# Efficient Unfolding of Coloured Petri Nets using Interval Decision Diagrams 

Martin Schwarick, Christian Rohr, Fei Liu, George Assaf, Jacek Chodak and Monika Heiner

Brandenburg Technical University
Petri Nets 2020 - Paris

$$
25 \text { June } 2020
$$

## Outline

(1) Why coloured Petri Nets?
(2) State of the Art
(3) The Problem
(4) What are IDD?
(5) IDD basic principles
(6) IDD-based unfolding algorithm
(7) Experiments


## Powerful modelling - Coloured Petri nets



## Coloured PNs - Powerful modelling



```
Color definitions:
    Simple CS
enum Nodes = {A,B,C,D,F,G,H,I,J };
    Product CS
Matrix = Prod(Nodes,Nodes);
    Subset CS
Connections = Matrix[(a=A &
(b=B|b=C |b=D | b=G | b=1)) |
(a=B & (b=A b=G b=H|b=J))|
(a=C & (b=F|b=H))];
variables:
Nodes: a;
Nodes: b;
functions:
bool IsConnected(Node a1, Node b1)
{(a1,b1) elemOf Connections};
```


## Coloured PNs - Powerful modelling

```
Color definitions:
    Simple CS
enum Nodes = {A,B,C,D,F,G,H,I,J };
    Product CS
Matrix = Prod(Nodes,Nodes);
    Subset CS
Connections = Matrix[(a=A &
(b=B|b=C |b=D | b=G | b=1)) |
(a=B & (b=A b=G b=H|b=J))|
(a=C & (b=F|b=H))];
variables:
Nodes: a;
Nodes: b;
functions:
bool IsConnected(Node a1, Node b1)
{(a1,b1) elemOf Connections};
```


## Coloured PNs - Powerful modelling

```
Color definitions:
    Simple CS
enum Nodes = {A,B,C,D,F,G,H,I,J };
    Product CS
Matrix = Prod(Nodes,Nodes);
    Subset CS
Connections = Matrix[(a=A &
(b=B|b=C |b=D | b=G | b=1)) |
(a=B & (b=A b=G b=H|b=J))|
(a=C & (b=F | b=H))];
variables:
Nodes: a;
Nodes: b;
functions:
bool IsConnected(Node a1, Node b1)
{(a1,b1) elemOf Connections};
```


## Coloured PNs - Powerful modelling

## Color definitions:

<br>Simple CS
enum Nodes $=\{A, B, C, D, F, G, H, I, J\} ;$
Product CS
Matrix $=\operatorname{Prod}($ Nodes, Nodes $)$;
Subset CS
Connections $=$ Matrix $[(\mathrm{a}=\mathrm{A}$ \&
$(b=B|b=C| b=D|b=G| b=1)) \mid$

$(a=B \&(b=A|b=G| b=H \mid b=J)) \mid$ $(a=C \&(b=F \mid b=H))] ;$
variables:
Nodes: a;
Nodes: b;
functions:
bool IsConnected(Node a1, Node b1)
\{(a1,b1) elemOf Connections\};

## Coloured PNs - Powerful modelling

## Color definitions:

```
Simple CS
enum Nodes \(=\{A, B, C, D, F, G, H, I, J\} ;\) Product CS
Matrix \(=\operatorname{Prod}(\) Nodes, Nodes \()\);
Subset CS
Connections \(=\) Matrix \([(a=A\) \&
\((b=B|b=C| b=D|b=G| b=l)) \mid\)
\((a=B \&(b=A|b=G| b=H \mid b=J)) \mid\)
\((a=C \&(b=F \mid b=H))]\);
variables:
Nodes : a;
Nodes: b;
functions:
bool IsConnected(Node a1, Node b1)
\{(a1,b1) elemOf Connections\};
```


## Powerful modelling - Coloured Petri nets



## State of the Art

- Coloured Petri nets are in use for a wide range of applications, covering natural/engineering/life sciences.


## State of the Art

- Coloured Petri nets are in use for a wide range of applications, covering natural/engineering/life sciences.
- Currently, most analysis and simulation techniques require unfolding: coloured Petri net $\rightarrow$ plain Petri net.


## State of the Art

- Coloured Petri nets are in use for a wide range of applications, covering natural/engineering/life sciences.
- Currently, most analysis and simulation techniques require unfolding: coloured Petri net $\rightarrow$ plain Petri net.
- Unfolding tends to be time consuming.


## State of the Art

- Example of a scaleable model to adjust grid size.


## State of the Art

- Example of a scaleable model to adjust grid size.
- 2D Diffusion in space.



## The Problem

- The core problem of efficient unfolding is to determine the transition instances, e.g, all bindings of the involved variables.



## The Problem

- The core problem of efficient unfolding is to determine the transition instances, e.g, all bindings of the involved variables.



## The Problem

- The core problem of efficient unfolding is to determine the transition instances, e.g, all bindings of the involved variables.



## Solution

Interval decision diagrams $\rightarrow$ CSP.


## What are IDD?

- Directed acyclic graphs (DAGs) to encode interval logic functions in the form of symbolic data structure.



## What are IDD?

- They have two types of nodes: non-terminal (ellipses) and terminal ones (boxes).

x2


## What are IDD?

- They have two types of nodes: non-terminal (ellipses) and terminal ones (boxes).



## What are IDD?

- Non-terminal nodes may have an arbitrary number of outgoing arcs labelled with intervals of natural numbers in the form $[a, b)$.



## IDD basic algorithm

- The set of all paths going from: the root $\rightarrow$ the terminal node 1 describes all solutions of the given constraint problem.


## IDD basic algorithm

- The set of all paths going from: the root $\rightarrow$ the terminal node 1 describes all solutions of the given constraint problem.
- Typically, one path encodes more than one solution.


## IDD basic algorithm

- The set of all paths going from: the root $\rightarrow$ the terminal node 1 describes all solutions of the given constraint problem.
- Typically, one path encodes more than one solution.
- Thus, we can easily pick all CSP solutions from the constraint IDD.


## Example $(x 1 \geqslant 8) \vee(x 1 \in[6,8) \wedge x 2>0)$

- Variable ordering



## Example $(x 1 \geqslant 8) \vee(x 1 \in[6,8) \wedge \times 2>0)$

- $\mathrm{x} 1 \geqslant 8$.



## Example $(x 1 \geqslant 8) \vee(x 1 \in[6,8) \wedge \times 2>0)$

- some intermediate screenshots.



## Example $(x 1 \geqslant 8) \vee(x 1 \in[6,8) \wedge x 2>0)$

- One final solution.



## Reducing IDD

- Interval partitions labelling the outgoing arcs of each non-terminal node are reduced. For example, $[6,7)$ and $[7,8]$


## Reducing IDD

- Interval partitions labelling the outgoing arcs of each non-terminal node are reduced. For example, $[6,7)$ and $[7,8]$
- Each non-terminal node has at least two different children.


## Reducing IDD

- Interval partitions labelling the outgoing arcs of each non-terminal node are reduced. For example, $[6,7)$ and $[7,8]$
- Each non-terminal node has at least two different children.
- There exist no two nodes with isomorphic subgraphs.

not Reduced


Reduced

## IDD-based unfolding algorithm

- Preparation step: registration of constants, color sets, variables and functions.


## IDD-based unfolding algorithm

- Preparation step: registration of constants, color sets, variables and functions.
- Unfold places and determine initial marking: this may involve CSP if we have subset mechanism and to determine initial marking.


## IDD-based unfolding algorithm

- Preparation step: registration of constants, color sets, variables and functions.
- Unfold places and determine initial marking: this may involve CSP if we have subset mechanism and to determine initial marking.
- Unfold transitions: and their adjacent arcs and add the result to the unfolded net.


## IDD-based unfolding algorithm

- Preparation step: registration of constants, color sets, variables and functions.
- Unfold places and determine initial marking: this may involve CSP if we have subset mechanism and to determine initial marking.
- Unfold transitions: and their adjacent arcs and add the result to the unfolded net.
- Add all unfolded places which are involved in the transition unfoldings to the unfolded net. This implicitly removes isolated places.


## IDD-based unfolding algorithm

- Preparation step: registration of constants, color sets, variables and functions.
- Unfold places and determine initial marking: this may involve CSP if we have subset mechanism and to determine initial marking.
- Unfold transitions: and their adjacent arcs and add the result to the unfolded net.
- Add all unfolded places which are involved in the transition unfoldings to the unfolded net. This implicitly removes isolated places.
- The entire pseudo code of the algorithm is given in the paper.


## Example



## Example (no constraints)



> Color definitions:
> cs $=\{1,8,3 . .6,10,9,11,20 . .23\} ;$ enum $a b=\{A, C, D\} ;$
> variables:
> cs : $x ;$
> ab : $y ;$

## Example (no constraints)



## Example (with Guard)



## Encoding the entire cs $=\{1,8,3.6,10,9,11,20 . .23\}$



## Constraining the color set cs to $6 \leqslant x$



## Constraining the color set cs to $x \leqslant 10$



## Combining $6 \leqslant x$ and $x \leqslant 10$ using \& operator



## Encoding the entire color set $a b=\{A, C, D\}$



## Constraining the color set ab to $\mathrm{y}=\mathrm{A}$



Merging the result of $(6 \leqslant x$ and $x \leqslant 10)$ and $(y=A)$ using \& operator


## Two-path solution:

1st path : $(y=A, x=6)$
2nd path: $(y=A, x=8 . .10)$

## Unfolded Net



## Unfolded Net



## Experiments

- We compared our IDD unfolding with an unfolding employing the popular constraint solver library Gecode.


## Experiments

- We compared our IDD unfolding with an unfolding employing the popular constraint solver library Gecode.
- 22 MCC models (PNML format) $\rightarrow$ https://mcc.lip6.fr/models.php
- 1st group: requires no substantial unfolding time.
- 2nd group: requires substantial unfolding time.


## Experiments

- We compared our IDD unfolding with an unfolding employing the popular constraint solver library Gecode.
- 22 MCC models (PNML format) $\rightarrow$ https://mcc.lip6.fr/models.php
- 1st group: requires no substantial unfolding time.
- 2nd group: requires substantial unfolding time.
- We used also two biological test cases from our own collection:
https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Examples?dir=IddUnfolding
- 3D Diffusion.
- Brusselator.


## Bridges and Vehicles (MCC)

## the model

- a lane bridge with limited capacity.
- used by two types of vehicles.
- coloured model has 15 places, 11 transition and 57 arcs.



## Bridges and Vehicles (MCC)



Figure: Bridges and vehicles (MCC); requires no substantial unfolding time

## Family reunion (MCC)

the model

- reunification process.
- the coloured model has 104 places, 66 transition and198 arcs.
- it is scaled by the number of legal residents.



## Family reunion (MCC)



| $N$ | $\|P\|$ | $\|T\|$ | $\|A\|$ |
| ---: | ---: | ---: | ---: |
| 10 | 1475 | 1234 | 3799 |
| 20 | 3271 | 2753 | 8446 |
| 50 | 12194 | 10560 | 32238 |
| 100 | 40605 | 36871 | 112728 |
| 200 | 143908 | 134279 | 411469 |
| 400 | 537708 | 508489 | 1558729 |
| 800 | 2075308 | 1976909 | 6061249 |
| 1200 | 4612908 | 4405329 | 13507769 |

Figure: Family Reunion (MCC); requires substantial unfolding time

## Diffusion in space (3D)



## Diffusion in space (3D)



Figure: Diffusion (3D); N - Grid size

## Brusselator



## Brusselator



Figure: Brusselator ; N - Grid size of a 2D square


## And the winner is

- Gecode, when:
- models with a few guards or no guards.
- models with simple colour sets.
- e.g, 12 MCC models (no substantial time).


## And the winner is

- Gecode, when:
- models with a few guards or no guards.
- models with simple colour sets.
- e.g, 12 MCC models (no substantial time).
- IDDs, when:
- parametrized models with a large scaling factor, e.g, Diffusion in space.
- models with sophisticated guards.
- e.g, most models in our own collection.


## And the winner is

- Gecode, when:
- models with a few guards or no guards.
- models with simple colour sets.
- e.g, 12 MCC models (no substantial time).
- IDDs, when:
- parametrized models with a large scaling factor, e.g, Diffusion in space.
- models with sophisticated guards.
- e.g, most models in our own collection.
- The complete performance report is available:
https://www-dssz.informatik.tucottbus.de/DSSZ/Software/Examples?dir=IddUnfolding


## Our tools

## SNOOPY

## MARCIE

## SPIKE

https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/

## Our tools

## SNOOPY


https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/

## Our tools

## SNOOPY


https://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/

## Future work

- Performance:
- Considering memory.
- Power consumption.


## Future work

- Performance:
- Considering memory.
- Power consumption.
- Implementation efficiency:
- Multi-threading: unfolding the coloured places and transition is currently done sequentially.
- Reuse of already computed solutions.
- Choosing among several variable order strategies.


## Thank You For Your Attention

