
http://www-lipn.univ-paris13.fr/~petrucci/PAPERS
In Proc. of the 18th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS’13), Singapore,
pp. 33–36, IEEE Computer Society Press, July 2013.

CosyVerif : an Open Source
Extensible Verification Environment

Étienne André, Yousra Lembachar, Laure Petrucci
Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030, F-93430, Villetaneuse, France

Francis Hulin-Hubard, Alban Linard
LSV, CNRS, INRIA & ENS Cachan, France

Lom Hillah, Fabrice Kordon
LIP6, CNRS UMR 7606, Université P. & M. Curie and Université Paris Ouest, France

Abstract—CosyVerif aims at gathering within a common
framework various existing tools for specification and verification.
It has been designed in order to 1) support different formalisms
with the ability to easily create new ones, 2) provide a graphical
user interface for every formalism, 3) include verification tools
called via the graphical interface or via an API as a Web service,
and 4) offer the possibility for a developer to integrate his/her
own tool without much effort, also allowing it to interact with
the other tools. Several tools have already been integrated for
the formal verification of (extensions of) Petri nets and timed
automata.

Keywords—Formal verification, Distributed computing, Client-
server systems, Web services, Software reusability, Software archi-
tecture.

I. INTRODUCTION

Formal verification of complex concurrent and heteroge-
neous systems often requires their model checking on com-
plementary facets (such as discrete, timed, stochastic, etc.) of
their behaviour. No single formalism being complete enough
to encompass all these facets, such systems can consequently
be modelled using different formalisms such as (different types
of) Petri nets and timed automata.

Various tools support these formalisms, each having differ-
ent input and output syntaxes for models and analysis results.
This often impedes integrated and comprehensive verification
campaigns on complex concurrent and heterogeneous systems.

This paper presents CosyVerif , a verification environment
that integrates several formalisms and tools, and allows for
transparent tool invocations through Web services.

Section II describes the characteristics of the CosyVerif
platform. Then Section III briefly presents the currently inte-
grated tools, before Section IV sketches ongoing work prior to
a comparison with similar existing environments in Section V.

II. THE CosyVerif ENVIRONMENT

CosyVerif [1] is a distributed and open verification envi-
ronment that currently handles two families of formalisms:
Petri nets and timed automata. So far, 12 declared concrete
formalisms from these 2 families are available, interrelated
through a modular architecture of definitions, reusing com-
mon concepts, and enabling easy addition of new notations.
They are syntactically supported by a two-layered XML-
based language: the Formalism Markup Language (FML, the

superstructure) and the Graph Markup Language (GrML, the
infrastructure).

Tools developers can declare a new formalism in the
platform using FML, by reusing portions of existing for-
malisms (when they share common concepts). GrML is the
internal representation of specifications in CosyVerif. FML
and GrML ensure syntactic interoperability among tools that
may only manipulate abstract syntax trees. These XML-based
technologies enable rapid development and reuse of parsers
and syntactic validation. Thanks to such facilities, the typical
integration effort for tools developers is half a day.

CosyVerif is an open distributed environment that can be
enriched by any researcher willing to contribute. A registration
mechanism allows for the diffusion of any services over a
federation of CosyVerif nodes, which greatly improves the
time-to-availability for new tools.

Tools are invoked through Web services transparently to
end users, thanks to Coloane, an open source extensible graph-
ical editor based on Eclipse (see Fig. 1). It offers modelling
facilities and a way to apply tools services on models. Since
CosyVerif relies on Web services, the use of Coloane is not
mandatory and verification services can be accessed directly
via the underlying XML-based protocol.

The CosyVerif project also provides a repository of models,
that may be used for benchmark purposes. These models
mostly come from industrial real-time case studies and the
Model Checking Contest in 2011 [2] and 2012 [3].

Fig. 1: Screenshot of the Coloane interface



III. VERIFICATION TOOLS IN CosyVerif

Let us present some tools currently integrated in CosyVerif .

a) Cosmos [4]: This statistical model checker takes
as input Generalised Stochastic Petri Nets with general dis-
tribution (GSPN) and a Hybrid Automaton Stochastic Logic
(HASL) formula, and returns the statistical estimation of the
formula with a confidence interval (see Fig. 2). HASL allows
for selecting some trajectories of the model and thus allows
model checking. HASL can also be used to define complex per-
formance indexes on the model. It has recently been extended
to support rare event acceleration using importance sampling
techniques.

b) Crocodile [5]: This tool for the so-called sym-
bolic/symbolic approach deals with Symmetric Nets with
Bags [6]. It combines two techniques for handling the com-
binatorial explosion of the state space that are both called
symbolic. The first symbolic technique concerns the reduction
of the reachability graph of a system using its symmetries [7].
The second symbolic technique consists in storing the reacha-
bility graph using decision diagrams. The SDD (Set Decision
Diagrams [8]), the class of decision diagrams we use, are hier-
archical. Thus we can exploit this aspect when storing in a very
compact way the state space of such systems [5]. Crocodile
generates the state space and evaluates CTL formulæ.

c) CUNF [9]: This is a toolset for carrying out
unfolding-based verification of Petri nets extended with read
arcs, also called contextual nets (c-nets). Unfoldings fully
represent the state-space (reachable markings) of a c-net by a
partial order rather than by a set of interleavings; they are often
exponentially smaller than the reachability graph, and never
larger. Additionally, c-net unfoldings can be exponentially
more compact than those of corresponding Petri nets, see [9].
The toolset contains in particular an unfolding construction
tool [10] and a reachability and deadlock checking tool [11].

d) IMITATOR [12]: This tool performs parameter syn-
thesis for parametric timed automata [13] augmented with
variables and stopwatches. In particular, it implements the

Fig. 2: Typical output of Cosmos

15 16 17 18 19
15

16

17

18

19

a1

a
2

Fig. 3: Cartography output by IMITATOR

“inverse method” [14]: from a single valuation of the param-
eters, it computes a convex constraint around this reference
valuation guaranteeing the same (time-abstract) behaviour. A
major advantage is to give a quantitative measure of the sys-
tem robustness. IMITATOR also implements the “behavioural
cartography” [14]: this algorithm covers a subset of the para-
metric space with tiles, i.e. parametric zones where the system
behaviour is uniform. An example of cartography as output by
IMITATOR is given in Fig. 3.

e) LoLA [15]: This is an explicit Petri Net state space
verification tool. It can verify a variety of properties ranging
from questions regarding individual nodes (e.g. boundedness
of a place or quasi-liveness of a transition), reachability of
a given state or a state predicate, typical questions related to
a net (e.g. deadlock freedom, reversibility, or boundedness),
and the validity of temporal logical formulæ such as CTL.
It has been successfully used in case studies from various
domains, including asynchronous circuits, biochemical reac-
tion chains, services, business processes, and parameterised
Boolean programs. For each property, LoLA provides tailored
versions of state space reduction techniques such as stubborn
sets, symmetry reduction, coverability graph generation, or
methods involving the Petri Net invariant calculus. Depending
on the property to be preserved, these techniques can also be
used in combination to only generate a small portion of the
state space.

This tool has been developed at the University of Rostock
and we only integrated it in CosyVerif (requiring us to write
a translator between GrML and LoLA’s internal format).

f) ModGraph [16]: This tool performs construction
and analysis of modular state spaces. Instead of actually
synchronising a set of automata sharing some common transi-
tions, it builds a synchronisation structure and keeps only the
reachable parts of the automata. Thus, interleaving is avoided
as much as possible. The tool also provides some analysis
features, in particular reachability and deadlock-checking, that
can be specified only on a subset of the interacting modules.

g) ObsGraph [17]: This BDD-based tool implements a
verification approach for workflows using Symbolic Observa-
tion Graphs [18]. This approach abstracts the given workflows,
described as Petri net models, allowing for confidentiality
(e.g. to preserve companies internal processes), and showing
only the actions meant to be composed with other actions.



Deadlock verification is therefore reduced to verifying only
the synchronised product of the abstractions corresponding to
the components.

h) PNXDD [19]: This tool generates the state space
and evaluates CTL formulæ on P/T nets. It also handles
Symmetric nets through their unfolding into an equivalent
P/T net. PNXDD exploits hierarchy: a state is seen as a tree,
where the leaves correspond to place markings. This particular
structure offers better sharing opportunities than, for instance,
a vector-based representation. The conception of such a tree
is critical to reach good performances and heuristics are being
elaborated for this purpose. As for Crocodile, PNXDD relies
on SDD [8].

IV. EVOLUTIONS OF THE CosyVerif ENVIRONMENT

CosyVerif is a long term project intended for numerous
evolutions. We present here the ones we are currently working
on. They should be available soon.

1) Asynchronous Tool Invocation: The end user can launch
a verification process, and get the result later, even if the
connection between the graphical client (e.g. Coloane) and the
server is broken. In future releases, the result could also be for
instance sent by email when the verification is finished.

2) Command-Line Client: Tools in CosyVerif are not in-
tended to be accessed only via the provided user interface. If
this can be useful for demonstration or education purposes,
direct access via web services is also of interest. For instance,
CosyVerif can be used as a back-end verification platform for
other tools dedicated to higher order languages like AADL
or VHDL via a transformation into one of the available
formalisms. To ease the integration of such tools, a basic
command-line library is being developed.

3) Federation of Servers: In order to ease deployment and
perform load balancing over a set of servers, CosyVerif will
integrate the transparent construction of a federation of servers.
The user still connects to his/her usual server that also acts as
a proxy for the whole federation. Then, services are executed
on the least loaded machine among those that provide it.

Fig. 4 presents a typical architecture of such a federation.
Servers can be grouped into clusters containing at least one
“super server” that both serves as a proxy to clients (graphical
user interface, command-line, etc.) and communicate together

Graphical User 
Interface

Cluster 1

super
serverserver

Cluster 2

super
server

server

server

Client Client

Cluster 3

super
server

Fig. 4: Typical architecture of a federation of CosyVerif servers

their respective list of services. When a client contacts its
corresponding super server, it gets the list of services provided
by the whole federation. This mechanism is of course fully
transparent to the end user. The default configuration is a server
cluster, then acting as a super server.

4) Enhanced Interaction Between Tools: Since tools all
rely on unified formalisms, one can easily use the output of a
tool as an input of another tool. This will allow for automated
or user-defined tool chaining and, hence enhance their potential
complementarity.

5) Common syntax for the model editors: Modellers can
use a consistent concrete syntax for expressions and formulæ,
whatever the formalism used. The CosyVerif environment is
thus easier to learn and use.

More powerful interactions could take place using se-
mantical aspects. So far, tools only agree on a unified input
abstract syntax; adding semantics will allow for an automatic
mapping of common concepts between two formalisms. A
rather short-term future work is to handle these aspects inside
the family of formalisms of timed automata on the one hand,
and of Petri nets on the other hand. For Petri nets, the
ongoing standardisation [20] already provides some guidelines.
A longer term future work is be to build connections between
the two families, as well as with other families of formalisms.

V. RELATED PLATFORMS

Several platforms have been designed over the past decade
in order to achieve similar goals. CASL (Common Algebraic
Specification Language) is a general-purpose specification lan-
guage. A tool named HetCASL1 (Heterogeneous Tool Set) has
been proposed, that incorporates different theorem provers and
different specification languages, hence allowing the designer
to handle heterogeneous specifications. This approach is very
much theorem prover oriented (including connections with
Isabelle, Maude, etc.). In contrast, CosyVerif is more general.

Diabelli [21] is a heterogeneous proof system, allowing
one to perform theorem proving with both diagrammatic
and sentential formulæ, and proof steps. It is shipped as a
standalone tool combining Isabelle and Speedith. The tool
does feature a graphical interface, but models are given in a
textual form only. We believe that this tool does not provide
a high degree of flexibility (because it requires translations),
and apparently it does not work in the cloud, contrarily to
CosyVerif .

LTSmin [22] is a meta toolkit that supports different input
language modules (mCRL2, Promela, etc.) relying on labelled
transition systems (LTS). LTSmin allows LTS-based semantic
exchanges of state space between different tools (based on a
Partitioned Next-State function). Furthermore, it allows the end
user to apply alternative verification algorithms to their native
tool. This is of high interest. However, the tool only works
with a LTS-based semantics, whereas we aim at considering a
larger set of formalisms.

Rich-model Toolkit2 is a standardisation of formal lan-
guages: it features common formats for systems, formulæ,

1http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
CoFI/hets/

2http://richmodels.epfl.ch/



proofs and counterexamples. Contrarily to our approach, it is
SAT- and SMT-oriented, and algorithms seem to be built-in,
although it is hard to get a precise idea of the features, since
this is a very recent initiative.

StarExec3 is an initiative of the logic community to build
a shared logic solving infrastructure (SAT, SMT), to enable
researchers to manage libraries, provide solver execution on a
large cluster, and facilitate translation between logics. Accord-
ing to their system architecture specification, users interface
with the infrastructure via a Web application.

PAT [23] is a multi-formalisms platform based on modules.
Each module relies on its own formalism and domain of
application (e.g. real-time systems [24], probabilistic systems,
network calculus, etc.), and must provide a semantics in the
form of LTS. Then, common algorithms (deadlock-checking,
LTL-checking) can be used for any of the modules, in addi-
tion to domain-specific algorithms. It also features graphical
facilities, a simulator, syntactical checkers, counterexample
exhibition, etc. Different from our approach, PAT is mainly
LTS-based (with additional integration of Markov Decision
Processes and Timed Transition Systems), and formalisms are
not related to each other, i.e. the modules are independent.

ACKNOWLEDGEMENT

The development of the CosyVerif integration plat-
form was supported by: LIP6 and the FEDER Île-de-
France/System@tic–free software thanks to the NEOPPOD
project (support of two engineers), LIPN (support of one engi-
neer), as well as LSV and Inria (support of several engineers).

REFERENCES

[1] The CosyVerif group, “CosyVerif home page,” http://cosyverif.org.
[2] F. Kordon, A. Linard, D. Buchs, M. Colange, S. Evangelista,

K. Lampka, N. Lohmann, E. Paviot-Adet, Y. Thierry-Mieg, and
H. Wimmel, “Report on the model checking contest at Petri nets 2011,”
Transactions on Petri Nets and Other Models of Concurrency, vol. VI,
pp. 169–196, 2012.

[3] F. Kordon, A. Linard, D. Buchs, M. Colange, S. Evangelista, L. Fronc,
L.-M. Hillah, N. Lohmann, E. Paviot-Adet, F. Pommereau, C. Rohr,
Y. Thierry-Mieg, H. Wimmel, and K. Wolf, “Raw report on the model
checking contest at Petri nets 2012,” Tech. Rep., 2012, coRR.

[4] P. Ballarini, H. Djafri, M. Duflot, S. Haddad, and N. Pekergin, “HASL:
An expressive language for statistical verification of stochastic models,”
in VALUETOOLS, 2011, pp. 306–315.

[5] M. Colange, S. Baarir, F. Kordon, and Y. Thierry-Mieg, “Crocodile: A
symbolic/symbolic tool for the analysis of symmetric nets with bags,” in
ICATPN, ser. Lecture Notes in Computer Science, vol. 6709. Springer,
2011, pp. 338–347.

[6] S. Haddad, F. Kordon, L. Petrucci, J.-F. Pradat-Peyre, and N. Trèves,
“Efficient state-based analysis by introducing bags in Petri net color
domains,” in ACC. Omnipress IEEE, 2009, pp. 5018–5025.

[7] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad, “On
well-formed coloured nets and their symbolic reachability graph,” in
ICATPN. Springer-Verlag, 1991.

[8] J.-M. Couvreur and Y. Thierry-Mieg, “Hierarchical decision diagrams
to exploit model structure,” in FORTE, ser. Lecture Notes in Computer
Science, vol. 3731. Springer, 2005, pp. 443–457.

[9] P. Baldan, A. Bruni, A. Corradini, B. König, C. Rodríguez, and
S. Schwoon, “Efficient unfolding of contextual Petri nets,” Theoretical
Computer Science, vol. 449, pp. 2–22, 2012.

3http://www.starexec.org/starexec/public/about.jsp

[10] C. Rodríguez, S. Schwoon, and P. Baldan, “Efficient contextual unfold-
ing,” in CONCUR, ser. Lecture Notes in Computer Science, vol. 6901,
2011, pp. 342–357.

[11] C. Rodríguez and S. Schwoon, “Verification of Petri nets with read
arcs,” in CONCUR, ser. Lecture Notes in Computer Science, vol. 7454,
2012, pp. 471–485.

[12] É. André, L. Fribourg, U. Kühne, and R. Soulat, “IMITATOR 2.5: A tool
for analyzing robustness in scheduling problems,” in Formal Methods,
ser. Lecture Notes in Computer Science, vol. 7436. Springer, 2012,
pp. 33–36.

[13] R. Alur, T. A. Henzinger, and M. Y. Vardi, “Parametric real-time
reasoning,” in STOC. ACM, 1993, pp. 592–601.

[14] É. André and R. Soulat, The Inverse Method. ISTE Ltd and John
Wiley & Sons Inc., 2013.

[15] K. Wolf, “Generating Petri net state spaces,” in ICATPN, ser. Lecture
Notes in Computer Science, vol. 4546. Springer, 2007, pp. 29–42.

[16] C. Lakos and L. Petrucci, “Modular analysis of systems composed
of semiautonomous subsystems,” in ACSD. IEEE Computer Society,
2004, pp. 185–196.

[17] K. Klai and H. Ochi, “Modular verification of inter-enterprise business
processes,” in eKNOW, 2012, pp. 155–161.

[18] S. Haddad, J.-M. Ilié, and K. Klai, “Design and evaluation of a symbolic
and abstraction-based model checker,” in ATVA, 2004, pp. 196–210.

[19] S. Hong, F. Kordon, E. Paviot-Adet, and S. Evangelista, “Computing a
hierarchical static order for decision diagram-based representation from
P/T nets,” Transactions on Petri Nets and Other Models of Concurrency,
vol. V, pp. 121–140, 2012.

[20] L. Hillah, F. Kordon, C. Lakos, and L. Petrucci, “Extending PNML
scope: A framework to combine Petri nets types,” Transactions on Petri
Nets and Other Models of Concurrency, vol. VI, pp. 46–70, 2012.

[21] M. Urbas and M. Jamnik, “Diabelli: A heterogeneous proof system,” in
IJCAR, ser. Lecture Notes in Computer Science, vol. 7364. Springer,
2012, pp. 559–566.

[22] S. Blom, J. van de Pol, and M. Weber, “LTSmin: Distributed and
symbolic reachability,” in CAV, ser. Lecture Notes in Computer Science,
vol. 6174. Springer, 2010, pp. 354–359.

[23] Y. Liu, J. Sun, and J. S. Dong, “PAT 3: An extensible architecture for
building multi-domain model checkers,” in ISSRE. IEEE, 2011, pp.
190–199.

[24] J. Sun, Y. Liu, J. S. Dong, Y. Liu, L. Shi, and É. André, “Modeling
and verifying hierarchical real-time systems using Stateful Timed CSP,”
ACM Transactions on Software Engineering and Methodology, vol. 22,
no. 1, pp. 3.1–3.29, 2013.


