DQ SORBONNE

UNIVERSITE

STRUCTURAL REDUCTIONS [pEyirsesavs:
REVISITED LIP6, Sorbonne Université, CNRS

Petri Nets 2020, June 2020, Paris
41ST INTERNATIONAL CONFERENCE ON APPLICATION AND THEORY OF PETRI NETS AND CONCURRENCY

VERIFYING PROPERTIES OF PETRINETS

Properties of interest

Deadlock Detection Safety Properties

”>> EGFr receptor

s

- .
(1] vrnn(Dm Tlnd i @ ‘i @ T,
= = —~
- o . = e e —
- S e
m kh, G| iV |igEt) ‘\:U_‘ i
] \ — -
L

Can a deadlock state be reached ? Is « m(P1) < m(P2) OR m(p3) <=2 » an invariant ?

ip @S aﬁr&%?#s

EXPLORING THE STATE SPACE

Petri net vs. State space (marking graph)

Do reachable and « bad » states intersect ?

State Space

mO

Bad States
Deadlock or violation of invariant

VERIFICATION OF AN INVARIANT

Petri net vs. State space (marking graph)

« Does my invariant hold in all reachable states of the net ?

02

mO mO
Empty intersection Non-empty intersection
We cannot reach a bad state We can reach a bad state

Invariant is TRUE Invariant is FALSE

OUR APPROACH

Three complementary strategies

1. Over-approximation
Can formally prove TRUE invariants
SMT based constraints to approximate reachable states

2. Under-approximation
Can contradict FALSE invariants if it can produce a counter-example
Sampling using a pseudo-random walk

3. Property preserving reduction
Produce a smaller net that preserves existence of reachable bad states
Property specific structural reduction rules

1. OVER-APPROXIMATE WITH SMT

Leveraging SAT Modulo Theory SMT

« Describe constraints on reachable states : an envelope

Real State Space

mO

Envelope of reachable states
encoded as SMT constraints

bad States

-

« The envelope is a much simpler object than the actual state space.

1. OVER-APPROXIMATE WITH SMT

Can we find an bad state in the envelope ?

NO INTERSECTION (UNSAT) WITH INTERSECTION (SAT)

(5 (\% False Positive
Over-approximation => Invariant holds. OR
((X) }
X

Over-approximation => INCONCLUSIVE
but we can provide a candidate solution (SAT model).

Highlights

2 2

NG

SMT CONSTRAINTS > & }
(S

* Places = variables

Iterative refinement of the over approximation
« P1>=0,P2>=0...

* Generalized flows
« P1+2*P2-P3=1
« Trap constraints
« PL>00RP2>0 +Incremental constraints
+Use Reals then Integers
+UNSAT = invariant proved true
+SAT = candidate state + firing count

» Compute useful constraints as separate SMT problem

 State Equation
« Add a positive variable for firing count of transitions
« P1=T1-T2+1

* Read => Feed
 T1reads P; mO(P)=0; T2 and T3 feed P
e T1>0=>T2>00RT3>0

« (Causal constraints (precedes is a strict partial order)
* T1 consumes from P ; mO(P)=0 ; T2 and T3 feed P
« T1>0=> (T2>0 AND T2 precedes T1) OR (T3 >0 AND T3 precedes T1) o |
 Is inconsistent (UNSAT) if we also have « T1 precedes T2 » and « T1 precedes T3 » P %S_

TRAP CONSTRAINTS

An initially marked trap cannot be emptied

o Atrap is a set of places of the net
 Any transition consuming from the trap must also feed the trap

 As noted by Esparza et al. in 2000, good complement to state equation
« Complex mutex protocols e.g. Peterson, Lamport
 But worst case exponential number of traps

* |terative process .

« When main SMT procedure is SAT : examine candidate solution
* We use a separate SMT solver to find relevant traps :
« Can we find an initially marked trap that is unmarked in the candidate ?
« SAT => add the trap constraint to main engine and try again
« UNSAT => no trap constraints that contradict the candidate exist

READ => FEED

Constraining the transition firing count

(2 m— ©

pQ]
. O

« The state equation ignores read arcs
= spurious solutions, t1 and t2 are not correlated in the state equation constraints

Reason on first occurrence of each transition :

 [f a transition has positive firing count and reads in place « p » initially empty, it must be the case
that a transition feeding « p » also has positive firing count.

t1>0=>t2>0

lip @S ﬁﬁf‘&%’é#&

CAUSAL CONSTRAINTS (UNSAT)

A partial order on first occurrence of each transition

O

.] . {2

O O

P

The state equation can borrow non existing tokens
= t1=1 and t2=1 is a solution to the state equation to mark « p »

We assert that :

« t1>0=>12>0 and t2 precedes t1

« t2>0=>1t1>0 andtl precedes t2

Obtaining a contradiction (UNSAT) as soon as t1 or t2 positive in the solution

lip @S ﬁﬁf‘fé&?#%

CAUSAL CONSTRAINTS (SAT)

A partial order on first occurrence of each transition

O

.] . {2

O QO s

P

The state equation can borrow non existing tokens
= t1=1 and t2=1 is a solution to the state equation to mark « p »

We assert that :

« t1>0=>12>0 and t2 precedes t1

« t2>0=>(t1 >0 andtl precedes t2) OR (t3 > 0 and t3 precedes t2)
Obtaining a solution (SAT) : t3 precedes t2 precedes t1

lip @S ﬁﬁf‘fé&?#%

2. UNDER-APPROXIMATE WITH SAMPLING

Memory-less random exploration of the state space

» Execute the net, trying to find a reachable bad state

State Space(unknown)

mo /

N A — Exploring one run
I/

Bad States

2. UNDER-APPROXIMATE WITH SAMPLING

Memory-less pseudo-random walk of the state space

« Execute the net, trying to find a reachable bad state (counter-example)

State Space (unknown)
- /

N A — Exploring one run
I/

Bad States

If an bad state is met => Invariant DOES NOT hold.

Otherwise INCONCLUSIVE :
« we might have been unlucky and not found the bug,

 or the bug might genuinely not exist.

RANDOM WALKS N
I/

Highlights
 Fast sparse implementation @

* Avoid TxT or PxP matrices

« Some states exponentially unlikely to be met by pure random walk
« Use multiple heuristics each with a strong bias

» Guiding the walk :

» Pure random walk with resets
Guided by a firing count coming from an SMT « SAT » result
Guided by the property (choose « best » successor w/ heuristic)
Recently enabled / Not recently used

+Fast results in many FALSE cases
+Disprove by counter-example
+Complements SMT TRUE proofs
+Guided by SMT inconclusive SAT

« Random walk is fast and scales well
» Always first try to disprove with random walk before trying to prove with SMT.

lip @S ﬁﬁf‘fé&?#%

3. PROPERTY SPECIFIC STRUCTURAL REDUCTIONS

Incrementally build a smaller net using structural reduction rules

t12.t7.t4.t5.t2
LK

Original state

space .
P Final

6*1012 states 3 states

Each transformation rule produces a net N’ that satisfies the property if and only if original net N
satisfies it.

UNIVERSITE|

Reduction of the Petri net structure typically induces an exponential state space reduction.)
yp y p p “p %S SORBONNE

PROPERTY SPECIFIC ?

Properties of interest

Deadlock Detection Safety Properties

Fr receptor

AirplaneLandingGear

ST 3
'ﬁ’%’x@-‘ e~

Is « m(P1) < m(P2) OR m(p3) <=2 » an invariant ?

=> Existence of at least one finite trace. Focus on a projection of reachable states over the
places in the support.

Can a deadlock state be reached ?

Specific rules preserving only unavoidable loops.

ip@DS

SORBONNE
UNIVERSITE

No unavoidable SCC => Deadlock unavoidable !

i

Ai r p I a.n e La.n d i n g G e a r ! L [A A T e R A [HIE

ol) (tal) i) () (it) () (bt) (i) (i) (i) () () (it) ()) (| (ek il | | (b

[E AR Wht) || eS| | iplm‘,l\Su‘.dl.*,lHi(:m.ﬁ‘_'ﬂ\‘r,i_ll S [RAI] [A [BART BAR | [BAR] [G88] [BA0] |daH il

(AR PR S LY L ek Ve Spad L Vied ! JEIEATH Sl bAmall) [Sptd| (el bWl Reubmal! 3 (N i Thdld) (L | L) | ik
Gt (s sl vt | | |G (b gt Do)] (] kit D] (| il Tl f
pER R L P bR St bt Vit pEATRH SRR Vel Sl T PELEA N RO S) L C S R Vel Gk il Thdbnds | Thaitl}) { TS|
— h
._‘_'_'_‘—-—+_g: I u,:_q\s_:_w{ EHINEN A CR N i AT | A A]
P, G i} L} Vi i Gried il T

Can a deadlock state be reached ? Is « m(P1) < m(P2) OR m(p3) <=2 » an invariant ?

=> Existence of at least one finite trace. Focus on a projection of reachable states over the
places in the support.

Specific rules preserving only unavoidable loops. . |
i @SN

UNIVERSITE|

PROPERTY SPECIFIC ?

Properties of interest

Deadlock Detection Safety Properties

Fr receptor

AirplaneLandingGear

ST 3
'ﬁ’%’x@-‘ e~

Is « m(P1) < m(P2) OR m(p3) <=2 » an invariant ?

=> Existence of at least one finite trace. Focus on a projection of reachable states over the
places in the support.

Can a deadlock state be reached ?

Specific rules preserving only unavoidable loops.

ip@DS

SORBONNE
UNIVERSITE

Blue cannot influence red !

PROPERTY & biscard!

Properties of interest

Deadlock Detectit

AirplaneLandingGear

i‘,L S_
[t
[/

\

,‘—-_";:.' s I‘
R
e e
M N 7 : = "\.___.’-b
/ T : T o — i — e, ¥ 4/:::19;‘;’;-
@ o)) o () o) G G o] U ; S " T e T s A =z =
\"‘-.-q-.ii..‘ih."_"h. R N (= / l - — :“ < ~
vvvvv P PR Y
NG ratssal i
¥ ol < - ;
OEDICDCDICDICDICDICDEIID N SE $;<r{éf/%
R O~

=T — Z

Can a deadlock state be re
=> Existence of at least ¢
Specific rules preserving ¢

discard

GRAPH BASED RULES

Reason on an abstraction of the net structure

p2 P2
O pl
p1©] S
O .
P2(20)
Petri net Safety Influence graph
G
« Compute the prefix in the influence graph of places in the support of the property
« Brutally discard places and transitions outside this prefix
« Two variants of the rule > (@)
» For Deadlocks focus on SCC of the graph and their prefix :
» side effect : if there are no SCC, the net contains deadlocks. ‘Q@ ()
« For Safety, focus on places in the support @‘3" tg

Assymetric effect of read arcs : Places that are controlled by the places of interest are not interesting

lip @S aﬁr&%?#s

« FREE » AGGLOMERATION

Safety preserving agglomeration

t1 - t1.t2 .

> (O Oz ‘ Or2

2 -

t1 single output pl and t1 stutters

e Two cases .

« |If t2 was actually fireable originally, t1.t2 is still fireable, no behavior is lost

« If t2 was not fireable, now t1.t2 is not fireable, so we lost the possiblity of firing t1 ; but
e 11 stutters

t1 can only feed p, so firing t1 is weakening the rest of the net

» Free-agglomeration preserves safety but not deadlocks
Firing t1 and then being unable to fire t2 can lead to a deadlock.

ip @S ﬁﬁf‘fé&?#%

STRUCTURALLY IMPLICIT PLACE

Rules leveraging SMT over-approximation

Initial model Convergence no SMT Final model

Angiogenesis

« Anplace is structurally implicit iff. it never prevents any transition from firing

» Inany marking, if a transition t consuming from p is enabled without considering p, then p always
contains enough tokens to fire t

* Build an SMT problem, asserting this invariant
« Discard p if the invariant can be proved

« Can help start another round of reductions

« Powerful test though more costly than most rules o .
: : ip@DS aﬁm?#é
« Covers variants of « redundant place » rules in e.g. Berthelot.

STRUCTURAL REDUCTION RULES

Highlights

Total of 22 rules presented in the paper

Basic rules ;
» equal places, constant place, sink place, ...
e neutral transition, dominated transition...

Advanced rules :
« Unmarked Syphon, Future equivalent places, token movement

Agglomeration based rules :
» pre and post-agglomeration,
* new « free » agglomeration

Graph based rules :

» Compute SCC or a prefix of nodes in an abstraction of the net structure
» Notion of « Prefix of interest » for deadlock and invariants

* Fusion of « free » SCC

Structural reductions supported by SMT over-approximation
« Structurally dead transitions
 Structurally implicit places

+preserves properties of interest
+memory and time efficient

+simplifies the net for any analysis
+synergy with over/under approximations
+leverage SMT component for more
reduction power

ip @S ﬁﬁf‘fé&?#%

EVALUATION

Validation with Model-Checking Contest 2019 nets and formulas

* Examination = (model + 16 invariants) or (model + deadlock)
» Select all examinations with known results in 2019 (produced by any tool) :
* 90 model families, 2680 examinations, 28 900 properties
* Max runtime 12 minutes, 8GB RAM
« 21/2680 : 0.008 % timeout
« Onaverage 31 seconds per examination

* Deadlocks :
« 902/932 :96.8 % solved

* Invariants :
« 1634 /1748 :93.5 % fully solved all 16 invariants
e 27594 /27968 : 98.6 % of formulas solved

 Resulting nets when not fully solved are much smaller

« Combine three complementary strategies

CONCLUSION Fully implemented and freely available as part of ITS-Tools

Structural Reductions Revisited « Competing as a « filter » within the model-checking contest in « its-tools » and « its-lola »

 Full graphical examples used in this presentation
net and property

4 N

Structural Reduction
b
/ « @“nzwmsu

Random Walk SMT overapproximation i
\ N N
\/\ Not found SAT+ £ -
® Failed = =~ -
@ guided o= T
walk
\ Counter-example UNSAT convergence /

FALSE TRUE A simpler net and property
Invariant does not hold Invariant holds o _
ip@DS ﬁﬁf*fé&?#é

http://ddd.lip6.fr/
https://lip6.github.io/ITSTools-web/structural

