STRUCTURAL REDUCTIONS REVISITED

Yann Thierry-Mieg
LIP6, Sorbonne Université, CNRS
VERIFYING PROPERTIES OF PETRI NETS

Properties of interest

Deadlock Detection

- AirplaneLandingGear

Safety Properties

- EGFr receptor

Can a deadlock state be reached?

Is « m(P1) < m(P2) OR m(p3) <= 2 » an invariant?
EXPLORING THE STATE SPACE

Petri net vs. State space (marking graph)

- Do reachable and « bad » states intersect?
VERIFICATION OF AN INVARIANT

Petri net vs. State space (marking graph)

• Does my invariant hold in all reachable states of the net?

Empty intersection
We **cannot** reach a bad state
Invariant is TRUE

Non-empty intersection
We can reach a bad state
Invariant is FALSE
OUR APPROACH

Three complementary strategies

1. Over-approximation
 Can formally prove **TRUE** invariants
 SMT based constraints to approximate reachable states

2. Under-approximation
 Can **contradict** **FALSE** invariants if it can produce a counter-example
 Sampling using a pseudo-random walk

3. Property preserving reduction
 Produce a smaller net that preserves existence of reachable bad states
 Property specific structural reduction rules
1. OVER-APPROXIMATE WITH SMT

Leveraging SAT Modulo Theory SMT

- Describe constraints on reachable states: an envelope

- The envelope is a much simpler object than the actual state space.
1. OVER-APPROXIMATE WITH SMT

Can we find an bad state in the envelope?

NO INTERSECTION (UNSAT)

Over-approximation => Invariant holds.

WITH INTERSECTION (SAT)

False Positive

OR

Over-approximation => INCONCLUSIVE

but we can provide a candidate solution (SAT model).
SMT CONSTRAINTS

Highlights

• Places = variables
 • \(P_1 \geq 0, P_2 \geq 0 \ldots \)

• Generalized flows
 • \(P_1 + 2P_2 - P_3 = 1 \)

• Trap constraints
 • \(P_1 > 0 \) OR \(P_2 > 0 \)
 • Compute *useful constraints* as separate SMT problem

• State Equation
 • Add a positive variable for firing count of transitions
 • \(P_1 = T_1 - T_2 + 1 \)

• Read => Feed
 • \(T_1 \) reads \(P \); \(m_0(P)=0 \); \(T_2 \) and \(T_3 \) feed \(P \)
 • \(T_1 > 0 \) => \(T_2 > 0 \) OR \(T_3 > 0 \)

• Causal constraints (*precedes* is a strict partial order)
 • \(T_1 \) consumes from \(P \); \(m_0(P)=0 \); \(T_2 \) and \(T_3 \) feed \(P \)
 • \(T_1 > 0 \) => \((T_2>0 \text{ AND } T_2 \text{ precedes } T_1) \) OR \((T_3 > 0 \text{ AND } T_3 \text{ precedes } T_1) \)
 • Is inconsistent (UNSAT) if we also have « \(T_1 \text{ precedes } T_2 \) » and « \(T_1 \text{ precedes } T_3 \) »
TRAP CONSTRAINTS

An initially marked trap cannot be emptied

• A trap is a set of places of the net
 • Any transition consuming from the trap must also feed the trap

• As noted by Esparza et al. in 2000, good complement to state equation
 • Complex mutex protocols e.g. Peterson, Lamport
 • But worst case exponential number of traps

• Iterative process:
 • When main SMT procedure is SAT: examine candidate solution
 • We use a separate SMT solver to find relevant traps:
 • Can we find an initially marked trap that is unmarked in the candidate?
 • SAT => add the trap constraint to main engine and try again
 • UNSAT => no trap constraints that contradict the candidate exist
Constraining the transition firing count

- The state equation ignores read arcs
 ⇒ spurious solutions, t_1 and t_2 are not correlated in the state equation constraints

Reason on first occurrence of each transition:
- If a transition has positive firing count and reads in place « p » initially empty, it must be the case that a transition feeding « p » also has positive firing count.
 \[t_1 > 0 \implies t_2 > 0 \]
CAUSAL CONSTRAINTS (UNSAT)

A partial order on first occurrence of each transition

The state equation can borrow non-existing tokens

⇒ t1=1 and t2=1 is a solution to the state equation to mark « p »

We assert that:

• t1 > 0 ⇒ t2 > 0 and t2 precedes t1
• t2 > 0 ⇒ t1 > 0 and t1 precedes t2

Obtaining a contradiction (UNSAT) as soon as t1 or t2 positive in the solution
CAUSAL CONSTRAINTS (SAT)

A partial order on first occurrence of each transition

The state equation can borrow non existing tokens
⇒ t1=1 and t2=1 is a solution to the state equation to mark « p »

We assert that:
• t1 > 0 ⇒ t2 > 0 and t2 precedes t1
• t2 > 0 ⇒ (t1 > 0 and t1 precedes t2) OR (t3 > 0 and t3 precedes t2)

Obtaining a solution (SAT) : t3 precedes t2 precedes t1
2. UNDER-APPROXIMATE WITH SAMPLING

Memory-less random exploration of the state space

- Execute the net, trying to find a reachable bad state
2. UNDER-APPROXIMATE WITH SAMPLING

Memory-less pseudo-random walk of the state space

- Execute the net, trying to find a reachable bad state (counter-example)

If an bad state is met => Invariant DOES NOT hold.
Otherwise INCONCLUSIVE :
- we might have been unlucky and not found the bug,
- or the bug might genuinely not exist.
RANDOM WALKS

Highlights

• Fast sparse implementation
 • Avoid TxT or PxP matrices

• Some states exponentially unlikely to be met by pure random walk
 • Use multiple heuristics each with a strong bias

• Guiding the walk:
 • Pure random walk with resets
 • Guided by a firing count coming from an SMT « SAT » result
 • Guided by the property (choose « best » successor w/ heuristic)
 • Recently enabled / Not recently used
 • ...

• Random walk is fast and scales well
 • Always first try to disprove with random walk before trying to prove with SMT.

+Fast results in many FALSE cases
+Disprove by counter-example
+Complements SMT TRUE proofs
+Guided by SMT inconclusive SAT
3. PROPERTY SPECIFIC STRUCTURAL REDUCTIONS

Incrementally build a smaller net using **structural reduction rules**

Each transformation **rule** produces a net N' that satisfies the property **if and only if** original net N satisfies it.

Reduction of the Petri net structure typically induces an **exponential** state space reduction.
PROPERTY SPECIFIC?

Properties of interest

Deadlock Detection

Safety Properties

AirplaneLandingGear

Can a deadlock state be reached?

=> Existence of at least one finite trace.

Specific rules preserving only unavoidable loops.

Is « m(P1) < m(P2) OR m(P3) <= 2 » an invariant?

Focus on a projection of reachable states over the places in the support.
No unavoidable SCC => Deadlock unavoidable!

AirplaneLandingGear

Can a deadlock state be reached?

=> Existence of at least one finite trace.

Specific rules preserving only unavoidable loops.

Is « m(P1) < m(P2) OR m(p3) <= 2 » an invariant?

Focus on a projection of reachable states over the places in the support.
PROPERTY SPECIFIC?

Properties of interest

Deadlock Detection

AirplaneLandingGear

Can a deadlock state be reached?

=> Existence of **at least one** finite trace.

Specific rules preserving only unavoidable loops.

Safety Properties

EGFr receptor

Is « m(P1) < m(P2) OR m(p3) <= 2 » an invariant?

Focus on a **projection** of reachable states over the places in the **support.**
Properties of interest

Deadlock Detection

AirplaneLandingGear

Blue cannot influence red!
Discard!

Can a deadlock state be reached?

=> Existence of at least one finite trace.

Specific rules preserving deadlock freedom.
Graph Based Rules

Reason on an abstraction of the net structure

- Compute the prefix in the influence graph of places in the support of the property
- **Brutally discard** places and transitions outside this prefix
- Two variants of the rule
 - For Deadlocks focus on SCC of the graph and their prefix:
 - Side effect: if there are no SCC, the net contains deadlocks.
 - For Safety, focus on places in the support
 - Asymmetric effect of read arcs: Places that are controlled by the places of interest are not interesting.
FREE AGGLOMERATION

Safety preserving agglomeration

- Two cases:
 - If \(t_2 \) was actually fireable originally, \(t_1.t_2 \) is still fireable, no behavior is lost
 - If \(t_2 \) was not fireable, now \(t_1.t_2 \) is not fireable, so we lost the possibility of firing \(t_1 \); but
 - \(t_1 \) stutters
 - \(t_1 \) can only feed \(p \), so firing \(t_1 \) is *weakening* the rest of the net

- Free-agglomeration preserves safety but not deadlocks
 - Firing \(t_1 \) and then being unable to fire \(t_2 \) can lead to a deadlock.
A place is *structurally implicit* iff. it never prevents any transition from firing

- In any marking, if a transition \(t \) consuming from \(p \) is enabled without considering \(p \), then \(p \) *always* contains enough tokens to fire \(t \)
- Build an SMT problem, asserting this invariant
- Discard \(p \) if the invariant can be proved

- Can help start another round of reductions
 - Powerful test though more costly than most rules
 - Covers variants of "redundant place" rules in e.g. Berthelot.
STRUCTURAL REDUCTION RULES

Highlights

• Total of 22 rules presented in the paper

• Basic rules:
 • equal places, constant place, sink place, …
 • neutral transition, dominated transition…

• Advanced rules:
 • Unmarked Syphon, Future equivalent places, token movement

• Agglomeration based rules:
 • pre and post-agglomeration,
 • new « free » agglomeration

• Graph based rules:
 • Compute SCC or a prefix of nodes in an abstraction of the net structure
 • Notion of « Prefix of interest » for deadlock and invariants
 • Fusion of « free » SCC

• Structural reductions supported by SMT over-approximation
 • Structurally dead transitions
 • Structurally implicit places

+preserves properties of interest
+memory and time efficient
+simplifies the net for any analysis
+synergy with over/under approximations
+leverage SMT component for more reduction power
EVALUATION

Validation with Model-Checking Contest 2019 nets and formulas

• Examination = (model + 16 invariants) or (model + deadlock)
 • Select all examinations with known results in 2019 (produced by any tool):
 • 90 model families, 2680 examinations, 28900 properties
 • Max runtime 12 minutes, 8GB RAM
 • 21/2680 : 0.008 % timeout
 • On average 31 seconds per examination

• Deadlocks:
 • 902 / 932 : 96.8 % solved

• Invariants:
 • 1634 / 1748 : 93.5 % fully solved all 16 invariants
 • 27594 / 27968 : 98.6 % of formulas solved

• Resulting nets when not fully solved are much smaller
CONCLUSION

Structural Reductions Revisited

- Combine three complementary strategies
- Competing as a «filter» within the model-checking contest in «its-tools» and «its-lola»
- Full graphical examples used in this presentation

https://lip6.github.io/ITSTools-web/structural