Abstraction-based Incremental Inductive Coverability for Petri nets

Jiawen Kang YunJun Bai Li Jiao

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

June 2021
Abstraction

- Check the coverability problem of Petri nets

- Combine IC3 with place-merge abstraction (IC3+PMA)
Outline

① Preliminaries

② IC3 algorithm for PN

③ Place-merge abstraction (PMA)

④ IC3+PMA algorithm

⑤ Experiments
Definition

A Petri net is a tuple $N = (P, T, W, m_0)$ where:
- P is a finite set of places
- T is a finite set of transitions such that $P \cap T = \emptyset$
- W is an arc function: $(P \times T) \cup (T \times P) \to \mathbb{N}$ describing the relationship between places and transitions
- m_0 is the initial marking. A marking $m \in \mathbb{N}^{|P|}$ is a vector specifying a number $m(p)$ of tokens for each place $p \in P$.

For vector $m_1, m_2 \in \mathbb{N}^{|P|}$

$m_1 \preceq m_2$ iff for every $p \in P: m_1(p) \leq m_2(p)$
Definition

Let N be a Petri net.
- $pre(m) = \{m' | \exists t \in T: m' \rightarrow m\}$
- $Reach_i$ contains all reachable markings from m_0 within i steps.
- $Reach = \bigcup_{i \geq 0} Reach_i$ contains all reachable markings from m_0.
Coverability problem

Let N be a Petri net, m_t the target marking.
- The coverability problem is to prove whether there exists a reachable marking $m_r \in \text{Reach}$ such that $m_t \preceq m_r$.

Coverability problem

Let N be a Petri net, m_t the target marking.
- The coverability problem is to prove whether there exists a reachable marking $m_r \in \text{Reach}$ such that $m_t \preceq m_r$.
- The coverable set of N within i steps is $\text{Cover}_i = \text{Reach}_i$
- The coverable set of N is $\text{Cover} = \text{Reach}$
IC3 is a state-of-art of model checking

Efficient implementation of IC3 to check the coverability problem of Petri nets without using SMT solvers
IC3 algorithm for Petri nets

IC3 maintains a sequence $F_0, F_1 \ldots F_k$

where F_i is a downward-closed set called frame that over-approximates the coverable set within i steps.

The algorithm generally proceeds by alternating two phases: the blocking phase and the propagation phase.
IC3 algorithm for Petri nets

Blocking phase: $block(a, i)$
IC3 algorithm for Petri nets

Blocking phase: $\text{block}(a, i)$

try to prove a^\uparrow is unreachable within i steps
IC3 algorithm for Petri nets

Blocking phase: $\text{block}(a, i)$

$$F_0 = m_0^\downarrow$$

$$F_1$$

$$\ldots$$

$$F_{i-1}$$

$$F_i$$

$$\ldots$$
IC3 algorithm for Petri nets

Blocking phase: \(\text{block}(a, i) \)

\[
\begin{align*}
\text{Cover}_0 & \quad \text{in} \quad F_0 = m_0' \\
\text{Cover}_1 & \quad \text{in} \quad F_1 \\
\text{...} & \quad \text{in} \quad F_{i-1} \\
\text{Cover}_i & \quad \text{in} \quad F_i \\
\end{align*}
\]

given a pair \((a, i)\)
IC3 algorithm for Petri nets

Blocking phase: $block(a, i)$

$Cover_0$ \[F_0 = m_0 \]

$Cover_1$ \[F_1 \]

$...$

$Cover_{i-1}$ \[F_{i-1} \]

$Cover_i$ \[F_i \]

Given a pair (a, i)

Try to prove a^\uparrow is unreachable within i steps
IC3 algorithm for Petri nets

Blocking phase: \(\text{block}(a, i) \)

\[
\begin{align*}
F_0 &= m_0^\downarrow \\
F_1 &
\end{align*}
\]

\[
\begin{align*}
\text{Cover}_0 &
\end{align*}
\]

\[
\begin{align*}
\text{Cover}_1 &
\end{align*}
\]

\[
\begin{align*}
\text{Cover}_{i-1} &
\end{align*}
\]

\[
\begin{align*}
\text{Cover}_i &
\end{align*}
\]

\[
\begin{align*}
a^\uparrow &
\end{align*}
\]
IC3 algorithm for Petri nets

Blocking phase: $\text{block}(a, i)$

\[
\begin{align*}
\text{Cover}_0 & \quad \text{in} & \quad F_0 = m_0^\downarrow \\
\text{Cover}_1 & \quad \text{in} & \quad F_1 \\
\vdots & & \vdots \\
\text{Cover}_{i-1} & \quad \text{in} & \quad F_{i-1} \\
\text{Cover}_i & \quad \text{in} & \quad F_i \\
\text{pre}(a^\uparrow) \cap F_{i-1} & \div a^\uparrow
\end{align*}
\]
IC3 algorithm for Petri nets

Blocking phase: $\text{block}(a, i)$

$Cover_0 \subseteq F_0 = m_0^\downarrow$

$Cover_1 \subseteq F_1$

\ldots

$Cover_{i-1} \subseteq F_{i-1}$

$Cover_i \subseteq F_i \subseteq \ldots$

$pre(a^\uparrow) \cap F_{i-1} / a^\uparrow \neq \emptyset$
IC3 algorithm for Petri nets

Blocking phase: $block(a, i)$

\[
\begin{align*}
Cover_0 \quad & F_0 = m_0^\downarrow \\
Cover_1 \quad & F_1 \\
\vdots \quad & \vdots \\
Cover_{i-1} \quad & F_{i-1} \\
Cover_i \quad & F_i \quad \vdots \\
\end{align*}
\]

$pre(a^\uparrow) \cap F_{i-1} /a^\uparrow \neq \emptyset$

extract an unselected marking b
from $pre(a^\uparrow) \cap F_{i-1} /a^\uparrow$
IC3 algorithm for Petri nets

Blocking phase: \(\text{block}(a, i) \)

\[
\begin{align*}
\text{Cover}_0 & \subseteq m_0^\uparrow \\
\text{Cover}_1 & \subseteq F_1 \\
\vdots & \quad \vdots \\
\text{Cover}_{i-1} & \subseteq F_{i-1} \\
\text{Cover}_i & \subseteq F_i \\
\end{align*}
\]

\[b^\uparrow \rightarrow a^\uparrow\]

\[
\text{pre}(a^\uparrow) \cap F_{i-1} / a^\uparrow \neq \emptyset
\]

extract an unselected marking \(b \)
from \(\text{pre}(a^\uparrow) \cap F_{i-1} / a^\uparrow \)
Blocking phase: \(\text{block}(a, i) \)

\[
\begin{align*}
\text{Cover}_0 & \quad \text{IN} \quad F_0 = m_0^{\uparrow} \\
\text{Cover}_1 & \quad \text{IN} \quad F_1 \\
\ldots & \\
\text{Cover}_{i-1} & \quad \text{IN} \quad F_{i-1} \\
\text{Cover}_i & \quad \text{IN} \quad F_i \quad \ldots \\
\end{align*}
\]

\[b^{\uparrow} \rightarrow a^{\uparrow}\]

\[\text{pre}(a^{\uparrow}) \cap F_{i-1} / a^{\uparrow} \neq \emptyset\]

extract an unselected marking \(b \)

from \(\text{pre}(a^{\uparrow}) \cap F_{i-1} / a^{\uparrow}\)

generate a new pair \((b, i - 1)\)

\(\text{block}(b, i - 1)\)
IC3 algorithm for Petri nets

Blocking phase: *block*(*a*, *i*)

\[
\text{Cover}_0 \quad \text{Cover}_1 \quad \ldots \\
F_0 = \downarrow m_0 \\
F_1 \quad \ldots \\
F_{i-1} \\
F_i \quad \ldots
\]

\[\uparrow b \quad \rightarrow \quad \uparrow a\]

\[\text{pre}(\uparrow a) \cap F_{i-1} / \uparrow a \neq \emptyset\]

extract an unselected marking \(b\)

from \(\text{pre}(\uparrow a) \cap F_{i-1} / \uparrow a\)

generate a new pair \((b, i - 1)\)

block(*b*, *i* − 1)

try to prove \(\uparrow b\) is unreachable

within \(i - 1\) steps
IC3 algorithm for Petri nets

Blocking phase: \(\text{block}(a, i) \)

\[
\begin{align*}
Cover_0 & \quad \text{in} & F_0 &= m_0^\uparrow \\
Cover_1 & \quad \text{in} & F_1 & \quad \cdots \\
Cover_{i-1} & \quad \text{in} & F_{i-1} & \quad \cdots \\
Cover_i & \quad \text{in} & F_i & \quad \cdots \\
\end{align*}
\]

\[
d^\uparrow \quad \rightarrow \quad c^\uparrow \quad \rightarrow \quad \cdots \quad \rightarrow \quad b^\uparrow \quad \rightarrow \quad a^\uparrow
\]

\[
\text{pre}(a^\uparrow) \cap F_{i-1} / a^\uparrow \neq \emptyset
\]

extract an unselected marking \(b \)

from \(\text{pre}(a^\uparrow) \cap F_{i-1} / a^\uparrow \)

generate a new pair \((b, i - 1)\)

\(\text{block}(b, i - 1) \)

try to prove \(b^\uparrow \) is unreachable
within \(i - 1 \) steps

Kang, Bai, Jiao

June 24, 2021
IC3 algorithm for Petri nets

Blocking phase: $\text{block}(a, i)$

$Cover_0 \in F_0 = m_0^\uparrow$

$Cover_1 \in F_1$

\ldots

$Cover_{i-1} \in F_{i-1}$

$Cover_i \in F_i \ldots$

$d^\uparrow \rightarrow c^\uparrow \rightarrow \ldots \rightarrow b^\uparrow \rightarrow a^\uparrow$

finally generate a new pair $(d, 0)$

$pre(a^\uparrow) \cap F_{i-1} / a^\uparrow \neq \emptyset$

extract an unselected marking b

from $pre(a^\uparrow) \cap F_{i-1} / a^\uparrow$

generate a new pair $(b, i - 1)$

$\text{block}(b, i - 1)$

try to prove b^\uparrow is unreachable within $i - 1$ steps
IC3 algorithm for Petri nets

Blocking phase: \(\text{block}(a, i) \)

\[
\begin{align*}
Cover_0 & \quad \text{IN} \\
F_0 & = m_0^{\downarrow} \\
d^{\uparrow} \\
\end{align*}
\begin{align*}
Cover_1 & \quad \text{IN} \\
F_1 & \\
c^{\uparrow} \\
\end{align*}
\begin{align*}
\ldots & \quad \text{IN} \\
F_{i-1} & \\
b^{\uparrow} \\
\end{align*}
\begin{align*}
Cover_i & \quad \text{IN} \\
F_i & \\
a^{\uparrow} \\
\end{align*}
\]

finally generate a new pair \((d, 0)\)

find a path from \(m_0^{\downarrow}\) to \(a^{\uparrow}\)

\[
\begin{align*}
\text{pre}(a^{\uparrow}) \cap F_{i-1} / a^{\uparrow} \neq \emptyset
\end{align*}
\]

extract an unselected marking \(b\)

from \(\text{pre}(a^{\uparrow}) \cap F_{i-1} / a^{\uparrow}\)

generate a new pair \((b, i - 1)\)

\(\text{block}(b, i - 1)\)

try to prove \(b^{\uparrow}\) is unreachable within \(i - 1\) steps
Blocking phase: \(\text{block}(a, i) \)

\[
\begin{align*}
\text{Cover}_0 &\quad \text{Cover}_1 & \quad \ldots & \quad \text{Cover}_{i-1} & \quad \text{Cover}_i \\
F_0 = m_0 &\quad F_1 & \quad \ldots & \quad F_{i-1} & \quad F_i \\
\uparrow &\quad \uparrow & \quad \ldots & \quad \uparrow & \quad \uparrow \\
d &\quad c & \quad \ldots & \quad b & \quad a \\
\end{align*}
\]

finally generate a new pair \((d, 0)\)

find a path from \(m_0\) to \(a\)

fail to block \(a\) at \(F_i\)
i.e. \(a\) is coverable

\[
\text{pre}(a) \cap F_{i-1} / a \neq \emptyset
\]

extract an unselected marking \(b\)
from \(\text{pre}(a) \cap F_{i-1} / a\)

generate a new pair \((b, i - 1)\)

\(\text{block}(b, i - 1)\)

try to prove \(b\) is unreachable
within \(i - 1\) steps
Blocking phase: $\text{block}(a, i)$

$Cover_0 \subseteq Cover_1 \subseteq \ldots \subseteq Cover_{i-1} \subseteq Cover_i$

$F_0 = m_0^\downarrow$

F_1

\ldots

F_{i-1}

F_i

$\pre(a^\uparrow) \cap F_{i-1} / a^\uparrow$
IC3 algorithm for Petri nets

Blocking phase: \(\text{block}(a, i) \)

\[
\begin{align*}
F_0 &= m_0^\downarrow \\
F_1 &\subseteq \cdots \\
F_i \\
\end{align*}
\]

\[
\text{pre}(a^\uparrow) \cap F_{i-1} / a^\uparrow = \emptyset
\]
IC3 algorithm for Petri nets

Blocking phase: $block(a, i)$

<table>
<thead>
<tr>
<th>$Cover_0$</th>
<th>$Cover_1$</th>
<th>$Cover_{i-1}$</th>
<th>$Cover_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_0 = m_0^\downarrow$</td>
<td>F_1</td>
<td>...</td>
<td>F_{i-1}</td>
</tr>
</tbody>
</table>

$pre(a^\uparrow) \cap F_{i-1} / a^\uparrow = \emptyset$

a^\uparrow cannot be reachable in 1 step from $Cover_{i-1}$
IC3 algorithm for Petri nets

Blocking phase: \(\text{block} (a, i) \)

\[
\begin{align*}
\text{Cover}_0 & \quad \text{Cover}_1 \\
F_0 &= m_0^\downarrow & F_1 \\
\text{...} & \quad \text{...} \\
\text{Cover}_{i-1} & \quad \text{Cover}_i \\
\emptyset & \quad a^\uparrow \\
\end{align*}
\]

\[
\text{pre}(a^\uparrow) \cap F_{i-1} / a^\uparrow = \emptyset
\]

\(a^\uparrow \) cannot be reachable in 1 step from \(\text{Cover}_{i-1} \)
Blocking phase: $\text{block}(a, i)$

$\text{Cover}_0 \subseteq \text{Cover}_1 \subseteq \ldots \subseteq \text{Cover}_{i-1} \subseteq \text{Cover}_i$

$F_0 = m_0 \downarrow$

$F_1 \rightarrow \ldots \rightarrow F_{i-1} \rightarrow F_i \rightarrow \ldots$

$\emptyset \rightarrow a^\uparrow$

$\text{pre}(a^\uparrow) \cap F_{i-1} / a^\uparrow = \emptyset$

a^\uparrow cannot be reachable in 1 step from Cover_{i-1}

a is uncoverable within i steps
IC3 algorithm for Petri nets

Blocking phase: \(\text{block}(a, i) \)

\[
\begin{align*}
F_0 = m_0^\uparrow & \\
F_1 & \\
\ldots & \\
F_{i-1} & \\
F_i & \\
\ldots & \\
\emptyset & \rightarrow a^\uparrow \\
\end{align*}
\]

\[
\text{pre}(a^\uparrow) \cap F_{i-1} / a^\uparrow = \emptyset
\]

\(a^\uparrow \) cannot be reachable in 1 step from \(\text{Cover}_{i-1} \)

\(a \) is uncoverable within \(i \) steps

\(a^\uparrow \) can be removed from the coverable set \(F_i \)
IC3 algorithm for Petri nets

Blocking phase: $\text{block}(a, i)$

$\text{Cover}_0 \in F_0 = m_0^\uparrow$

$\text{Cover}_1 \in F_1$

\ldots

$\text{Cover}_{i-1} \in F_{i-1}$

$\text{Cover}_i \in F_i \setminus a^\uparrow$

$\phi \rightarrow a^\uparrow$

$\text{pre}(a^\uparrow) \cap F_{i-1} / a^\uparrow = \phi$

a^\uparrow cannot be reachable in 1 step from Cover_{i-1}

a is uncoverable within i steps

a^\uparrow can be removed from the coverable set F_i
IC3 algorithm for Petri nets

\[
\text{input } N = \langle P, T, W, m_0 \rangle \text{ and } m_t \\
\text{initialize } F_0 = m_0^\downarrow, F_1 = \mathbb{N}^{|P|}, k = 1
\]
IC3 algorithm for Petri nets

input $N = \langle P, T, W, m_0 \rangle$ and m_t
initialize $F_0 = m_0 \downarrow, F_1 = \mathbb{N}^{|P|}, k = 1$

generate a pair (m_t, k)
IC3 algorithm for Petri nets

input \(N = \langle P, T, W, m_0 \rangle \) and \(m_t \)
initialize \(F_0 = m_0 \downarrow, F_1 = \mathbb{N}^{|P|}, k = 1 \)

generate a pair \((m_t, k)\)

try to block \(m_t \) at \(F_k \)
IC3 algorithm for Petri nets

- Input $N = \langle P, T, W, m_0 \rangle$ and m_t
- Initialize $F_0 = m_0^\downarrow$, $F_1 = \mathbb{N}^{|P|}$, $k = 1$
- Generate a pair (m_t, k)
- Try to block m_t at F_k
IC3 algorithm for Petri nets

input $N = \langle P, T, W, m_0 \rangle$ and m_t
initialize $F_0 = m_0^\downarrow, F_1 = \mathbb{N}^{|P|}, k = 1$

generate a pair (m_t, k)

try to block m_t at F_k

failed

a path from m_0 to m_t^\uparrow is found
IC3 algorithm for Petri nets

1. **Input**: $N = \langle P, T, W, m_0 \rangle$ and m_t
2. **Initialize**: $F_0 = m_0^\downarrow, F_1 = \mathbb{N}^{\mid P\mid}, k = 1$
3. **Generate a pair**: (m_t, k)
4. **Try to block**: m_t at F_k
5. **Result**:
 - **Failed**: a path from m_0 to m_t^\uparrow is found
 - **Coverable**: m_t is coverable in k-steps
IC3 algorithm for Petri nets

input $N = \langle P, T, W, m_0 \rangle$ and m_t
initialize $F_0 = m_0 \downarrow, F_1 = \mathbb{N}^{|P|}, k = 1$

generate a pair (m_t, k)

try to block m_t at F_k

failed

a path from m_0 to $m_t \uparrow$ is found

m_t is coverable in k-steps

End
IC3 algorithm for Petri nets

input $N = \langle P, T, W, m_0 \rangle$ and m_t
initialize $F_0 = m_0^\downarrow, F_1 = \mathbb{N}^{|P|}, k = 1$

generate a pair (m_t, k)

try to block m_t at F_k

failed

a path from m_0 to m_t^\uparrow is found

m_t is coverable in k-steps

End
IC3 algorithm for Petri nets

input \(N = \langle P, T, W, m_0 \rangle \) and \(m_t \)
initialize \(F_0 = m_0^\downarrow, F_1 = \mathbb{N}^{\mid P \mid}, k = 1 \)

generate a pair \((m_t, k)\)

try to block \(m_t \) at \(F_k \)

\[k = k + 1 \]
\[F_k = \mathbb{N}^{\mid P \mid} \]

a path from \(m_0 \) to \(m_t^\uparrow \) is found

\(m_t \) is coverable in \(k \)-steps

End
IC3 algorithm for Petri nets

input $N = \{P, T, W, m_0\}$ and m_t
initialize $F_0 = m_0^\downarrow, F_1 = \mathbb{N}^{\mid P \mid} k = 1$

generate a pair (m_t, k)

generate a pair (m_t, k)

try to block m_t at F_k

failed

a path from m_0 to m_t^\uparrow is found

successfully

$k = k + 1$

$F_k = \mathbb{N}^{\mid P \mid}$

m_t is coverable in k-steps

$F_i = F_{i+1}$

End
IC3 algorithm for Petri nets

input $N = \langle P, T, W, m_0 \rangle$ and m_t
initialize $F_0 = m_0^\downarrow, F_1 = \mathbb{N}^{|P|}, k = 1$

generate a pair (m_t, k)

try to block m_t at F_k

failed

a path from m_0 to m_t^\uparrow is found

successfully

$k = k + 1$
$F_k = \mathbb{N}^{|P|}$

m_t is coverable in k-steps

Yes

$F_i = F_{i+1}$

End

Kang, Bai, Jiao

June 24, 2021
IC3 algorithm for Petri nets

input $N = \langle P, T, W, m_0 \rangle$ and m_t
initialize $F_0 = m_0^\downarrow, F_1 = \mathbb{N}^{|P|}, k = 1$

generate a pair (m_t, k)

try to block m_t at F_k

failed

a path from m_0 to m_t^\uparrow is found

m_t is coverable in k-steps

Yes

Yes

post(F_i) $\subseteq F_{i+1}$

invariant found

m_t is uncoverable

End

invariant found

$k = k + 1$

$F_k = \mathbb{N}^{|P|}$

End
IC3 algorithm for Petri nets

input $N = \langle P, T, W, m_0 \rangle$ and m_t
initialize $F_0 = m_0^\downarrow, F_1 = \mathbb{N}^{|P|}, k = 1$

generate a pair (m_t, k)

try to block m_t at F_k

$\begin{align*}
&k = k + 1 \\
&F_k = \mathbb{N}^{|P|}
\end{align*}$

success\(\text{fully}

\text{post}(F_i) \subseteq F_{i+1}
invariant found

m_t is uncoverable

Yes

$F_i = F_{i+1}$

End

failed

a path from m_0 to m_t^\uparrow is found

m_t is coverable in k-steps
IC3 algorithm for Petri nets

input $N = \langle P, T, W, m_0 \rangle$ and m_t
initialize $F_0 = m_0^\downarrow, F_1 = \mathbb{N}^{|P|}, k = 1$

generate a pair (m_t, k)

try to block m_t at F_k

$k = k + 1$
$F_k = \mathbb{N}^{|P|}$

Yes: $post(F_i) \subseteq F_{i+1}$
invariant found
m_t is uncoverable

End

Yes: $F_i = F_{i+1}$

failed

a path from m_0 to m_t^\uparrow is found

m_t is coverable in k-steps
IC3 algorithm for Petri nets

input $N = \langle P, T, W, m_0 \rangle$ and m_t
initialize $F_0 = m_0^{\downarrow}, F_1 = \mathbb{N}^{|P|}, k = 1$

generate a pair (m_t, k)

try to block m_t at F_k

- successfully

 $k = k + 1$
 $F_k = \mathbb{N}^{|P|}$

- failed

 a path from m_0 to m_t^{\uparrow} is found

$\text{post}(F_i) \subseteq F_{i+1}$

invariant found

m_t is uncoverable

m_t is coverable in k-steps

End

Kang, Bai, Jiao
IC3 algorithm for Petri nets

Input $N = (P, T, W, m_0)$ and m_t
Initialize $F_0 = m_0 \downarrow, F_1 = \mathbb{N}^{|P|}, k = 1$

Generate a pair (m_t, k)

Try to block m_t at F_k

If successfully

$k = k + 1$

$F_k = \mathbb{N}^{|P|}$

Post$(F_i) \subseteq F_{i+1}$

Invariant found

m_t is coverable in k-steps

End

If failed

m_t is uncoverable

Try to block m_t at F_k

If successfully

a path from m_0 to $m_t \uparrow$ is found

End

If No

m_t is uncoverable

End
IC3 algorithm for Petri nets

- **Input:** $N = \langle P, T, W, m_0 \rangle$ and m_t
- **Initialize:** $F_0 = m_0^\downarrow, F_1 = \mathbb{N}^{|P|}, k = 1$

Generate a pair (m_t, k)

Try to block m_t at F_k

- **Successfully:** $k = k + 1$, $F_k = \mathbb{N}^{|P|}$
- **Failed:**
 - **Path found:**
 - **Post:** $\text{post}(F_i) \subseteq F_{i+1}$
 - m_t is coverable in k-steps
 - **Invariant found:**
 - $F_i = F_{i+1}$
 - m_t is uncoverable

End
IC3 algorithm for Petri nets

input $N = \langle P, T, W, m_0 \rangle$ and m_t
initialize $F_0 = m_0^\dagger$, $F_1 = \mathbb{N}^{\{P\}}$, $k = 1$

generate a pair (m_t, k)

IC3 works on Petri nets with high dimensionality directly

try to block m_t at F_k

$k = k + 1$
$F_k = \mathbb{N}^{\{P\}}$

Yes

post(F_i) $\subseteq F_{i+1}$
invariant found
m_t is uncoverable

No

$F_i = F_{i+1}$

a path from m_0 to m_t^\dagger is found
m_t is coverable in k-steps

End
IC3 algorithm for Petri nets

input $N = (P, T, W, m_0)$ and m_t
initialize $F_0 = m_0^\downarrow, F_1 = N^{\mid P\mid}, k = 1$

generate a pair (m_t, k)

IC3 works on Petri nets with high dimensionality directly

try to block m_t at F_k

Can IC3 perform better on Petri nets?

Failed

a path from m_0 to m_t^\uparrow is found

$F_k = N^{\mid P\mid}$

m_t is coverable in k-steps

Yes

$F_i = F_{i+1}$

post(F_i) $\subseteq F_{i+1}$ invariant found
m_t is uncoverable

No

End
Place-merge abstraction

Merge some places of original Petri net into a single abstract place, get an abstract Petri net with lower dimensionality.
Place-merge abstraction

Merge some places of original Petri net into a single abstract place, get an abstract Petri net with lower dimensionality.

Definition

Given a Petri net $N = \langle P, T, W, m_0 \rangle$, where $P = \{p_1, p_1 \ldots p_k\}$
- The abstraction function is a surjective function $\alpha: P \to \hat{P}$, where $\hat{P} = \{\hat{p}_1, \hat{p}_2 \ldots \hat{p}_{\hat{k}}\}$ and $\hat{k} \leq k$.
Place-merge abstraction

Merge some places of original Petri net into a single abstract place, get an abstract Petri net with lower dimensionality.
Merge some places of original Petri net into a single abstract place, get an abstract Petri net with lower dimensionality.

\[
\begin{align*}
\alpha(p_0) &= \alpha(p_1) = q_0 \\
\alpha(p_2) &= \alpha(p_3) = \alpha(p_4) = q_1
\end{align*}
\]
Place-merge abstraction

Merge some places of original Petri net into a single abstract place, get an abstract Petri net with lower dimensionality.

\[\alpha(p_0) = \alpha(p_1) = q_0 \]
\[\alpha(p_2) = \alpha(p_3) = \alpha(p_4) = q_1 \]

All weights of arcs are equal to 1 except for \(W(q_1, t_2) = 2 \).
Proposition

Given a Petri net $N = \langle P, T, W, m_0 \rangle$ and one of its abstractions $\hat{N} = \langle \hat{P}, T, \hat{W}, \hat{m}_0 \rangle$, m_t and its abstract version \hat{m}_t

- If m_t is coverable in N, then its abstract version \hat{m}_t is coverable in \hat{N}. But the converse does not hold.
Place-merge abstraction

Proposition

Given a Petri net $N = \langle P, T, W, m_0 \rangle$ and one of its abstractions $\hat{N} = \langle \hat{P}, T, \hat{W}, \hat{m}_0 \rangle$, m_t and its abstract version \hat{m}_t

- If m_t is coverable in N, then its abstract version \hat{m}_t is coverable in \hat{N}. But the converse does not hold.

\hat{m}_t is uncoverable in \hat{N}
Proposition

Given a Petri net $N = \langle P, T, W, m_0 \rangle$ and one of its abstractions $\hat{N} = \langle \hat{P}, T, \hat{W}, \hat{m}_0 \rangle$, m_t and its abstract version \hat{m}_t

- If m_t is coverable in N, then its abstract version \hat{m}_t is coverable in \hat{N}. But the converse does not hold.

\[
\hat{m}_t \text{ is uncoverable in } \hat{N} \quad \rightarrow \quad m_t \text{ is uncoverable in } N
\]
Place-merge abstraction

Proposition

Given a Petri net $N = \langle P, T, W, m_0 \rangle$ and one of its abstractions $\hat{N} = \langle \hat{P}, T, \hat{W}, \hat{m}_0 \rangle$, m_t and its abstract version \hat{m}_t
- If m_t is coverable in N, then its abstract version \hat{m}_t is coverable in \hat{N}. But the converse does not hold.

\hat{m}_t is uncoverable in $\hat{N} \quad \rightarrow \quad m_t$ is uncoverable in N

\hat{m}_t is coverable in \hat{N}
Proposition

Given a Petri net \(N = \langle P, T, W, m_0 \rangle \) and one of its abstractions \(\hat{N} = \langle \hat{P}, \hat{T}, \hat{W}, \hat{m}_0 \rangle \), \(m_t \) and its abstract version \(\hat{m}_t \)

- If \(m_t \) is coverable in \(N \), then its abstract version \(\hat{m}_t \) is coverable in \(\hat{N} \). But the converse does not hold.

\[
\begin{align*}
\hat{m}_t \text{ is uncoverable in } \hat{N} & \quad \rightarrow \quad m_t \text{ is uncoverable in } N \\
m_t \text{ is coverable in } N & \quad \leftrightarrow \quad m_t \text{ is coverable in } N
\end{align*}
\]
Place-merge abstraction

Spurious counterexample
Place-merge abstraction

Spurious counterexample
Place-merge abstraction

Spurious counterexample

Abstract PN

\[(0, 3) \xrightarrow{t_0} (1, 2) \xrightarrow{t_0} (2, 1) \]
Place-merge abstraction

Spurious counterexample

Abstract PN

\begin{align*}
(0, 3) \xrightarrow{t_0} (1, 2) \xrightarrow{t_0} (2, 1)
\end{align*}

Original PN

\begin{align*}
(0, 0, 1, 1, 1) & \xrightarrow{t_0} (1, 0, 1, 1, 0) & \xrightarrow{t_0} (1, 1, 0, 1, 0) \\
(0, 0, 1, 2, 0) & \xrightarrow{t_0} (1, 0, 0, 1, 1) & \xrightarrow{t_0} (1, 1, 1, 0, 0) \\
(0, 0, 2, 1, 0) & \xrightarrow{t_0} (0, 1, 1, 1, 0) & \xrightarrow{t_0} (2, 0, 0, 1, 0) \\
(0, 0, 3, 0, 0) & \xrightarrow{t_0} (0, 1, 0, 1, 1) & \xrightarrow{t_0} (2, 0, 1, 0, 0)
\end{align*}
Place-merge abstraction

Spurious counterexample

Abstract PN

Original PN

t_0 is not enabled here
Place-merge abstraction

When a counterexample is spurious
When a counterexample is spurious

Counter-example $\pi = t_0 t_1 \ldots t_{k-1}$ is not spurious iff

$m_0 \xrightarrow{t_0} m_1 \xrightarrow{t_1} m_2 \xrightarrow{t_2} \ldots \xrightarrow{t_{k-1}} m_k \wedge m_t \preceq m_k$
Place-merge abstraction

When a counterexample is spurious

Counter-example $\pi = t_0 t_1 \ldots t_{k-1}$ is not spurious iff

$$m_0 \xrightarrow{t_0} m_1 \xrightarrow{t_1} m_2 \xrightarrow{t_2} \ldots \xrightarrow{t_{k-1}} m_k \land m_t \preceq m_k$$

The path π is spurious:
① t_i is not enabled at m_i ($0 \leq i < k$), or
② t_i is enabled at m_i ($0 \leq i < k$), but $m_t \nleq m_k$
Place-merge abstraction

How to refine an abstraction?
Place-merge abstraction

How to refine an abstraction?

t_i is not enabled at m_i ($0 \leq i < k$)

- extract places satisfying $m_i(p) < W(p, t_i)$
- merge these places into a new abstract place
Place-merge abstraction

How to refine an abstraction?

- t_i is not enabled at m_i ($0 \leq i < k$)
 - extract places satisfying $m_i(p) < W(p, t_i)$
 - merge these places into a new abstract place

- t_i is enabled at m_i ($0 \leq i < k$), but $m_t \not\leq m_k$
 - extract places satisfying $m_t(p) > m_k(p)$
 - merge these places into a new abstract place
How to refine an abstraction?

- Place-merge abstraction

Abstract PN

\[
\begin{array}{c}
(0, 3) \xrightarrow{t_0} (1, 2) \xrightarrow{t_0} (2, 1)
\end{array}
\]

Original PN

\[
\begin{array}{c}
(0, 0, 1, 1, 1) \xrightarrow{t_0} (1, 0, 0, 1, 1) \xrightarrow{t_0} (1, 1, 0, 1, 0) \\
(0, 0, 2, 1, 0) \xrightarrow{t_0} (0, 1, 1, 1, 0) \\
(0, 0, 3, 0, 0) \xrightarrow{t_0} (0, 1, 0, 1, 1) \\
\end{array}
\]

\[
\begin{array}{c}
(1, 1, 0, 1, 0) \\
(1, 1, 1, 0, 0) \\
(2, 0, 0, 1, 0) \\
(2, 0, 1, 0, 0) \\
\end{array}
\]

\[t_0 \text{ is not enabled here}\]
Place-merge abstraction

Abstraction refinement

Abstract PN

Original PN

t_0 is not enabled here
Place-merge abstraction

Abstraction refinement

Abstract PN

\[(0, 3) \xrightarrow{t_0} (1, 2) \xrightarrow{t_0} (2, 1) \]

Original PN

\[
\begin{array}{c}
(0,0,1,1,1) \\
(0,0,1,2,0) \\
(0,0,2,1,0) \\
(0,0,3,0,0) \\
\hline
(1,0,0,0,1,1,1) \\
(0,1,0,0,1,1,1,0) \\
(0,0,1,1,1,0) \\
(0,0,1,1,1,0) \\
\end{array}
\]

\[t_0 \text{ is not enabled here} \]
Place-merge abstraction

Abstraction refinement

extract \(p_2 \) from \(q_1 \)!

\[
\begin{align*}
\alpha(p_0) &= \alpha(p_1) = q_0 \\
\alpha(p_2) &= \alpha(p_3) = \alpha(p_4) = q_1
\end{align*}
\]

\(t_0 \) is not enabled here
Abstraction refinement

extract p_2 from q_1!

$\alpha(p_0) = \alpha(p_1) = q_0$
$\alpha(p_3) = \alpha(p_4) = q_1$
$\alpha(p_2) = q_2$

t_0 is not enabled here
Abstraction refinement

extract p_2 from q_1!

<table>
<thead>
<tr>
<th>Abstraction</th>
<th>Original PN</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha(p_0) = \alpha(p_1) = q_0$</td>
<td></td>
</tr>
<tr>
<td>$\alpha(p_3) = \alpha(p_4) = q_1$</td>
<td></td>
</tr>
<tr>
<td>$\alpha(p_2) = q_2$</td>
<td></td>
</tr>
</tbody>
</table>

t_0 is not enabled here
Place-merge abstraction

Abstraction refinement

extract p_2 from q_1!

$\alpha(p_0) = \alpha(p_1) = q_0$

$\alpha(p_3) = \alpha(p_4) = q_1$

$\alpha(p_2) = q_2$

t_0 is not enabled here
IC3+PMA algorithm

- Try to improve the outperformance of IC3
- IC3 is the core of IC3+PMA
- Place-merge abstraction reduces the dimensionality of PN
- IC3 works on the abstract PN with lower dimensionality
merge all places into a single place
IC3+PMA algorithm

merge all places into a single place

check abstraction
IC3+PMA algorithm

- Merge all places into a single place
- Check abstraction
- Uncoverable
- Get an inductive invariant of abstraction
IC3+PMA algorithm

merge all places into a single place

check abstraction

uncoverable

get an inductive invariant of abstraction

m_t is uncoverable in original model
IC3+PMA algorithm

merge all places into a single place

check abstraction

uncoverable

get an inductive invariant of abstraction

m_t is uncoverable in original model

End
IC3+PMA algorithm

1. Merge all places into a single place.
2. Check abstraction.
 - If uncoverable, get an inductive invariant of abstraction.
 - If m_t is uncoverable in the original model, end.

End
IC3+PMA algorithm

merge all places into a single place

coverable

check abstraction

get a counter-example π

uncoverable

get an inductive invariant of abstraction

m_t is uncoverable in original model

End
IC3+PMA algorithm

- Merge all places into a single place

 - Check abstraction

 - Coverable: Get a counter-example π

 - Is π spurious

 - Uncoverable: Get an inductive invariant of abstraction

 - m_t is uncoverable in original model

End
IC3+PMA algorithm

merge all places into a single place

check abstraction

coverable

get a counter-example π

is π spurious

No

m_t is coverable in original model

End

uncoverable

get an inductive invariant of abstraction

m_t is uncoverable in original model

June 24, 2021
IC3+PMA algorithm

merge all places into a single place

check abstraction

get a counter-example π

is π spurious

No

m_t is coverable in original model

End

coverable

uncoverable

get an inductive invariant of abstraction

m_t is uncoverable in original model

Kang, Bai, Jiao
IC3+PMA algorithm

1. Merge all places into a single place
2. Check abstraction:
 - If coverable, get a counter-example π
 - If π is spurious, go back.
 - If m_t is coverable in the original model, end.
 - If uncoverable, get an inductive invariant of abstraction.
 - If m_t is uncoverable in the original model, end.

End.
IC3+PMA algorithm

merge all places into a single place

check abstraction

coverable

get a counter-example π

Yes

is π spurious

No

m_t is coverable in original model

uncoverable

get an inductive invariant of abstraction

m_t is uncoverable in original model

End
IC3+PMA algorithm

get a new abstraction

refinement

get a counter-example π

Yes

is π spurious

No

\mathcal{m}_t is coverable in original model

merge all places into a single place

check abstraction

coverable

uncoverable

get an inductive invariant of abstraction

\mathcal{m}_t is uncoverable in original model

End
IC3+PMA algorithm

merge all places into a single place

coverable

check abstraction

uncoverable

generate a new abstraction

refinement

generate a counter-example π

Yes

is π spurious

No

m_t is coverable in the original model

m_t is uncoverable in the original model

End
IC3+PMA algorithm

1. Get a new abstraction
2. Refinement
3. Get a counter-example π
4. Is π spurious?
 - Yes: m_t is coverable in original model
 - No: m_t is uncoverable in original model
5. Check abstraction
 - Coverable: Merge all places into a single place
 - Uncoverable: Get an inductive invariant of abstraction
6. End
Experiments

- total 80 benchmarks
- compare running time between IC3 and IC3+PMA
- IC3+PMA outperforms IC3 on 53.75% of benchmarks
- dimensionality has decreased by 63.34% on average
Experiments

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Places</th>
<th>IC3+PMA AbsPlaces</th>
<th>IC3+PMA Ref</th>
<th>IC3+PMA time(s)</th>
<th>IC3 time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncoverable instances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>newrrt</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td><0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>kanban (bounded)</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td><0.01</td>
<td>1.22</td>
</tr>
<tr>
<td>manufacturing</td>
<td>13</td>
<td>1</td>
<td>0</td>
<td><0.01</td>
<td>0.16</td>
</tr>
<tr>
<td>fms</td>
<td>22</td>
<td>4</td>
<td>3</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>fms_attic</td>
<td>22</td>
<td>4</td>
<td>3</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>mesh2x2</td>
<td>32</td>
<td>5</td>
<td>4</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>mesh3x2</td>
<td>52</td>
<td>5</td>
<td>4</td>
<td>0.02</td>
<td>0.08</td>
</tr>
<tr>
<td>pingpong</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>RandCAS 2</td>
<td>110</td>
<td>8</td>
<td>7</td>
<td>0.08</td>
<td>0.44</td>
</tr>
<tr>
<td>Conditionals 2</td>
<td>214</td>
<td>26</td>
<td>25</td>
<td>1.39</td>
<td>5.79</td>
</tr>
<tr>
<td>Coverable instances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>leabasicapproach</td>
<td>16</td>
<td>5</td>
<td>4</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Dekker 1</td>
<td>41</td>
<td>27</td>
<td>25</td>
<td>2.08</td>
<td>3.23</td>
</tr>
<tr>
<td>DoubleLock1 1</td>
<td>64</td>
<td>35</td>
<td>32</td>
<td>11.26</td>
<td>13.31</td>
</tr>
<tr>
<td>Pthread5 1</td>
<td>80</td>
<td>47</td>
<td>44</td>
<td>97.28</td>
<td>Timeout</td>
</tr>
<tr>
<td>RandLock0 2</td>
<td>110</td>
<td>48</td>
<td>46</td>
<td>21.40</td>
<td>24.89</td>
</tr>
<tr>
<td>Spin2003 2</td>
<td>56</td>
<td>38</td>
<td>35</td>
<td>67.35</td>
<td>Timeout</td>
</tr>
<tr>
<td>Szymanski 1</td>
<td>61</td>
<td>46</td>
<td>44</td>
<td>19.62</td>
<td>32.69</td>
</tr>
<tr>
<td>Constants 1</td>
<td>26</td>
<td>14</td>
<td>13</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>FuncPtr3 1</td>
<td>40</td>
<td>16</td>
<td>13</td>
<td>0.19</td>
<td>0.33</td>
</tr>
</tbody>
</table>

IC3+PMA performs better
Experiments

IC3+PMA performs better

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Places</th>
<th>IC3+PMA AbsPlaces</th>
<th>IC3+PMA Ref</th>
<th>IC3+PMA time(s)</th>
<th>IC3 time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncoverable instances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>newrtp</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td><0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>kanban (bounded)</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td><0.01</td>
<td>1.22</td>
</tr>
<tr>
<td>manufacturing</td>
<td>13</td>
<td>1</td>
<td>0</td>
<td><0.01</td>
<td>0.16</td>
</tr>
<tr>
<td>fms</td>
<td>22</td>
<td>4</td>
<td>3</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>fms_attic</td>
<td>22</td>
<td>4</td>
<td>3</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>mesh2x2</td>
<td>32</td>
<td>5</td>
<td>4</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>mesh3x2</td>
<td>52</td>
<td>5</td>
<td>4</td>
<td>0.02</td>
<td>0.08</td>
</tr>
<tr>
<td>pingpong</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>RandCAS 2</td>
<td>110</td>
<td>8</td>
<td>7</td>
<td>0.08</td>
<td>0.44</td>
</tr>
<tr>
<td>Conditionals 2</td>
<td>214</td>
<td>26</td>
<td>25</td>
<td>1.39</td>
<td>5.79</td>
</tr>
<tr>
<td>Coverable instances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>leabasicapproach</td>
<td>16</td>
<td>5</td>
<td>4</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Dekker 1</td>
<td>41</td>
<td>27</td>
<td>25</td>
<td>2.08</td>
<td>3.23</td>
</tr>
<tr>
<td>DoubleLock1 1</td>
<td>64</td>
<td>35</td>
<td>32</td>
<td>11.26</td>
<td>13.31</td>
</tr>
<tr>
<td>Pthread5 1</td>
<td>80</td>
<td>47</td>
<td>44</td>
<td>97.28</td>
<td>Timeout</td>
</tr>
<tr>
<td>RandLock0 2</td>
<td>110</td>
<td>48</td>
<td>46</td>
<td>21.40</td>
<td>24.89</td>
</tr>
<tr>
<td>Spin2003 2</td>
<td>56</td>
<td>38</td>
<td>35</td>
<td>67.35</td>
<td>Timeout</td>
</tr>
<tr>
<td>Szymanski 1</td>
<td>61</td>
<td>46</td>
<td>44</td>
<td>19.62</td>
<td>32.69</td>
</tr>
<tr>
<td>Constants 1</td>
<td>26</td>
<td>14</td>
<td>13</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>FuncPtr3 1</td>
<td>40</td>
<td>16</td>
<td>13</td>
<td>0.19</td>
<td>0.33</td>
</tr>
<tr>
<td>Benchmark</td>
<td>Places</td>
<td>IC3+PMA AbsPlaces</td>
<td>IC3+PMA Ref</td>
<td>IC3+PMA time(s)</td>
<td>IC3 time(s)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>-------------------</td>
<td>-------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Uncoverable instances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peterson</td>
<td>14</td>
<td>10</td>
<td>8</td>
<td>0.35</td>
<td>0.13</td>
</tr>
<tr>
<td>Lamport</td>
<td>11</td>
<td>7</td>
<td>6</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>Ext. ReadWrite (small consts)</td>
<td>24</td>
<td>14</td>
<td>13</td>
<td>1.23</td>
<td>0.28</td>
</tr>
<tr>
<td>x0_AA_q1</td>
<td>312</td>
<td>#</td>
<td>#</td>
<td>Timeout</td>
<td>70.28</td>
</tr>
<tr>
<td>csm</td>
<td>14</td>
<td>9</td>
<td>8</td>
<td>0.19</td>
<td>0.02</td>
</tr>
<tr>
<td>Coverable instances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RandCAS 1</td>
<td>48</td>
<td>34</td>
<td>33</td>
<td>0.85</td>
<td>0.67</td>
</tr>
<tr>
<td>StackCAS0 1</td>
<td>41</td>
<td>30</td>
<td>29</td>
<td>3.72</td>
<td>2.14</td>
</tr>
<tr>
<td>StackLock0 1</td>
<td>37</td>
<td>26</td>
<td>25</td>
<td>2.33</td>
<td>1.06</td>
</tr>
<tr>
<td>Lu-fig2 1</td>
<td>39</td>
<td>20</td>
<td>19</td>
<td>0.22</td>
<td>0.12</td>
</tr>
<tr>
<td>Lu-fig2 2</td>
<td>61</td>
<td>35</td>
<td>32</td>
<td>43.06</td>
<td>9.05</td>
</tr>
</tbody>
</table>

IC3+PMA performs worse
Experiments

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Places</th>
<th>IC3+PMA AbsPlaces</th>
<th>IC3+PMA Ref</th>
<th>IC3+PMA time(s)</th>
<th>IC3 time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncoverable instances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peterson</td>
<td>14</td>
<td>10</td>
<td>8</td>
<td>0.35</td>
<td>0.13</td>
</tr>
<tr>
<td>Lamport</td>
<td>11</td>
<td>7</td>
<td>6</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>Ext. ReadWrite (small configs)</td>
<td>24</td>
<td>14</td>
<td>13</td>
<td>1.23</td>
<td>0.28</td>
</tr>
<tr>
<td>x0_AA_q1</td>
<td>312</td>
<td>#</td>
<td>#</td>
<td>Timeout</td>
<td>70.28</td>
</tr>
<tr>
<td>csm</td>
<td>14</td>
<td>9</td>
<td>8</td>
<td>0.19</td>
<td>0.02</td>
</tr>
<tr>
<td>Coverable instances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RandCAS 1</td>
<td>48</td>
<td>34</td>
<td>33</td>
<td>0.85</td>
<td>0.67</td>
</tr>
<tr>
<td>StackCAS0 1</td>
<td>41</td>
<td>30</td>
<td>29</td>
<td>3.72</td>
<td>2.14</td>
</tr>
<tr>
<td>StackLock0 1</td>
<td>37</td>
<td>26</td>
<td>25</td>
<td>2.33</td>
<td>1.06</td>
</tr>
<tr>
<td>Lu-fig2 1</td>
<td>39</td>
<td>20</td>
<td>19</td>
<td>0.22</td>
<td>0.12</td>
</tr>
<tr>
<td>Lu-fig2 2</td>
<td>61</td>
<td>35</td>
<td>32</td>
<td>43.06</td>
<td>9.05</td>
</tr>
</tbody>
</table>

- the efficiency of refinement method is not so high
- the way to deal with frames after refinement is not efficient
future work

- optimize the implementation to achieve better results
- apply the approach to analyze more properties and models
Thank You For Your Attention