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VERIFYING PROPERTIES OF PETRINETS

Properties of interest

Deadlock Detection Safety Properties
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Can a deadlock state be reached ? Is « m(P1) < m(P2) OR m(p3) <=2 » an invariant ?
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EXPLORING THE STATE SPACE

Petri net vs. State space (marking graph)

Do reachable and « bad » states intersect ?

State Space

mO

Bad States
Deadlock or violation of invariant




VERIFICATION OF AN INVARIANT

Petri net vs. State space (marking graph)

« Does my invariant hold in all reachable states of the net ?

02

mO mO
Empty intersection Non-empty intersection
We cannot reach a bad state We can reach a bad state

Invariant is TRUE Invariant is FALSE




OUR APPROACH

Three complementary strategies

1. Over-approximation
Can formally prove TRUE invariants
SMT based constraints to approximate reachable states

2. Under-approximation
Can contradict FALSE invariants if it can produce a counter-example
Sampling using a pseudo-random walk

3. Property preserving reduction
Produce a smaller net that preserves existence of reachable bad states
Property specific structural reduction rules




1. OVER-APPROXIMATE WITH SMT

Leveraging SAT Modulo Theory SMT

« Describe constraints on reachable states : an envelope

Real State Space

mO

Envelope of reachable states
encoded as SMT constraints

bad States

-

« The envelope is a much simpler object than the actual state space.




1. OVER-APPROXIMATE WITH SMT

Can we find an bad state in the envelope ?

NO INTERSECTION (UNSAT) WITH INTERSECTION (SAT)

( 5 ( \% False Positive
Over-approximation => Invariant holds. OR
( (X) }
X

Over-approximation => INCONCLUSIVE
but we can provide a candidate solution (SAT model).




Highlights
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* Places = variables

Iterative refinement of the over approximation
« P1>=0,P2>=0...

* Generalized flows
« P1+2*P2-P3=1
« Trap constraints
« PL>00RP2>0 +Incremental constraints
+Use Reals then Integers
+UNSAT = invariant proved true
+SAT = candidate state + firing count

» Compute useful constraints as separate SMT problem

 State Equation
« Add a positive variable for firing count of transitions
« P1=T1-T2+1

* Read => Feed
 T1reads P; mO(P)=0; T2 and T3 feed P
e T1>0=>T2>00RT3>0

« (Causal constraints (precedes is a strict partial order)
* T1 consumes from P ; mO(P)=0 ; T2 and T3 feed P
« T1>0=> (T2>0 AND T2 precedes T1) OR (T3 >0 AND T3 precedes T1) o |
 Is inconsistent (UNSAT) if we also have « T1 precedes T2 » and « T1 precedes T3 » P %S_




TRAP CONSTRAINTS

An initially marked trap cannot be emptied

o Atrap is a set of places of the net
 Any transition consuming from the trap must also feed the trap

 As noted by Esparza et al. in 2000, good complement to state equation
« Complex mutex protocols e.g. Peterson, Lamport
 But worst case exponential number of traps

* |terative process .

« When main SMT procedure is SAT : examine candidate solution
* We use a separate SMT solver to find relevant traps :
« Can we find an initially marked trap that is unmarked in the candidate ?
« SAT => add the trap constraint to main engine and try again
« UNSAT => no trap constraints that contradict the candidate exist




READ => FEED

Constraining the transition firing count

(2 m— ©

pQ ]
. O

« The state equation ignores read arcs
= spurious solutions, t1 and t2 are not correlated in the state equation constraints

Reason on first occurrence of each transition :

 [f a transition has positive firing count and reads in place « p » initially empty, it must be the case
that a transition feeding « p » also has positive firing count.

t1>0=>t2>0
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CAUSAL CONSTRAINTS (UNSAT)

A partial order on first occurrence of each transition
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The state equation can borrow non existing tokens
= t1=1 and t2=1 is a solution to the state equation to mark « p »

We assert that :

« t1>0=>12>0 and t2 precedes t1

« t2>0=>1t1>0 andtl precedes t2

Obtaining a contradiction (UNSAT) as soon as t1 or t2 positive in the solution
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CAUSAL CONSTRAINTS (SAT)

A partial order on first occurrence of each transition
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The state equation can borrow non existing tokens
= t1=1 and t2=1 is a solution to the state equation to mark « p »

We assert that :

« t1>0=>12>0 and t2 precedes t1

« t2>0=>(t1 >0 andtl precedes t2) OR (t3 > 0 and t3 precedes t2)
Obtaining a solution (SAT) : t3 precedes t2 precedes t1

lip @S ﬁﬁf‘fé&?#%




2. UNDER-APPROXIMATE WITH SAMPLING

Memory-less random exploration of the state space

» Execute the net, trying to find a reachable bad state

State Space(unknown)

mo /

N A — Exploring one run
I/

Bad States




2. UNDER-APPROXIMATE WITH SAMPLING

Memory-less pseudo-random walk of the state space

« Execute the net, trying to find a reachable bad state (counter-example)

State Space (unknown)
- /

N A — Exploring one run
I/

Bad States

If an bad state is met => Invariant DOES NOT hold.

Otherwise INCONCLUSIVE :
« we might have been unlucky and not found the bug,

 or the bug might genuinely not exist.




RANDOM WALKS N
I/

Highlights
 Fast sparse implementation @

* Avoid TxT or PxP matrices

« Some states exponentially unlikely to be met by pure random walk
« Use multiple heuristics each with a strong bias

» Guiding the walk :

» Pure random walk with resets
Guided by a firing count coming from an SMT « SAT » result
Guided by the property (choose « best » successor w/ heuristic)
Recently enabled / Not recently used

+Fast results in many FALSE cases
+Disprove by counter-example
+Complements SMT TRUE proofs
+Guided by SMT inconclusive SAT

« Random walk is fast and scales well
» Always first try to disprove with random walk before trying to prove with SMT.
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3. PROPERTY SPECIFIC STRUCTURAL REDUCTIONS

Incrementally build a smaller net using structural reduction rules

t12.t7.t4.t5.t2
LK

Original state

space .
P Final

6*1012 states 3 states

Each transformation rule produces a net N’ that satisfies the property if and only if original net N
satisfies it.

UNIVERSITE|

Reduction of the Petri net structure typically induces an exponential state space reduction. )
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PROPERTY SPECIFIC ?

Properties of interest

Deadlock Detection Safety Properties
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AirplaneLandingGear
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Is « m(P1) < m(P2) OR m(p3) <=2 » an invariant ?

=> Existence of at least one finite trace. Focus on a projection of reachable states over the
places in the support.

Can a deadlock state be reached ?

Specific rules preserving only unavoidable loops.
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No unavoidable SCC => Deadlock unavoidable !
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Can a deadlock state be reached ? Is « m(P1) < m(P2) OR m(p3) <=2 » an invariant ?

=> Existence of at least one finite trace. Focus on a projection of reachable states over the
places in the support.

Specific rules preserving only unavoidable loops. . |
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PROPERTY SPECIFIC ?

Properties of interest

Deadlock Detection Safety Properties

Fr receptor

AirplaneLandingGear

ST 3
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Is « m(P1) < m(P2) OR m(p3) <=2 » an invariant ?

=> Existence of at least one finite trace. Focus on a projection of reachable states over the
places in the support.

Can a deadlock state be reached ?

Specific rules preserving only unavoidable loops.
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Blue cannot influence red !

PROPERTY & biscard!

Properties of interest

Deadlock Detectit

AirplaneLandingGear
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Can a deadlock state be re
=> Existence of at least ¢
Specific rules preserving ¢




discard

GRAPH BASED RULES

Reason on an abstraction of the net structure

p2 P2
O pl
p1© ] S
O .
P2(20)
Petri net Safety Influence graph
G
« Compute the prefix in the influence graph of places in the support of the property
« Brutally discard places and transitions outside this prefix
« Two variants of the rule > (@)
» For Deadlocks focus on SCC of the graph and their prefix :
» side effect : if there are no SCC, the net contains deadlocks. ‘Q@ ()
« For Safety, focus on places in the support @‘3" tg

Assymetric effect of read arcs : Places that are controlled by the places of interest are not interesting
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« FREE » AGGLOMERATION

Safety preserving agglomeration

t1 - t1.t2 .

> (O Oz ‘ Or2

2 -

t1 single output pl and t1 stutters

e Two cases .

« |If t2 was actually fireable originally, t1.t2 is still fireable, no behavior is lost

« If t2 was not fireable, now t1.t2 is not fireable, so we lost the possiblity of firing t1 ; but
e 11 stutters

t1 can only feed p, so firing t1 is weakening the rest of the net

» Free-agglomeration preserves safety but not deadlocks
Firing t1 and then being unable to fire t2 can lead to a deadlock.
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STRUCTURALLY IMPLICIT PLACE

Rules leveraging SMT over-approximation

Initial model Convergence no SMT Final model

Angiogenesis

« Anplace is structurally implicit iff. it never prevents any transition from firing

» Inany marking, if a transition t consuming from p is enabled without considering p, then p always
contains enough tokens to fire t

* Build an SMT problem, asserting this invariant
« Discard p if the invariant can be proved

« Can help start another round of reductions

« Powerful test though more costly than most rules o .
: : ip@DS aﬁm?#é
« Covers variants of « redundant place » rules in e.g. Berthelot.




STRUCTURAL REDUCTION RULES

Highlights

Total of 22 rules presented in the paper

Basic rules ;
» equal places, constant place, sink place, ...
e neutral transition, dominated transition...

Advanced rules :
« Unmarked Syphon, Future equivalent places, token movement

Agglomeration based rules :
» pre and post-agglomeration,
* new « free » agglomeration

Graph based rules :

» Compute SCC or a prefix of nodes in an abstraction of the net structure
» Notion of « Prefix of interest » for deadlock and invariants

* Fusion of « free » SCC

Structural reductions supported by SMT over-approximation
« Structurally dead transitions
 Structurally implicit places

+preserves properties of interest
+memory and time efficient

+simplifies the net for any analysis
+synergy with over/under approximations
+leverage SMT component for more
reduction power
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EVALUATION

Validation with Model-Checking Contest 2019 nets and formulas

* Examination = (model + 16 invariants) or (model + deadlock)
» Select all examinations with known results in 2019 (produced by any tool) :
* 90 model families, 2680 examinations, 28 900 properties
* Max runtime 12 minutes, 8GB RAM
« 21/2680 : 0.008 % timeout
« Onaverage 31 seconds per examination

* Deadlocks :
« 902/932 :96.8 % solved

* Invariants :
« 1634 /1748 :93.5 % fully solved all 16 invariants
e 27594 /27968 : 98.6 % of formulas solved

 Resulting nets when not fully solved are much smaller




« Combine three complementary strategies

CONCLUSION  Fully implemented and freely available as part of ITS-Tools

Structural Reductions Revisited  « Competing as a « filter » within the model-checking contest in « its-tools » and « its-lola »

 Full graphical examples used in this presentation
net and property

4 N

Structural Reduction
b
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Random Walk SMT overapproximation i
\ N N
\/\ Not found SAT+ £ -
® Failed = =~ -
@ guided o= T
walk
\ Counter-example UNSAT convergence /

FALSE TRUE A simpler net and property
Invariant does not hold Invariant holds o _
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http://ddd.lip6.fr/
https://lip6.github.io/ITSTools-web/structural

