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Petri Nets 2020, June 24-25, 2020

Olivier Finkel On the High Complexity of Petri Nets ω-Languages



Acceptance of infinite words

The ω-regular languages accepted by Büchi automata and
their extensions have been much studied and used for
specification and verification of non terminating
systems.
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Complexity of ω-languages

The question naturally arises of the complexity of ω-languages
accepted by various kinds of automata.

A way to study the complexity of ω-languages is to consider
their topological complexity.
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Topology on Σω

The natural prefix metric on the set Σω of ω-words over Σ is
defined as follows:

For u, v ∈ Σω and u 6= v let

δ(u, v) = 2−n

where n is the least integer such that:

the (n + 1)st letter of u is different from the (n + 1)st letter of v .

This metric induces on Σω the usual Cantor topology for which :

open subsets of Σω are in the form W .Σω, where W ⊆ Σ?.
closed subsets of Σω are complements of open subsets of
Σω.
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Borel Hierarchy

Below an arrow→ represents a strict inclusion between Borel
classes.
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where ω1 is the first uncountable ordinal.
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Topological complexity of 1-counter or context
free ω-languages

Let 1−CLω be the class of real-time 1-counter ω-languages.

Let C be a class of ω-languages such that:

1− CLω ⊆ C ⊆ Effective-Σ1
1.

(a) (F. and Ressayre 2003) There are some Σ1
1-complete sets

in the class C.
(b) (F. 2005) The Borel hierarchy of the class C is equal to

the Borel hierarchy of the class Effective-Σ1
1.

(c) γ1
2 is the supremum of the set of Borel ranks of
ω-languages in the class C.

(d) For every non null ordinal α < ωCK
1 , there exists some

Σ0
α-complete and some Π0

α-complete ω-languages in the
class C.
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Wadge Reducibility

Definition (Wadge 1972)

For L ⊆ Xω and L′ ⊆ Yω, L ≤W L′ iff there exists a continuous
function f : Xω → Yω, such that L = f−1(L′).

L and L′ are Wadge equivalent (L ≡W L′) iff L ≤W L′ and
L′ ≤W L. .

The relation ≤W is reflexive and transitive, and ≡W is an
equivalence relation. The equivalence classes of ≡W are called
Wadge degrees.

Intuitively L ≤W L′ means that L is less complicated than L′

because to check whether x ∈ L it suffices to check whether
f (x) ∈ L′ where f is a continuous function.
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Wadge Degrees

Hence the Wadge degree of an ω-language is a measure of its
topological complexity.

Wadge degrees were firstly studied by Wadge for Borel
sets using Wadge games.

The Wadge hierarchy (on Borel sets) is a great refinement of
the Borel hierarchy
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Petri Nets are used for the description of
distributed systems

In Automata Theory, Petri nets may be defined as (partially)
blind multicounter automata.

First, one can distinguish between the places of a given Petri
net by dividing them into the bounded ones (the number of
tokens in such a place at any time is uniformly bounded) and
the unbounded ones. Then each unbounded place may be
seen as a partially blind counter, and the tokens in the bounded
places determine the state of the partially blind multicounter
automaton that is equivalent to the initial Petri net.

The infinite behavior of Petri nets was first studied by Valk 1983
and by Carstensen in the case of deterministic Petri nets 1988.
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partially blind multicounter Büchi automata

A k -counter machine has k counters, each of which containing
a non-negative integer.

The machine cannot test whether the content of a given
partially blind counter is zero or not.

This means that if a transition of the machine is enabled when
the content of a partially blind counter is zero then the same
transition is also enabled when the content of the same counter
is a non-zero integer.

We consider partially blind k -counter automata over infinite
words with Büchi acceptance condition.
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Using a simulation of:

– a given real time 1-counter (with zero-test) Büchi automaton
A accepting ω-words x over the alphabet Σ

by

– a real time 4-blind-counter Büchi automaton B reading some
special codes h(x) of the words x , we prove here that
ω-languages of non-deterministic Petri nets and effective
analytic sets have the same topological complexity.
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Topological complexity of Petri net ω-languages

Theorem ( F. ArXiv 2017 )
The Wadge hierarchy of Petri nets ω-languages (accepted by
4-blind-counter automata) is equal to the Wadge hierarchy of
ω-languages of 1-counter automata, or of ω-languages of
Turing machines.

We also get some non-Borel ω-languages of Petri nets,
accepted by 4-blind-counter automata. However one
blind-counter is actually sufficient:

Theorem ( Skrzypczak 2018 )

There exist some Σ1
1-complete sets accepted by

1-blind-counter automata.
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The Axiomatic System ZFC of Set Theory

The axioms of ZFC (Zermelo 1908, Fraenkel 1922) express
some natural facts that we consider to hold in the universe
of sets.

These axioms are first-order sentences in the logical language
of set theory whose only non logical symbol is the membership
binary relation symbol ∈.

The Axiom of Extensionality states that two sets x and y are
equal iff they have the same elements:

The Powerset Axiom states the existence of the set of subsets
of a set x .

. . .
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The Topological complexity of a Petri net
ω-language depends on the models of ZFC

Theorem ( F. 2009-2019 )
There exists a 4-blind-counter Büchi automaton A such that the
topological complexity of the ω-language L(A) is not
determined by the axiomatic system ZFC.

1 There is a model V1 of ZFC in which the ω-language L(A)
is an analytic but non Borel set.

2 There is a model V2 of ZFC in which the ω-language L(A)
is a Gδ-set (i.e. Π0

2-set).
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High undecidability of the topological complexity
of a Petri net ω-language

Theorem ( F. 2017 )
Let α ≥ 2 be a countable ordinal. Then

1 {z ∈ N | L(Pz) is in the Borel class Σ0
α} is Π1

2-hard.
2 {z ∈ N | L(Pz) is in the Borel class Π0

α} is Π1
2-hard.

3 {z ∈ N | L(Pz) is a Borel set} is Π1
2-hard.
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High undecidability of the equivalence and the
inclusion problems for ω-languages of Petri nets

Theorem ( F. 2017 )
The equivalence and the inclusion problems for ω-languages of
Petri nets, or even for ω-languages of 4-blind-counter automata,
are Π1

2-complete.
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Concluding remarks

In some sense our results show that the infinite behavior of
Petri nets is closer to the infinite behavior of Turing
machines than to the infinite behavior of finite automata.
Except that the emptiness problem is decidable for
ω-languages of Petri nets and Σ1

1-complete for
ω-languages of Turing machines.
It remains open to determine the Borel and Wadge
hierarchies of ω-languages accepted by automata with less
than four blind counters.
Do the highly undecidable problems about four blind
counter automata remain highly undecidable for less than
four counters ?
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THANK YOU !
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Wadge Games

Definition (Wadge 1972)

Let L ⊆ Xω and L′ ⊆ Yω. The Wadge game W (L,L′) is a game
with perfect information between two players, Player 1 who is in
charge of L and Player 2 who is in charge of L′.

The two players alternatively write letters an of X for Player 1
and bn of Y for player 2.
Player 2 is allowed to skip, even infinitely often, provided he
really writes an ω-word in ω steps.

After ω steps, Player 1 has written an ω-word a ∈ Xω and
Player 2 has written b ∈ Yω.
Player 2 wins the play iff [a ∈ L↔ b ∈ L′], i.e. iff :

[(a ∈ L and b ∈ L′) or (a /∈ L and b /∈ L′ )].

Olivier Finkel On the High Complexity of Petri Nets ω-Languages



Wadge Games

Theorem (Wadge)

Let L ⊆ Xω and L′ ⊆ Yω. Then L ≤W L′ iff Player 2 has a
winning strategy in the game W (L,L′).

By Martin’s Theorem, the Wadge game W (L,L′), for Borel sets
L and L′, is determined: One of the two players has a winning
strategy.

−→ Study of the Wadge hierarchy on Borel sets.
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Determinacy of Wadge games

Theorem ( F. 2017 )
The determinacy of Wadge games between two players in
charge of ω-languages of Petri nets is equivalent to the
(effective) analytic determinacy, which is known to be a large
cardinal assumption, and thus is not provable in the axiomatic
system ZFC.
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The ordinal γ1
2 may depend on set theoretic axioms

The ordinal γ1
2 is the least basis for subsets of ω1 which

are Π1
2 in the codes.

It is the least ordinal such that whenever X ⊆ ω1, X 6= ∅, and
X̂ ⊆WO is Π1

2, there is β ∈ X such that β < γ1
2 .

The least ordinal which is not a∆1
n-ordinal is denoted δ1

n .

Theorem (Kechris, Marker and Sami 1989)

(ZFC) δ1
2 < γ1

2

(V = L) γ1
2 = δ1

3

(Π1
1-Determinacy) γ1

2 < δ1
3

Are there effective analytic sets of every Borel rank α < γ1
2 ?
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Complexity of ω-languages of deterministic
machines

deterministic finite automata (Landweber 1969)
ω-regular languages accepted by deterministic Büchi
automata are Π0

2-sets.
ω-regular languages are boolean combinations of Π0

2-sets
hence ∆0

3-sets.

deterministic Turing machines
ω-languages accepted by deterministic Büchi Turing
machines are Π0

2-sets.
ω-languages accepted by deterministic Muller Turing
machines are boolean combinations of Π0

2-sets hence
∆0

3-sets.
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