
cient phenomenon and increase the efficiency of parameter
synthesis in PTAs.

The first exploration order we propose is a parametric
ranking strategy, inspired by the ranking system of [13].
The second is a parametric priority strategy, which ex-
plores the biggest zone first in order to avoid the inefficient
phenomenon and then stop the exploration from a small
zone by correcting the inefficient phenomenon. Note that, in
the worst case, these strategies explore unnecessary visited
parametric zones exponentially. We also compare these ex-
ploration orders with the classical BFS strategy. We perform
extensive experiments using the IMITATOR software [14]
that takes as input parametric timed automata. First, we
show that our new strategies always outperform the BFS
strategy. Second, when using an additional existing state
space optimization called “convex state merging” [15] (that
can be used only for reachability properties), BFS becomes
best again. However, for counter-example synthesis (i. e.,
try to find some parameter valuations instead of all), our



exploration strategies significantly outperform BFS, with an
average speed-up of 5.

Related works. As noted in [13], the exploration order prob-
lem was addressed in the context of state-caching focusing
on limiting the number of stored nodes at nodes exploring
cost [16], [17], [18], and state-space fragmentation [11],
[12], [19], [20]. In [21], a value has been added to guide
the exploration in priced timed automata, which has been
reused in [13], and that we reuse in our second exploration
strategy. Also note that the exploration order was considered
in several works in the framework of distributed model
checking for TAs [11], [12], [20], where it seems that BFS
is the most optimal exploration order. Zone inclusion was
also considered in [22] in multi-core model checking of
TAs. To the best of our knowledge, comparing exploration
strategies was never considered for PTAs or more generally
for parametric timed formalisms. While we partially rely
on exploration strategies for TAs, the differences of data
structures (DBMs [4] cannot be used in PTAs) and the
specificities of the symbolic zones for PTAs (that include not
only clock valuations but also parameter valuations) make
it important to study these strategies for PTAs.

Outline. We first recall the necessary definitions and the
parametric zone inclusion algorithm for parametric timed
automata in Section 2. Then, we introduce in Sections 3
and 4, parametric ranking strategy and parametric priority
strategy respectively to limit the inefficient phenomenon
during exploration. Section 5 provides experimental results
of our approaches. Finally, we conclude in Section 6.

2. Preliminaries

2.1. Parameter Constraints

We assume a set X = {x1, . . . , xH} of clocks, i. e.,
real-valued variables that evolve at the same rate. A clock
valuation w is a function w : X → R+. We denote by
X = 0 the conjunction of equalities that assigns 0 to all
clocks in X .

We assume a set P = {p1, . . . , pM} of parameters, i. e.,
unknown constants. A parameter valuation v is a function
v : P → Q+. We will often identify a valuation v with the
point (v(p1), . . . , v(pM )).

An inequality over X and P is e ./ 0, where ./ ∈ {<,≤
,≥, >}, and e is a linear term

∑
1≤i≤N αizi + d for some

N ∈ N, where zi ∈ X ∪ P , αi ∈ Q, for 1 ≤ i ≤ N ,
and d ∈ Q. A (linear) constraint over X and P is a set of
inequalities over X and P . We define in a similar manner
inequalities and constraints over P . A guard is a set of
inequalities each of them referring to exactly one clock.

Given a parameter valuation v, C[v] denotes the con-
straint over X obtained by replacing each parameter p in C
with v(p). Likewise, given a clock valuation w, C[v][w]
denotes the expression obtained by replacing each clock x
in C[v] with w(x). Given two constraints C1 and C2, we
write C2 ⊆ C2 whenever, for any v, w, C1[v][w] evaluates
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Figure 1: Examples

to true implies C2[v][w] evaluates to true. True denotes the
constraint made of all clock and parameter valuations.

We define the time elapsing of C, denoted by C↗, as the
constraint over X and P obtained from C by delaying an
arbitrary amount of time. Given R ⊆ X , we define the reset
of C, denoted by [C]R, as the constraint obtained from C
by resetting the clocks in R, and keeping the other clocks
unchanged.

Definition 1. A PTA A is a tuple A = (Σ, L, l0, X, P, I, E),
where: i) Σ is a finite set of actions, ii) L is a finite set of
locations, iii) l0 ∈ L is the initial location, iv) X is a set
of clocks, v) P is a set of parameters, vi) I is the invariant,
assigning to every l ∈ L a guard I(l), and vii) E is a set of
edges (l, g, a,R, l′) where l, l′ ∈ L are the source and target
locations, g is the transition guard, a ∈ Σ, and R ⊆ X is a
set of clocks to be reset.

Example 1. Fig. 1a depicts an example of PTA with two
clocks x and y (x does not appear on any guard nor invari-
ant) and two parameters p1 and p2. Action labels are not
shown. The transition from l0 to l2 is guarded by y > 2p1
while the transition from l2 to l3 is guarded by y ≤ p2.

2.2. Symbolic Semantics

A symbolic state is a pair (l, C) with l a location, and
C a constraint over X ∪P or zone. The initial state of A is
s0 = (l0, (X = 0)↗∧I(l0)), i. e., clocks are initially set to 0,
and can evolve as long as I(l0) is satisfied. The computation
of the state space is as follows: Given a symbolic state s =
(l, C), Succ(s) = {(l′, C ′) | ∃(l, g, a,R, l′) ∈ E s.t. C ′ =(
[(C ∧ g)]R

)↗ ∩ I(l′)}.
A symbolic run of a PTA is an alternating sequence of

symbolic states and edges of the form s0
e0⇒ s1

e1⇒ · · · em−1⇒
sm, such that for all i = 0, . . . ,m−1, ei ∈ E, and si

ei⇒ si+1

is such that si+1 belongs to Succ(si) and is obtained via
edge ei. In the following, we simply refer to the symbolic
states belonging to a run of A starting from s0 as states
of A. The parametric zone graph PZG(A) of a PTA A is
made of the states of A, and there is an edge in PZG(A)
from si to sj whenever sj ∈ Succ(si).

In general, and in contrast to TAs [4], the parametric
zone graph of PTAs is infinite, as most decision problems
for PTAs, including the emptiness of the valuations set for
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Figure 2: Parametric zone graphs of Fig. 1a where the
number n in a state label sn reflects the exploration order

which a given location is reachable, are undecidable (see [8]
for a survey).

2.3. Parametric Zone Inclusion Algorithm

Similar to timed automata’s zone inclusion, parametric
zone inclusion is an optimization technique relying on the
parametric zone graph. That is, for some properties (in-
cluding reachability and safety), given two reachable states
s1 = (l1, C1) and s2 = (l2, C2), whenever l1 = l2 and
C1 ⊆ C2, it is safe to replace s1 with s2 in the analysis.
This inclusion check is even more costly in PTAs than its
counterparts in TAs, but it is usually compensated by the
performance improvement obtained by the decrease of the
number of symbolic states to consider.

Algorithm 1 describes the standard state exploration al-
gorithm with zone inclusion for PTA. It explores the infinite
abstract parametric zone graph of PTA A from its initial
location. The intuition of parametric zone inclusion is to
stop the exploration of a small zone whenever a larger zone
with the same location is explored. Therefore, in order to
look up information of visited states having smaller zones
at a certain location and do the zone inclusion, Algorithm 1
maintains a set of waiting states W and a graph G con-

taining both visited states and transitions between them. In
Algorithm 1, two situations can lead to zone inclusion:

The first is the classical one, at line 14: if a large zone
has already been explored earlier, it subsumes the smaller
zone being explored, which will be included by the larger
zone with same location. Thus, only a transition from (l, C)
to the larger zone (l′, CLarger) is added to G, and not the
newly computed state with a smaller zone (l′, C ′).

The second situation where the inefficient phenomenon
happens is when a larger zone is explored after exploring
smaller zones. At line 9, the algorithm looks for the previous
smaller parametric zones in the set of visited states G, then
removes states with smaller zones with its incoming and
outgoing transitions. Also, transitions from parents of the
smaller zones to the bigger zone and from the bigger zone
to the children of the smaller zones are added at lines 10
and 11.

Note that, by exploring the bigger zones, the smaller
zones and their successors or subtrees will eventually be
pruned. Within the second situation, the parametric zone
inclusion algorithm stores fewer nodes (i. e., symbolic states
of the parametric zone graph) but this overhead of smaller
zone removal procedure slightly influences the performance
of the parametric zone inclusion algorithm.

Experiments will be reported in Section 5, where the
performances of the different inclusions will be compared.

Note that Algorithm 1 does not mention any exploration
order for any specific property checking. Choosing the ex-
ploration order will affect the performance of the algorithm,
inefficient phenomenon and number of nodes visited by the
algorithm and stored in the sets W and G.

Example 2. We reuse in Fig. 1a a part of a parameterized
version of the FDDI case study of [13]. Let us consider two
different exploration strategies. The first parametric zone
graph in Fig. 2a is explored by the standard BFS exploration
order and the other in Fig. 2c by BFS with the parametric
zone inclusion. Here we can see that by using parametric
zone inclusion, the number of states to be explored is often
reduced. Let us explain how Algorithm 1 works on the
example in Fig. 1a using Fig. 2c. The algorithm starts at state
s0 : (l0,True), the location is l0 and the parametric zone is
True (i. e., the set of all clock and parameter valuations).
Assume that the transition to l2 is taken first. The algorithm
reaches states s1 : (l2, y > 2p1) and s2 : (l1,True). Later
on, the algorithm reaches states s3 : (l3, 2p1 < y ≤ p2) and
s4 : (l2,True). At that stage, it happens that the parametric
zone in s4 : (l2,True) is larger than the parametric zone in
s1 : (l2, y > 2p1) which has been visited previously. This
previous exploration turns out to be useless, hence state s1
is removed and a transition from s0 to s4 is added. Finally,
the algorithm does the same with states s5 and s3.

The ideal exploration is depicted in Fig. 2d. If the
algorithm takes first the transition to location l1 and then
to l2, the result is optimal. The goal of the remaining of
this paper will be to get as close as possible to this optimal
exploration order so as to avoid redundant states.



Algorithm 1: State exploration with parametric zone inclusion
Input: PTA A = (Σ, L, l0, X, P, I, E)
Output: parametric zone graph Z associated with the PTA A

1 W ← {(l0, C0)}
2 G ← {(l0, C0)}
3 while W 6= ∅ do
4 pick a state (l, C) from W
5 foreach outgoing state (l ′,C ′) from (l, C) do
6 if there is no (l ′,CLarger) ∈ G such that C ′ ⊆ CLarger then
7 add (l ′,C ′) to W and G
8 add transition (l ,C )→ (l ′,C ′) to G
9 foreach (l′, CSmaller) ∈ G such that CSmaller ⊆ C ′ do

10 add transitions to G: parent states of (l ′,CSmaller)→ (l′, C ′) and
11 (l′, C ′)→ children states of (l ′,CSmaller)
12 remove (l′, CSmaller) from W and G
13 else
14 foreach (l′, CLarger) ∈ G such that C ′ ⊆ CLarger do add transition (l ,C )→ (l ′,CLarger) to G

15 return G
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Figure 3: PZG with parametric ranking strategy

3. Parametric Ranking Strategy

In this section, we propose a novel exploration strategy
for PTAs, inspired by the “ranking system” strategy that
proved efficient for reducing the inefficient phenomenon in
TAs [13]. As in [13], our parametric ranking strategy uses
a priority value for each state. Then the algorithm explores
the state with highest priority first. In case the inefficient
phenomenon happens, the larger zone is assigned a higher
priority than the smaller parametric zone and its previously
explored subtrees.

The parametric ranking strategy in Algorithm 2 is an
extension of the parametric zone inclusion of Algorithm 1
(differences are highlighted). Each newly explored state

starts with being ranked with infinity (if its constraint is
True)1 or zero (otherwise) by Algorithm 3.

At lines 9 and 10, in order to stop the exploration of
small parametric zones and their subtrees, the rank of the
larger parametric zone is set higher than the highest rank
of the small parametric zone and those in its subtree. This
procedure is described in Algorithm 4: at line 3 it traverses
all visited descendants of (l ′,CSmaller) to get their highest
rank. Since the larger zone has a higher rank, it will be
explored before the smaller ones and their subtrees.

Example 3. Let us apply the parametric ranking strategy
of Algorithm 2 to the example in Fig. 1a. The resulting
parametric zone graph is shown in Fig. 3. Starting at state
(l0,True), the algorithm ranks it with ∞. Then, states s1 :
(l2, y > 2p1) and s2 : (l1,True) are explored and added in
the waiting set W with rank 0 and ∞ respectively. Hence,
s2 with rank ∞ is explored first and leads to state s3 :
(l2,True). At that stage, the algorithm detects that the zone
of s1 = (l2, y > 2p1) is smaller than that of s3 = (l2,True).
The rank of s3 is ∞. The predecessor of s1 (i. e., s0) is
connected to s3 and s1 is deleted. Finally, s4 (the successor
of s3) is added with rank 0.

4. Parametric priority strategy

In [13], the authors indicate that with the “ranking
system”, there is no improvement if there are no True
zones in a model, compared to using the BFS exploration
order. The same holds for our “parametric ranking” strategy.
Indeed, first assigning the highest and lowest priority to each
state, and then looking for visited states in order to find

1. Different from TAs, the initial constraint in PTAs is often not True
but a constraint over X ∪ P that also contains parameter constraints (for
example p1 ≤ p2). We assume w.l.o.g. that True denotes this initial
constraint (for example p1 ≤ p2).



Algorithm 2: Ranking by parametric zone size
Input: PTA A = (Σ, L, l0, X, P, I, E)
Output: parametric zone graph Z associated with the PTA A

1 r0 ← init rank(l0 ,C0 )
2 W ← {((l0, C0), r0)}
3 G ← {(l0, C0)}
4 while W 6= ∅ do
5 pick a state ((l, C), r) with highest rank r from W
6 foreach outgoing state (l ′,C ′) from (l, C) do
7 r′ ← init rank(l ′,C ′)
8 if there is no ((l ′,CLarger), rL) ∈ G such that C ′ ⊆ CLarger then
9 foreach ((l ′,CSmaller), rS ) ∈ G such that CSmaller ⊆ C ′ do

10 r ′ ← max(r ′,max rank((l ′,CSmaller), rS ) + 1 )

11 add ((l ′,C ′), r ′) to W and G
12 add transition ((l ,C ), r)→ ((l ′,C ′), r ′) to G
13 foreach ((l′, CSmaller), rS) ∈ G such that CSmaller ⊆ C ′ do
14 add transitions to G: parent nodes of ((l ′,CSmaller), rS )→ ((l′, C ′), r′) and
15 ((l′, C ′), r′)→ children states of ((l ′,CSmaller), rS )
16 remove ((l′, CSmaller), rS) from W and G
17 else
18 foreach ((l′, CLarger), rL) ∈ G such that C ′ ⊆ CLarger do
19 add transition ((l, C), r)→ ((l′, CLarger), rL) to G

20 return G (without rank values)

Algorithm 3: init rank(l, C)

1 if C = True then return ∞ else return 0

Algorithm 4: max rank((l, C), r)

Output: rank value
1 rank ← r
2 if ((l, C), r) 6∈ W then
3 foreach ((l ,C ), r)→ ((l ′,C ′), r ′) in G do
4 rank ← max(rank ,max rank((l ′,C ′), r ′))

5 return rank

the highest rank in the subtrees (in large model where the
subtrees become big) might be not efficient. Consider the
example in Fig. 1a, where the guard of the transition from
l0 to l1 is modified as in Fig. 1b. Its parametric zone graph
is given in Fig. 4a.

In Fig. 4a, the parametric ranking algorithm ranks states
from s0 to s3 with 0 continuously. The inefficient phe-
nomenon is encountered as the parametric zone of s4 is
larger than the one of s1 with the same location l2. In this
case, s3 is explored unnecessarily, similar to using the BFS
exploration order.

However, after reaching states s1 and s2, if the algorithm
explores the largest parametric zone first, i. e., s2, then s4
is reached earlier.

Hence, to avoid this inefficient phenomenon, we intro-
duce a new strategy that explores the largest zone first in
the sorted waiting list W . Furthermore, in order to avoid
traversing big subtrees to find the highest rank, we explore
the largest zones until there is no inefficient phenomenon
anymore. To do so, we use a simple inserting mechanism.

Before getting into the details of Algorithm 5, we ex-
plain the structure of the waiting listW . First,W is ordered
with decreasing zones. Hence there are two main parts in
W , the first (at the head) is the true zones part where all
true zones are located. The other is the non-true zone part.
Finally, since some non-true zones are incomparable, the
true zones part can be seen as being itself composed of
several parts each containing ordered comparable zones.

In Algorithm 5, the waiting list W described above,
is sorted from largest to smallest zone by the inserting
instructions from line 13 to line 17.

There are three possibilities. First, if C ′ is the true zone
(which has the highest priority), (l′, C ′) is inserted at the
beginning of list W . Next, if C ′ is not a true zone, (l′, C ′)
is inserted before the first smaller zone found inW . Finally,
in case all zones in W are incomparable with C ′, (l′, C ′) is
added at the end of list W .

For better performances, the implementation uses an
additional index (not described in Algorithm 5) storing
information on the sets of comparable zones, for faster
state insertion and comparison by avoiding repeated zone
constraint computation.

Example 4. Let us apply Algorithm 5 to the example in



s0
l0
True
rank: ∞

s1

l2
y > 2p1

rank: 0

s2

l1
y > p1

rank: 0

s3

l3
2p1 < y ≤ p2

rank: 0

s4

l2
y > p1

rank: 0 + 1

s5

l3
p1 < y ≤ p2

rank: 0 + 1

⊆

⊆

(a) Parametric ranking strategy

s0
l0
True

s1
l2
y > 2p1

s2
l1
y > p1

s3
l2
y > p1

s4
l3
p1 < y ≤ p2

W : s0

W : s2, s1

W : s3, s1

W : s4

⊆

(b) Parametric priority strategy

Figure 4: Comparing our two strategies
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Fig. 1b. Fig. 4b shows both its parametric zone graph and
the waiting list W . The algorithm starts with state s0 in
waiting list W and reaches the states s1 and s2 which are
inserted into W decreasingly. Because the zone (y > 2p1)
in s1 is smaller than the zone (y > p1) in s2 then s2 appears
before s1 in W . Then, the algorithm picks s2 from the head
of listW and generates s3. It detects that s3 and s1 have the
same location, and the parametric zone in s3 : (l2; y > p1)
is larger than the zone in s1 : (l2; y > 2p1) . Consequently,
the state s1 is removed from W and G and the state s3 is
inserted at the beginning of W . Finally, the exploration of
s1 is stopped and s4 is reached.

Example 5. Consider the inefficient phenomenon in Fig. 1b
repeated n times as in Fig. 5 with parameter p > 0. Then it
is inefficient for the ranking strategy, BFS. The performance
of each algorithm with this model is given in Section 5.

However, our approaches still have some drawbacks.
First, our algorithms base on the BFS so that before rank-
ing, from a state, it has to reach all its descendants. This
blind exploration might cause the inefficient phenomenon
to happen, as illustrated in the previous example. Second,
there might exist many paths between a pair of states that
have equal parametric zones at start and different at the
end, or some paths having small parametric zones in the
beginning of the path that become larger after taking reset
transitions as in Fig. 6a and Fig. 6b respectively. In Fig. 6a,
the parametric zones of l1, l′1, l′′1 . . . ln1 are equal. Thus,
the algorithms explore from the path from l1 to ln1 , but at
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Figure 6: Inefficiency in largest zone first like algorithms

the first state l1, the parametric zone of l2 reached has the
smallest parametric zone. Hence, it causes the inefficient
phenomenon repeatedly. In Fig. 6b, after all descendants of
l0 are reached, the parametric zone in l1 is the smallest, then
the path from l1 is explored last. But it should be explored
first, because the parametric zone at l2 is reached from l1
and is the biggest one due to resetting the clock y on the
transition. Thus it causes the inefficient phenomenon.



Algorithm 5: Parametric priority strategy algorithm
Input: PTA A = (Σ, L, l0, X, P, I, E)
Output: parametric zone graph Z associated with the PTA A

1 W ← {(l0, C0)}
2 G ← {(l0, C0)}
3 while W 6= ∅ do
4 pick the first state (l, C) from W
5 foreach outgoing state (l ′,C ′) from (l, C) do
6 if there is no (l ′,CLarger) ∈ G such that C ′ ⊆ CLarger then
7 add (l ′,C ′) to G
8 add transition (l ,C )→ (l ′,C ′) to G
9 foreach (l′, CSmaller) ∈ G such that CSmaller ⊆ C ′ do

10 add transitions to G: parent states of (l ′,CSmaller)→ (l′, C ′) and
11 (l′, C ′)→ children states of (l ′,CSmaller)
12 remove (l′, CSmaller) from W and G
13 if C ′ = true then insert (l ′,C ′) before the head of W
14 else if C ′ 6= true then
15 insert (l ′,C ′) before the first state (lS , CS) with a smaller zone CS ⊆ C ′ found in W
16 else
17 insert (l ′,C ′) at the end of W
18 else
19 foreach (l′, CLarger) ∈ G such that C ′ ⊆ CLarger do add transition (l, C)→ (l′, CLarger) to G

20 return G

5. Experimental Evaluation

To evaluate the performances of the proposed explo-
ration orders experimentally, we compare them with one
another, as well as with the standard BFS exploration
strategy.

We implemented our algorithms in IMITATOR [14]2, and
ran our experiments on an Intel core 2 duo P8600 at 2.4 GHz
with 4 GiB of RAM. Polyhedra operations are performed
using the PPL library [23].

Our benchmarks come from the IMITATOR benchmarks
library and include hardware circuits (AndOr, flipflop,
spsmall), network or software protocols (BRP, FDDI-2,
FDDI-4, Fischer-2, Fischer-3, F3, F4, Lynch-2,
Lynch-5, critical-region, RCP), real-time systems
(Thales-1, Thales-3, Sched2.i.j), variants of a
producer-consumer (Pipeline [24]), and the additional
blowup example from Fig. 5 with 1001 locations.

We mainly focus on reachability synthesis, called the
EF-synthesis problem: “find all parameter valuations for
which a given location is reachable”. A semi-algorithm was
proposed in [3], [7], which we call EFsynth.

Additionally, we also focus on the counter-example syn-
thesis: “find at least some parameter valuations for which
a given location is reachable”. Counter-example synthesis
is of high practical importance, as it is often desirable to
find at least some valuations for which a property holds (or

2. Working version 2.9.2 (explorder/5c40e39). Sources, binaries,
models, logs are available at www.imitator.fr/static/ICECCS17/.

is violated), not necessarily all of them. We implemented a
procedure EFc-ex that stops as soon as some valuations are
synthesized. Due to the undecidability of the EF-emptiness
problem, neither EFsynth nor EFc-ex are guaranteed to
terminate; note that they do for most of our experiments
but not always. An advantage is that EFc-ex has a better
termination than EFsynth (and in fact terminates in all our
case studies) as a smaller part of the state space needs to
be explored.

We will compare our new exploration strategies, i. e.,
parametric ranking strategy (RS) and parametric priority
strategy (PRIOR), with the classical breadth-first search
(BFS) strategy. In addition, we also consider a layer-based
BFS strategy (LayerBFS), which is the historical strategy
in IMITATOR, that computes all successor states of a given
depth before computing all their successors at once. Al-
though this is very close to the classical BFS strategy, some
subtle implementation differences make its performances
slightly different from BFS—and significantly when the
merging heuristics (see Section 5.2 below) is used. Both
BFS and LayerBFS come with two flavors: the bidirectional
inclusion incl2 (which is as in Algorithm 1) and the mono-
directional inclusion incl, where we only test whether the
new state is included into an existing state, but not the other
way round (i. e., lines 9–12 are discarded).

5.1. Comparison

We compare in Tables 1a and 1b our exploration strate-
gies. From left to right in each table are model’s name

www.imitator.fr/static/ICECCS17/


followed by the computation times in seconds for each of
the four strategies. Note that the green and yellow cells are
the fastest and the second-fastest approaches respectively,
and “T.O” stands for time-out after 15 minutes. The last
line is the average using a normalized computation time for
each benchmark (details are given in Appendix A).

From Table 1a, our two strategies RS and PRIOR
behave almost the same for EFsynth, with a normalized
average of 2.8. They both improve BFS by about 20 %,
which shows the efficiency of our strategies.

From Table 1b, our strategies RS and PRIOR behave
again almost the same for EFc-ex, but improve this time
dramatically the computation time w.r.t. BFS, with a de-
crease of about 80 %. This shows the high efficiency of our
strategies for counter-example synthesis.

A reason for the much better efficiency of our strate-
gies for EFc-ex than EFsynth is that our strategies try
to explore the largest zones first, and intuitively may lead
much faster to a goal state. Then, once a goal state is
found, EFc-ex stops and returns the associated parameter
valuations, whereas EFsynth must explore the rest of the
state space, for which the benefit of our strategies is milder.

5.2. Symbolic state merging

Our comparison is not entirely fair, as we did not use in
our experiments another efficient optimization implemented
in IMITATOR, i. e., state merging [15]. Given two states
s1 = (l1, C1) and s2 = (l2, C2), it is possible to try to
merge these states: s1 and s2 are mergeable if l1 = l2
and the polyhedron C1 ∪ C2 is convex. The merging of
s1 and s2 is then (l1, C1 ∪ C2). In [15], we showed that
merging states while computing the symbolic states keeps
the soundness of the EFsynth algorithm; however, other
algorithms usually lose their soundness when using state
merging (this is the case of trace preservation synthesis,
also called inverse method [15]). For example, parametric
deadlock freeness checking [25] resembles EFsynth, but
merging was not proved to be sound. Despite the very
high cost of the mergeability test (up to 1000 times slower
than other operations on polyehdra), state merging is often
efficient because it can dramatically reduce the state space.

We compare in Tables 1c and 1d our exploration strate-
gies with state merging. This time, our strategies are less ef-
ficient for exact synthesis using EFsynth (Table 1c); overall,
the historical exploration strategy LayerBFS implemented
in IMITATOR behaves about 2 times better than all other
strategies. A reason comes from the cost of the merging:
testing mergeability is very expensive, and LayerBFS iter-
atively tries to merge states once every state space depth
(“layer”) is completed, while other strategies try to merge
states for each newly computed symbolic state, which is
much more expensive. However, even when merging is used,
our new strategies RS and PRIOR preserve a dramatic
decrease of the computation time of more than 75 % for
EFc-ex (Table 1d).

5.3. Final Interpretation

5.3.1. Exact synthesis. When one is interested in the exact
synthesis (i. e., find all parameter valuations using EFsynth)
for only reachability properties, then merging can be used,
and the results are tabulated in Table 1c: the fastest strategy
is clearly LayerBFS. Mono or bi-directional state inclusion
do not fundamentally change the computation times, but in
most cases (and in average), the bi-directional state inclusion
is most efficient.

When one is interested in the exact synthesis for non-
necessarily reachability properties, then merging cannot be
used, and the results are tabulated in Table 1a: our two
strategies RS and PRIOR perform best, 20 % faster than
existing strategies.

5.3.2. Partial synthesis. When one is interested in finding
some valuations only (i. e., EFc-ex), our two strategies
RS and PRIOR perform significantly better than existing
strategies, with a division of the computation time by 5 in
average, when comparing with existing strategies.

Overall, PRIOR is 5.7 times faster than LayerBFS and
5.0 times faster than BFS using the normalized averages;
for some case studies, the improvement w.r.t. BFS grows to
33 (blowup), 41 (spsmall), 72 (Thales-3), or even
522 (pipeline-KP12-3-3). Also note that, with the
exception of blowup, the aforementioned three case studies
are all industrial case studies.

6. Conclusion

In this paper, we have proposed two exploration order
strategies to mitigate the inefficient phenomenon for the pa-
rameter synthesis problem: the parametric ranking strategy,
and the parametric priority strategy. The intuition behind our
strategies is to explore the large parametric zone first before
reaching smaller zones.

Overall, our new strategies are reasonably faster than
existing approaches for EFsynth, except when the merging
heuristics is used (in which case BFS is more efficient).
Our strategies become much faster than the literature for the
counter-example synthesis using EFc-ex, up to 522 times
faster for some industrial case studies. This suggests to use
our new strategies as default for counter-example synthesis.

Future works. The waiting strategy of [13] could serve as
a basis for future parametric strategies. In addition, miti-
gating the cost of merging states for strategies other than
LayerBFS is on our agenda, by selecting the right time to
perform this expensive test.

Furthermore, we would like to study exploration orders
while taking advantage of recent multi-core technology, by
adapting the non-parametric algorithm of [22].
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using inclusion abstraction,” in CAV, ser. LNCS, vol. 8044. Springer,
2013, pp. 968–983.

[23] R. Bagnara, P. M. Hill, and E. Zaffanella, “The Parma Polyhedra
Library: Toward a complete set of numerical abstractions for the
analysis and verification of hardware and software systems,” Science
of Computer Programming, vol. 72, no. 1–2, pp. 3–21, 2008.

[24] M. Knapik and W. Penczek, “Bounded model checking for parametric
timed automata,” ToPNoC, vol. 5, pp. 141–159, 2012.
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Appendix

1. Normalizing the computation times

In order to compare all algorithms, we compute an
average of the normalized computation times. However, due
to the variety of the computation times (a same algorithm
can use 0.014 s for a benchmark and 628 s for another one),
performing the actual average wouldn’t be fair: the behavior
of the algorithms for the slowest benchmarks would have a
much larger impact on the average than the fast benchmarks.

As a consequence, we normalize all computation times
as follows: for each benchmark, we replace each computa-
tion time t by the division of this computation time t by the
fastest algorithm for this benchmark i. e.,

normalized =
t

minalgorithm talgorithm

That is, the fastest algorithm becomes 1 (which is the
smallest possible value), and others timings give an idea
of how slow they are w.r.t. the fastest. For example, a
normalized value of 5.4 denotes that this algorithm is 5.4
times slower than the fastest algorithm for this benchmark.

In addition, to avoid that an algorithm gets a huge
penalty for being, e. g., 200 times slower for one case study,
we cap this normalized timing by 10. That is, the final
formula becomes:

normalized = min
( t

minalgorithm talgorithm
, 10
)

Similarly, a timeout becomes 10 as well.
Finally, the average given in the tables is the average of

all normalized times of an algorithm.
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