Efficient Unfolding of Coloured Petri Nets

using Interval Decision Diagrams

Martin Schwarick, Christian Rohr, Fei Liu,
George Assaf, Jacek Chodak and Monika Heiner

Brandenburg Technical University
Petri Nets 2020 - Paris

25 June 2020

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020

a

@ Why coloured Petri Nets? MEC:)/\\/D
1'A
Node move

© State of the Art 5
© The Problem Unfolding
@ What are IDD?

© DD basic principles

@ IDD-based unfolding algorithm

@ Experiments

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020

Powerful modelling - Coloured Petri nets

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 3 /37

Coloured PNs - Powerful modelling

Color definitions:

\\ Simple CS

enum Nodes = {A,B,C,D,F,G,H,l.J };
\\ Product CS

Matrix = Prod(Nodes,Nodes);

\\ Subset CS

Connections = Matrix[(a=A &
(b=B|b=C |b=D | b=G | b=l)) |
(a=B & (b=A|b=G|b=H|b=J)) |

(a=C & (b=F | b=H))];
variables:
Node move Nodes : a;

Nodes : b;
functions:
bool IsConnected(Node al, Node bl)

{(al,bl) elemOf Connections};

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 4 /37

Coloured PNs - Powerful modelling

Color definitions:

\\ Simple CS

enum Nodes = {A,B,C,D,F,G,H,l.J };
\\ Product CS

Matrix = Prod(Nodes,Nodes);

\\ Subset CS

Connections = Matrix[(a=A &
(b=B|b=C |b=D | b=G | b=l)) |
(a=B & (b=A|b=G|b=H|b=J)) |

Nodes (a:c & (b:F | b=H))],
1°A .
variables:
Node move Nodes : a;

Nodes : b;
functions:
bool IsConnected(Node al, Node bl)

{(al,bl) elemOf Connections};

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 4 /37

Coloured PNs - Powerful modelling

Color definitions:

\\ Simple CS
enum Nodes = {A,B,C,D,F,G,H,l.J };
\\ Product CS
Matrix = Prod(Nodes,Nodes);
\\ Subset CS
Connections = Matrix[(a=A &
(b=B|b=C |b=D | b=G | b=l)) |
|

a (a=B & (b=A|b=G|b=H|b=J))
Nodes (a=C & (b=F | b=H))];
La variables:
Node move Nodes : a;
b Nodes : b;
functions:

bool IsConnected(Node al, Node bl)
{(al,bl) elemOf Connections};

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 4 /37

Coloured PNs - Powerful modelling

Color definitions:

\\ Simple CS
enum Nodes = {A,B,C,D,F,G,H,l.J };
\\ Product CS
Matrix = Prod(Nodes,Nodes);
\\ Subset CS
Connections = Matrix[(a=A &
(b=B|b=C |b=D | b=G | b=l)) |
|

a (a=B & (b=A|b=G|b=H|b=J))
1 [IsConnected(a,b)] .
variables:
Node move Nodes : a;
b Nodes : b;
functions:

bool IsConnected(Node al, Node bl)
{(al,bl) elemOf Connections};

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 4 /37

Coloured PNs - Powerful modelling

Color definitions:

\\ Simple CS
enum Nodes = {A,B,C,D,F,G,H,l.J };
\\ Product CS
colour-dependent rate function et = Plodledss o)

- T . \\ Subset CS
a=A&b=B : MassAction(k1) Connections = Matrix[(a=A &

! (b=B|b=C |b=D | b=G | b=l)) |
|

a ¢ (a=B & (b=A|b=G|b=H|b=J))
1 [IsConnected(a,b)] .
variables:
Node move Nodes : a;
b Nodes : b;
functions:

bool IsConnected(Node al, Node bl)
{(al,bl) elemOf Connections};

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 4 /37

Powerful modelling - Coloured Petri nets

Guard [y=t1l]2 p++
hares Guard------ » Ly=t2] (17p++
3 b++
2°m) ++
[y=t3]1'm
Edibles
edibles e -
reps
(a,b) 4 b+ prep
?mH [y=t1]1 ps++
p [y=t2]1 fs++
[y=t3]11 'ms

coloured continuous Petri net coloured stochastic Petri net

25 June 2020

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner

5 /37

State of the Art

@ Coloured Petri nets are in use for a wide range of applications,
covering natural/engineering/life sciences.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 6 /37

State of the Art

@ Coloured Petri nets are in use for a wide range of applications,
covering natural/engineering/life sciences.

@ Currently, most analysis and simulation techniques require
unfolding: coloured Petri net — plain Petri net.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 6 /37

State of the Art

@ Coloured Petri nets are in use for a wide range of applications,
covering natural/engineering/life sciences.

@ Currently, most analysis and simulation techniques require
unfolding: coloured Petri net — plain Petri net.

@ Unfolding tends to be time consuming.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 6 /37

State of the Art

@ Example of a scaleable model to adjust grid size.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 7 /37

State of the Art

@ Example of a scaleable model to adjust grid size.
@ 2D Diffusion in space.

[IsNeighbour2D4 (x,y,a,b)]
| Jdiffusion

(x,y)

Grid2D
@9 pos

10" (MID, MID)

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 7 /37

The Problem

@ The core problem of efficient unfolding is to determine the transition
instances, e.g, all bindings of the involved variables.

| |diffusion

Grid2D
pos
10" (MID,MID)

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020

The Problem

@ The core problem of efficient unfolding is to determine the transition
instances, e.g, all bindings of the involved variables.

| |diffusion

(x,y)

(a,b)

Grid2D
pos
10" (MID,MID)

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020

The Problem

@ The core problem of efficient unfolding is to determine the transition
instances, e.g, all bindings of the involved variables.

[IsNeighbour2D4 (x,y,a,b) | el CSP

diffusion

(x,y)

Range of Variables x, y, aand b
1..D

(a,b)

Grid2D
(19 pos
10" (MID,MID)

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 10 / 37

Solution

Interval decision diagrams — CSP.

Schwarick, Rohr, Assaf, Chodak, Heiner 25 June 2020 11 / 37

What are IDD?

@ Directed acyclic graphs (DAGs) to encode interval logic functions in
the form of symbolic data structure.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 12 / 37

What are IDD?

@ They have two types of nodes: non-terminal (ellipses) and terminal
ones (boxes).

<D
<

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 12 / 37

What are IDD?

@ They have two types of nodes: non-terminal (ellipses) and terminal
ones (boxes).

ONN0

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 12 / 37

What are IDD?

@ Non-terminal nodes may have an arbitrary number of outgoing arcs
labelled with intervals of natural numbers in the form [a,b).

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 12 / 37

IDD basic algorithm

@ The set of all paths going from: the root — the terminal node 1
describes all solutions of the given constraint problem.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 13 / 37

IDD basic algorithm

@ The set of all paths going from: the root — the terminal node 1
describes all solutions of the given constraint problem.

@ Typically, one path encodes more than one solution.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 13 / 37

IDD basic algorithm

@ The set of all paths going from: the root — the terminal node 1
describes all solutions of the given constraint problem.

@ Typically, one path encodes more than one solution.

@ Thus, we can easily pick all CSP solutions from the constraint IDD.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 13 / 37

Example (x1 > 8) v (x1 € [6,8) A x2>0)

@ Variable ordering

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 14 / 37

Example (x1 > 8) v (x1 € [6,8) A x2>0)

e x1 > 8.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 14 / 37

Example (x1 > 8) v (x1 € [6,8) A x2>0)

@ some intermediate screenshots.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 14 / 37

Example (x1 > 8) v (x1 € [6,8) A x2>0)

@ One final solution.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 14 / 37

Reducing IDD

@ Interval partitions labelling the outgoing arcs of each non-terminal
node are reduced. For example, [6,7) and [7, 8]

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 15 / 37

Reducing IDD

@ Interval partitions labelling the outgoing arcs of each non-terminal
node are reduced. For example, [6,7) and [7, 8]

@ Each non-terminal node has at least two different children.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 15 / 37

Reducing IDD

@ Interval partitions labelling the outgoing arcs of each non-terminal
node are reduced. For example, [6,7) and [7, 8]

@ Each non-terminal node has at least two different children.

@ There exist no two nodes with isomorphic subgraphs.

not Reduced Reduced

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020

IDD-based unfolding algorithm

o Preparation step: registration of constants, color sets, variables and
functions.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 16 / 37

IDD-based unfolding algorithm

o Preparation step: registration of constants, color sets, variables and
functions.

@ Unfold places and determine initial marking: this may involve CSP if
we have subset mechanism and to determine initial marking.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 16 / 37

IDD-based unfolding algorithm

o Preparation step: registration of constants, color sets, variables and
functions.

@ Unfold places and determine initial marking: this may involve CSP if
we have subset mechanism and to determine initial marking.

@ Unfold transitions: and their adjacent arcs and add the result to the
unfolded net.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 16 / 37

IDD-based unfolding algorithm

o Preparation step: registration of constants, color sets, variables and
functions.

@ Unfold places and determine initial marking: this may involve CSP if
we have subset mechanism and to determine initial marking.

@ Unfold transitions: and their adjacent arcs and add the result to the
unfolded net.

@ Add all unfolded places which are involved in the transition unfoldings
to the unfolded net. This implicitly removes isolated places.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 16 / 37

IDD-based unfolding algorithm

o Preparation step: registration of constants, color sets, variables and
functions.

@ Unfold places and determine initial marking: this may involve CSP if
we have subset mechanism and to determine initial marking.

@ Unfold transitions: and their adjacent arcs and add the result to the
unfolded net.

@ Add all unfolded places which are involved in the transition unfoldings
to the unfolded net. This implicitly removes isolated places.

@ The entire pseudo code of the algorithm is given in the paper.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 16 / 37

SEE

Ops

t Color definitions:
b2 cs = {1,8,3..6,10,9,11,20..23};
enum ab = {A,C,D};
variables:
pl CS @ X;
ab : y;

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020

Example (no constraints)

ab
10110 @) p3
y

cs
p2

cs

1°allQ) b1

Color definitions:

cs = {1,8,3..6,10,9,11,20..23};
enum ab = {A,C,D};

variables:
cS i X;
ab : y;

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner

25 June 2020

Example (no constraints)

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020

Example (with Guard)

ab
1allO @)p3
y

Ccs

[(6<=x&x<=10)&(y=A)] p2

1°allQ)

pl

Color definitions:

cs = {1,8,3..6,10,9,11,20..23};
enum ab = {A,C,D};

variables:
cS i X;
ab : y;

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner

25 June 2020

Encoding the entire cs = {1,8,3..6,10,9,11,20..23}

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 20 / 37

Constraining the color set cs to 6 < x

1[19]

[0,6) ([7,8) /[12,20)/[24,00) [6,7)\[8,12))[20,24)

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 21 /37

Constraining the color set cs to x < 10

1[20]

[0.1) (12,3) /[7.8)/[11,00) [1,2)\[3,7)]8,11)

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 22 /37

Combining 6 < x and x < 10 using & operator

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 23 /37

Encoding the entire color set ab ={A,C,D}

[3,00) \[0,3)

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 24 / 37

Constraining the color set abtoy = A

[1,00) \[0,1)

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 25 / 37

Merging the result of (6 < x and x < 10) and (y = A)
using & operator

Two-path solution:

Ist path : (y = Ax = 6)
2nd path : (y = A, x =8 ..10)

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020

Unfolded Net

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 27 / 37

Unfolded Net

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020

@ We compared our IDD unfolding with an unfolding employing the
popular constraint solver library Gecode.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 28 / 37

@ We compared our IDD unfolding with an unfolding employing the
popular constraint solver library Gecode.
@ 22 MCC models (PNML format) — https://mcc.lip6.fr/models.php

e 1st group: requires no substantial unfolding time.
e 2nd group: requires substantial unfolding time.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 28 / 37

@ We compared our IDD unfolding with an unfolding employing the
popular constraint solver library Gecode.
@ 22 MCC models (PNML format) — https://mcc.lip6.fr/models.php
e 1st group: requires no substantial unfolding time.
e 2nd group: requires substantial unfolding time.
@ We used also two biological test cases from our own collection:
https://www-dssz.informatik.tu-cottbus.de/DSSZ /Software /Examples?dir=IddUnfolding

o 3D Diffusion.
o Brusselator.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 28 / 37

Bridges and Vehicles (MCC)

@ a lane bridge with limited
capacity.

@ used by two types of
vehicles.

@ coloured model has 15
places, 11 transition and 57
arcs.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 29 / 37

Bridges and Vehicles (MCC)

N
1
2.0 2
4
5
9

[PLIITI] [A]
28| 52| 326
48 | 288 | 2090
78 | 968 | 7350

108 | 2228 | 17190

128 | 1328 | 10010

10 | 138 | 2348 | 18090

us 11 | 168 | 5408 | 42330

. _ﬁrﬁ/ﬁ\l/p\//“\,/\v//\V// 15 | 188 | 2108 | 15950

. 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 16 198 3728 28 830

x 20 | 228 | 8588 | 67470

N
2

—— IDD

2

time(sec)

o

Figure: Bridges and vehicles (MCC); requires no substantial unfolding time

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 29 / 37

Family reunion (MCC)

-

@ reunification process.

@ the coloured model has 104
places, 66 transition and198
arcs.

@ it is scaled by the number of
legal residents.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 30 / 37

Family reunion (MCC)

time(sec)

300 { — IDD

~——— Gecode

250

200

150

100

50

0 200 400 600 800
N

1000

1200

N[PI| T Al
10 1475 1234 3799
20 3271 2753 8446
50 12194 10560 32238

100 40605 36871 112728
200 143908 134279 411469
400 537708 508 489 1558729
800 | 2075308 | 1976909 6061 249

1200 | 4612908 | 4405329 | 13507769

Figure: Family Reunion (MCC); requires substantial unfolding time

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner

25 June 2020

30 / 37

Diffusion in space (3D)

[IsNeighbour(x,y,z,a,b,c)]
| diffusion

x,y,2)

(a,b,c)

Grid3D
pos

10" (MID,MID,MID)

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner June 2020 31 /37

Diffusion in space (3D)

time(sec)

—— IDD
—— Gecode

Figure: Diffusion (3D)

50

N | P | T | A
5 125 600 1200
10 1000 5400 10800
15 3375 18900 37800
20 8000 | 72998 145996
25 15625 90000 180000
30 | 27000 | 156600 313200
35 42875 | 249900 4993800
40 | 64000 | 374400 748800
45 91125 | 534600 | 1069200
50 | 125000 | 735000 | 1470000
: N — Grid size

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner

25 June 2020

31 /37

Brusselator

(2,v)
o r2
Grid2D G
3" (INITP, INITP) 13" (INITP, INITP)

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner June 2020

Brusselator

- NI Pl ITI] LA
100 Gebods 25 1250 11908 23191
50 5000 48808 95116

300 75 11250 110708 215791
3 100 20000 197 608 385216
g0 125 31250 309508 603 391
150 45000 446 408 870316

10 175 61250 608308 | 1185991
- 200 80000 795208 | 1550416

° 5: / ~ — — —— 225 | 101250 | 1007108 | 1963591

N 250 | 125000 | 1244008 | 2425516

Figure: Brusselator ; N — Grid size of a 2D square

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 32 /37

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 33 /37

And the winner is . . .

@ Gecode, when:

e models with a few guards or no guards.
e models with simple colour sets.
o e.g, 12 MCC models (no substantial time).

K xSl

NS

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 34 / 37

And the winner is . . .

o Gecode, when:
e models with a few guards or no guards.
e models with simple colour sets.
o e.g, 12 MCC models (no substantial time).

e IDDs, when:
e parametrized models with a large scaling Wxx “r,
factor, e.g, Diffusion in space. ¢ ‘\\\\\\‘;t :
¥ * % o

e models with sophisticated guards.
e e.g, most models in our own collection.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 34 / 37

o Gecode, when:
e models with a few guards or no guards.
e models with simple colour sets.
o e.g, 12 MCC models (no substantial time).

o |DDs, when:
e parametrized models with a large scaling % o
factor, e.g, Diffusion in space. { ‘“\\\\\E‘ ‘
o models with sophisticated guards. 1-_/"/’:;’

e e.g, most models in our own collection.

@ The complete performance report is available:
https:/ /www-dssz.informatik.tu-

cottbus.de/DSSZ /Software/Examples?dir=lddUnfolding

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 34 / 37

SNOOPY

MARCIE SPIKE

https://www-dssz.informatik.tu-cottbus.de/DSSZ /Software/

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 35 / 37

SNOOPY

CAV WDL

MARCIE SPIKE

https://www-dssz.informatik.tu-cottbus.de/DSSZ /Software/

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner

SNOOPY

CAV CANDL

MARCIE SPIKE

https://www-dssz.informatik.tu-cottbus.de/DSSZ /Software/

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner

Future work

@ Performance:

o Considering memory.
e Power consumption.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 36 / 37

@ Performance:
o Considering memory.
e Power consumption.
o Implementation efficiency:
o Multi-threading: unfolding the coloured places and transition is
currently done sequentially.
o Reuse of already computed solutions.
e Choosing among several variable order strategies.

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020

Thank You For Your Attention

Schwarick, Rohr, Liu, Assaf, Chodak, Heiner 25 June 2020 37 /37

	Why coloured Petri Nets?
	State of the Art
	The Problem
	What are IDD?
	IDD basic principles
	IDD-based unfolding algorithm
	Experiments

