
Petri Nets 2020, June 2020, Paris

41ST INTERNATIONAL CONFERENCE ON APPLICATION AND THEORY OF PETRI NETS AND CONCURRENCY

STRUCTURAL REDUCTIONS

REVISITED

Yann Thierry-Mieg

LIP6, Sorbonne Université, CNRS

VERIFYING PROPERTIES OF PETRI NETS
Properties of interest

Deadlock Detection Safety Properties

Is « m(P1) < m(P2) OR m(p3) <= 2 » an invariant ?

2

Can a deadlock state be reached ?

AirplaneLandingGear EGFr receptor

EXPLORING THE STATE SPACE
Petri net vs. State space (marking graph)

• Do reachable and « bad » states intersect ?

3

m0

State Space

Bad States

Deadlock or violation of invariant

VERIFICATION OF AN INVARIANT
Petri net vs. State space (marking graph)

• Does my invariant hold in all reachable states of the net ?

4

m0

Non-empty intersection

We can reach a bad state

Invariant is FALSE

m0

Empty intersection

We cannot reach a bad state

Invariant is TRUE

OUR APPROACH
Three complementary strategies

1. Over-approximation

Can formally prove TRUE invariants

SMT based constraints to approximate reachable states

2. Under-approximation

Can contradict FALSE invariants if it can produce a counter-example

Sampling using a pseudo-random walk

3. Property preserving reduction

Produce a smaller net that preserves existence of reachable bad states

Property specific structural reduction rules

5

Envelope of reachable states

encoded as SMT constraints

• Describe constraints on reachable states : an envelope

• The envelope is a much simpler object than the actual state space.

1. OVER-APPROXIMATE WITH SMT
Leveraging SAT Modulo Theory SMT

6

m0

Real State Space

bad States

1. OVER-APPROXIMATE WITH SMT
Can we find an bad state in the envelope ?

NO INTERSECTION (UNSAT) WITH INTERSECTION (SAT)

7

Over-approximation => Invariant holds.

Over-approximation => INCONCLUSIVE

but we can provide a candidate solution (SAT model).

False Positive

OR

SMT CONSTRAINTS
Highlights

• Places = variables

• P1 >= 0, P2 >= 0…

• Generalized flows

• P1 + 2*P2 – P3 = 1

• Trap constraints

• P1 > 0 OR P2 > 0

• Compute useful constraints as separate SMT problem

• State Equation

• Add a positive variable for firing count of transitions

• P1 = T1 – T2 + 1

• Read => Feed

• T1 reads P; m0(P)=0 ; T2 and T3 feed P

• T1 > 0 => T2 > 0 OR T3 > 0

• Causal constraints (precedes is a strict partial order)

• T1 consumes from P ; m0(P)=0 ; T2 and T3 feed P

• T1 > 0 => (T2>0 AND T2 precedes T1) OR (T3 >0 AND T3 precedes T1)

• Is inconsistent (UNSAT) if we also have « T1 precedes T2 » and « T1 precedes T3 »
8

+Incremental constraints

+Use Reals then Integers

+UNSAT = invariant proved true

+SAT = candidate state + firing count

Iterative refinement of the over approximation

TRAP CONSTRAINTS
An initially marked trap cannot be emptied

• A trap is a set of places of the net

• Any transition consuming from the trap must also feed the trap

• As noted by Esparza et al. in 2000, good complement to state equation

• Complex mutex protocols e.g. Peterson, Lamport

• But worst case exponential number of traps

• Iterative process :

• When main SMT procedure is SAT : examine candidate solution

• We use a separate SMT solver to find relevant traps :

• Can we find an initially marked trap that is unmarked in the candidate ?

• SAT => add the trap constraint to main engine and try again

• UNSAT => no trap constraints that contradict the candidate exist

9

READ => FEED
Constraining the transition firing count

• The state equation ignores read arcs

 spurious solutions, t1 and t2 are not correlated in the state equation constraints

Reason on first occurrence of each transition :

• If a transition has positive firing count and reads in place « p » initially empty, it must be the case
that a transition feeding « p » also has positive firing count.

t1 > 0 => t2 > 0

10

t1

t2

p

CAUSAL CONSTRAINTS (UNSAT)
A partial order on first occurrence of each transition

The state equation can borrow non existing tokens

 t1=1 and t2=1 is a solution to the state equation to mark « p »

We assert that :

• t1 > 0 => t2 > 0 and t2 precedes t1

• t2 > 0 => t1 > 0 and t1 precedes t2

Obtaining a contradiction (UNSAT) as soon as t1 or t2 positive in the solution

11

t1

p

t2

CAUSAL CONSTRAINTS (SAT)
A partial order on first occurrence of each transition

The state equation can borrow non existing tokens

 t1=1 and t2=1 is a solution to the state equation to mark « p »

We assert that :

• t1 > 0 => t2 > 0 and t2 precedes t1

• t2 > 0 => (t1 > 0 and t1 precedes t2) OR (t3 > 0 and t3 precedes t2)

Obtaining a solution (SAT) : t3 precedes t2 precedes t1

12

t1

t3
p

t2

2. UNDER-APPROXIMATE WITH SAMPLING
Memory-less random exploration of the state space

• Execute the net, trying to find a reachable bad state

13

m0

State Space

Bad States

Exploring one run

(unknown)

2. UNDER-APPROXIMATE WITH SAMPLING
Memory-less pseudo-random walk of the state space

• Execute the net, trying to find a reachable bad state (counter-example)

14

m0

State Space (unknown)

Bad States

Exploring one run

If an bad state is met => Invariant DOES NOT hold.

Otherwise INCONCLUSIVE :

• we might have been unlucky and not found the bug,

• or the bug might genuinely not exist.

RANDOM WALKS
Highlights

• Fast sparse implementation

• Avoid TxT or PxP matrices

• Some states exponentially unlikely to be met by pure random walk

• Use multiple heuristics each with a strong bias

• Guiding the walk :

• Pure random walk with resets

• Guided by a firing count coming from an SMT « SAT » result

• Guided by the property (choose « best » successor w/ heuristic)

• Recently enabled / Not recently used

• …

• Random walk is fast and scales well

• Always first try to disprove with random walk before trying to prove with SMT.

15

+Fast results in many FALSE cases

+Disprove by counter-example

+Complements SMT TRUE proofs

+Guided by SMT inconclusive SAT

3. PROPERTY SPECIFIC STRUCTURAL REDUCTIONS
Incrementally build a smaller net using structural reduction rules

16

Original state

space
Final

Each transformation rule produces a net N’ that satisfies the property if and only if original net N

satisfies it.

Reduction of the Petri net structure typically induces an exponential state space reduction.

N N’
N’27

discard
fuse

fuse

6*1012 states 3 states

FlexibleManufacturingSystem

… …

PROPERTY SPECIFIC ?
Properties of interest

Deadlock Detection Safety Properties

Is « m(P1) < m(P2) OR m(p3) <= 2 » an invariant ?

Focus on a projection of reachable states over the
places in the support.

17

Can a deadlock state be reached ?

=> Existence of at least one finite trace.

Specific rules preserving only unavoidable loops.

AirplaneLandingGear EGFr receptor

PROPERTY SPECIFIC ?
Properties of interest

Deadlock Detection Safety Properties

Is « m(P1) < m(P2) OR m(p3) <= 2 » an invariant ?

Focus on a projection of reachable states over the
places in the support.

18

Can a deadlock state be reached ?

=> Existence of at least one finite trace.

Specific rules preserving only unavoidable loops.

AirplaneLandingGear EGFr receptor

No unavoidable SCC => Deadlock unavoidable !

PROPERTY SPECIFIC ?
Properties of interest

Deadlock Detection Safety Properties

Is « m(P1) < m(P2) OR m(p3) <= 2 » an invariant ?

Focus on a projection of reachable states over the
places in the support.

19

Can a deadlock state be reached ?

=> Existence of at least one finite trace.

Specific rules preserving only unavoidable loops.

AirplaneLandingGear EGFr receptor

PROPERTY SPECIFIC ?
Properties of interest

Deadlock Detection Safety Properties

Is « m(P1) < m(P2) OR m(p3) <= 2 » an invariant ?

Focus on a projection of reachable states over the
places in the support. Some transitions are
stuttering, they cannot directly impact the invariant
truth value.

20

Can a deadlock state be reached ?

=> Existence of at least one finite trace.

Specific rules preserving only unavoidable loops.

AirplaneLandingGear EGFr receptor

Blue cannot influence red !

Discard !

GRAPH BASED RULES
Reason on an abstraction of the net structure

• Compute the prefix in the influence graph of places in the support of the property

• Brutally discard places and transitions outside this prefix

• Two variants of the rule

• For Deadlocks focus on SCC of the graph and their prefix :

• side effect : if there are no SCC, the net contains deadlocks.

• For Safety, focus on places in the support

• Assymetric effect of read arcs : Places that are controlled by the places of interest are not interesting

21

t1p1

p2

p3

p1

p2

p3

Petri net Safety Influence graph

discard

« FREE » AGGLOMERATION
Safety preserving agglomeration

• Two cases :

• If t2 was actually fireable originally, t1.t2 is still fireable, no behavior is lost

• If t2 was not fireable, now t1.t2 is not fireable, so we lost the possiblity of firing t1 ; but

• t1 stutters

• t1 can only feed p, so firing t1 is weakening the rest of the net

• Free-agglomeration preserves safety but not deadlocks

• Firing t1 and then being unable to fire t2 can lead to a deadlock.

22

t1

p1 p2

t2

t1 single output p1 and t1 stutters

t1.t2

p2

STRUCTURALLY IMPLICIT PLACE
Rules leveraging SMT over-approximation

• A place is structurally implicit iff. it never prevents any transition from firing

• In any marking, if a transition t consuming from p is enabled without considering p, then p always
contains enough tokens to fire t

• Build an SMT problem, asserting this invariant

• Discard p if the invariant can be proved

• Can help start another round of reductions

• Powerful test though more costly than most rules

• Covers variants of « redundant place » rules in e.g. Berthelot.
23

|P|=12

|T|=21
|P|=19

|T|=31

|P|=39

|T|=64

Angiogenesis

Initial model Convergence no SMT Final model

STRUCTURAL REDUCTION RULES
Highlights

• Total of 22 rules presented in the paper

• Basic rules :

• equal places, constant place, sink place, …

• neutral transition, dominated transition…

• Advanced rules :

• Unmarked Syphon, Future equivalent places, token movement

• Agglomeration based rules :

• pre and post-agglomeration,

• new « free » agglomeration

• Graph based rules :

• Compute SCC or a prefix of nodes in an abstraction of the net structure

• Notion of « Prefix of interest » for deadlock and invariants

• Fusion of « free » SCC

• Structural reductions supported by SMT over-approximation

• Structurally dead transitions

• Structurally implicit places
24

+preserves properties of interest

+memory and time efficient

+simplifies the net for any analysis

+synergy with over/under approximations

+leverage SMT component for more

reduction power

EVALUATION
Validation with Model-Checking Contest 2019 nets and formulas

• Examination = (model + 16 invariants) or (model + deadlock)

• Select all examinations with known results in 2019 (produced by any tool) :

• 90 model families, 2680 examinations, 28 900 properties

• Max runtime 12 minutes, 8GB RAM

• 21/2680 : 0.008 % timeout

• On average 31 seconds per examination

• Deadlocks :

• 902 / 932 : 96.8 % solved

• Invariants :

• 1634 / 1748 : 93.5 % fully solved all 16 invariants

• 27594 / 27968 : 98.6 % of formulas solved

• Resulting nets when not fully solved are much smaller

25

CONCLUSION
Structural Reductions Revisited

• Combine three complementary strategies

• Fully implemented and freely available as part of ITS-Tools http://ddd.lip6.fr

• Competing as a « filter » within the model-checking contest in « its-tools » and « its-lola »

• Full graphical examples used in this presentation

https://lip6.github.io/ITSTools-web/structural

26

Counter-example

FALSE

Invariant does not hold

UNSAT

TRUE

Invariant holds

Not found SAT+

Failed

guided

walk

Random Walk SMT overapproximation
Structural Reduction

convergence

A simpler net and property

net and property

http://ddd.lip6.fr/
https://lip6.github.io/ITSTools-web/structural

