Verification of distributed systems and use of knowledge for implementing them\footnote{based on a paper published in iFM 2013}

Susanne Graf and Sophie Quinton

VERIMAG and INRIA, Grenoble

FSFMA in Singapore — May 13, 2014
Motivation: Proving Distributed Systems Correct

Verification of Distributed Systems is a difficult task due to the induced non-determinism

- Error prone: race conditions, synchronisation errors, ...
- State explosion
Motivation: Proving Distributed Systems Correct

Verification of Distributed Systems is a difficult task due to the induced non-determinism

- Error prone: race conditions, synchronisation errors, ...
- State explosion

To make verification scalable, a systematic approach is needed (avoiding state explosion)

- Use a (more deterministic) centralized specification / program as a basis of verification
- Use a systematic approach to distributed implementation and prove the distribution algorithm correct
Motivation: Proving Distributed Systems Correct

Verification of Distributed Systems is a difficult task due to the induced non-determinism

- Error prone: race conditions, synchronisation errors, ...
- State explosion

To make verification scalable, a systematic approach is needed (avoiding state explosion)

- Use a (more deterministic) centralized specification / program as a basis of verification
- Use a systematic approach to distributed implementation and prove the distribution algorithm correct

Today I will talk about the second part
Distributed Control and Implementation

Problem to be solved:

“Given a centralized specification PN and a global constraint Ψ, Derive a distributed implementation I for PN controlled by Ψ”
Distributed Control and Implementation

Problem to be solved:

“Given a centralized specification PN and a global constraint ψ, Derive a distributed implementation I for PN controlled by ψ”

Our hypotheses:

- Centralized specification PN: w.l.g. Petri Nets
Distributed Control and Implementation

Problem to be solved:

“Given a **centralized specification** PN and a **global constraint** Ψ, Derive a **distributed implementation** I for PN controlled by Ψ”

Our hypotheses:

- **Centralized specification** PN: w.l.g. Petri Nets
- **Distributed setting**: one process per location — can learn about each other only via communication mechanisms provided by the platform
Distributed Control and Implementation

Problem to be solved:

“Given a **centralized specification** \(PN \) and a **global constraint** \(\Psi \), Derive a **distributed implementation** \(I \) for \(PN \) controlled by \(\Psi \)”

Our hypotheses:

- **Centralized specification** \(PN \): w.l.g. Petri Nets
- **Distributed setting**: one process per location — can learn about each other only via communication mechanisms provided by the platform
- **Constraint** \(\Psi \): a safety constraint (here: priorities)
Distributed Control and Implementation

Problem to be solved:

“Given a *centralized specification* PN and a *global constraint* Ψ, Derive a *distributed implementation* I for PN controlled by Ψ”

Our hypotheses:

- **Centralized specification** PN: w.l.g. Petri Nets
- **Distributed setting**: one process per location — can learn about each other only via *communication mechanisms* provided by the platform
- **Constraint** Ψ: a safety constraint (here: priorities)

Not considered in this talk:

- uncontrollable actions, data, *timing*, progress constraints, ...
Our approach to distributed implementation

Knowledge-based presentation for combining control and distribution:

1. Use knowledge to realize and optimize a transformation [RR07, BBPS09, GPQ10]:

\[PN + \Psi \rightarrow PN' \text{ guaranteeing } \Psi \]
Our approach to distributed implementation

Knowledge-based presentation for combining control and distribution:

1. Use knowledge to realize and optimize a transformation [RR07, BBPS09, GPQ10]:

 \[PN + \Psi \rightarrow PN' \] guaranteeing \(\Psi \)

2. Derive a distributed implementation \(I \) for a \(PN \) by means of a protocol \(Pr \) [PCT04, BGQ11]:

 \[PN' \oplus Pr \rightarrow I \]

Exist: protocols / proofs for specific settings (platform, language, implementation relation ...)

Susanne Graf
Verification of distributed systems and use of knowledge for implementing them
Our approach to distributed implementation

Knowledge-based presentation for combining control and distribution:

1. Use knowledge to realize and optimize a transformation [RR07,BBPS09,GPQ10]:
 \[PN + \Psi \rightarrow PN' \text{ guaranteeing } \Psi \]

2. Derive a distributed implementation \(I \) for a \(PN \) by means of a protocol \(Pr \) [PCT04,BGQ11]:
 \[PN' \oplus Pr \rightarrow I \]

Exist: protocols / proofs for specific settings (platform, language, implementation relation ...)

Claim: A knowledge-based approach is also interesting for problem (2)

- define more efficient protocols (think in terms of knowledge)
- optimize existing protocols (exploit knowledge on framework + ...
Outline

1 Motivation

2 Knowledge for Compositional Control
 - One-safe Petri Nets PN and control constraints
 - Locality and knowledge
 - Knowledge for Control

3 Knowledge for Distributed Implementation
 - Distributed Setting: implementation relations
 - Knowledge Required to achieve a Correct Distributed Implementation
 - Knowledge and Communication

4 Discussion
One-safe Petri Nets

Place/Transition Nets:

- **state** \(s \): a set of **places**, e.g. \(\{p_1, p_2\} \)
One-safe Petri Nets

Place/Transition Nets:

- **state s**: a set of places, e.g. \(\{p_1, p_2\} \)
One-safe Petri Nets

Place/Transition Nets:
- **state** \(s \): a set of places, e.g. \(\{p_1, p_2\} \)
- transition \(c \) is enabled (\(\text{en}_c \)) if \(\{p_3, p_4\} \subseteq s \) and leads to \(s' = s - \{p_3, p_4\} + \{p_5, p_6\} \).
One-safe Petri Nets

Place/Transition Nets:

- **state** \(s \): a set of places, e.g. \(\{p_1, p_2\} \)
- transition \(c \) is **enabled** \((en_c) \) if \(\{p_3, p_4\} \subseteq s \) and leads to
 \[s' = s - \{p_3, p_4\} + \{p_5, p_6\} \].
One-safe Petri Nets

Place/Transition Nets:

- **state** s: a set of places, e.g. $\{p_1, p_2\}$
- transition c is **enabled** (en_c) if $\{p_3, p_4\} \subseteq s$ and leads to $s' = s - \{p_3, p_4\} + \{p_5, p_6\}$.
- a state is **reachable** if it appears in some execution. e.g. $\{p_5, p_8\}$
One-safe Petri Nets

Place/Transition Nets:

- **state** s: a set of places, e.g. $\{p_1, p_2\}$
- transition c is **enabled** (en_c) if $\{p_3, p_4\} \subseteq s$ and leads to $s' = s - \{p_3, p_4\} + \{p_5, p_6\}$.
- a state is **reachable** if it appears in some execution. e.g. $\{p_5, p_8\}$
- jointly enabled transitions are **independent** if they don’t share places (e.g. d, e in $\{p_5, p_6\}$)
(Global) Control constraints

A control constraint Ψ is a set of pairs (state, transition) expressing which transitions are authorized in each state, i.e. we assume the centralized control problem to be solved.

Running example for this talk: (static) priority policies

- A priority policy \ll is a strict partial order on the transitions
- Transition t has maximal priority in state s if:
 - no transition t' such that $t \ll t'$ is enabled in s
Priority Constraints

- A prioritized execution of an execution such that for all \(s_i \xrightarrow{t_i} s_{i+1} \), \(t_i \) has maximal priority in \(s_i \).
Priority Constraints

A prioritized execution of is an execution such that for all $s_i \xrightarrow{t_i} s_{i+1}$, t_i has maximal priority in s_i.
Priority Constraints

- A prioritized execution of is an execution such that for all $s_i \xrightarrow{t_i} s_{i+1}$, t_i has maximal priority in s_i
Priority Constraints

- A prioritized execution of is an execution such that for all $s_i \xrightarrow{t_i} s_{i+1}$, t_i has maximal priority in s_i.

\[
\begin{align*}
p_1 & \rightarrow a \rightarrow p_3 \rightarrow c \rightarrow p_5 \\
p_2 & \rightarrow b \rightarrow p_4 \rightarrow c \rightarrow p_6 \\
p_3 & \rightarrow p_5 \\
p_4 & \rightarrow p_6 \\
p_5 & \circled{\text{mark}} \\
p_6 & \circled{\text{mark}} \\
p_7 & \rightarrow d \rightarrow p_5 \\
p_8 & \rightarrow e \rightarrow p_6 \\
a & \ll b \text{ and } d & \ll e
\end{align*}
\]
Priority Constraints

- A prioritized execution of is an execution such that for all $s_i \xrightarrow{t_i} s_{i+1}$, t_i has maximal priority in s_i.

\[p_1 \xrightarrow{a} p_3 \xrightarrow{c} p_5 \xrightarrow{d} p_7 \]
\[p_2 \xrightarrow{b} p_4 \xrightarrow{e} p_6 \]

\[p_5 \text{ and } p_8 \text{ are marked} \]

\[a \preceq b \] and \[d \preceq e \]
Priority Constraints

- A prioritized execution of is an execution such that for all $s_i \xrightarrow{t_i} s_{i+1}$, t_i has maximal priority in s_i.
Priority Constraints

- A prioritized execution of is an execution such that for all $s_i \xrightarrow{t_i} s_{i+1}$, t_i has maximal priority in s_i

- Note: independent transitions may not be independent any more (e.g. d, e in $\{p_5, p_6\}$)

Diagram:

- $a \ll b$ and $d \ll e$
Priority Constraints

- A prioritized execution of is an execution such that for all \(s_i \xrightarrow{t_i} s_{i+1}, t_i \) has maximal priority in \(s_i \)

- Note: independent transitions may not be independent any more
 (e.g. \(d, e \) in \(\{p_5, p_6\} \))

[GPQ10]: use knowledge to optimize the transformation of the controlled system (\(PN, \ll \)) into a Petri Net? which then can be analyzed & implemented “as usually”
A thread π is a set of places $P_\pi \subseteq P$ (exactly 1 token) and the corresponding transitions $T_\pi \subseteq T$.
Compositional Setting à la [GPQ10]

- A thread \(\pi \) is a set of places \(P_\pi \subseteq P \) (exactly 1 token) and the corresponding transitions \(T_\pi \subseteq T \)

- The neighborhood \(\text{ngb}_\pi \) of \(\pi \) is \(\bigcup_{t \in T_\pi} (\bullet t \cup t^\bullet) \)
Compositional Setting à la [GPQ10]

- A thread π is a set of places $P_\pi \subseteq P$ (exactly 1 token) and the corresponding transitions $T_\pi \subseteq T$

- The neighborhood ngb_π of π is $\bigcup_{t \in T_\pi} (\bullet t \cup t\bullet)$

- The set of local states of π is $\{s \cap \text{ngb}_\pi \mid s \in S\}$
 The local state of s in π is denoted $s|_\pi$

E.g. the local state of $\{p_1, p_2\}$ in π_l is $\{p_1\}$
the local state of $\{p_1, p_4\}$ in π_l is $\{p_1, p_4\}$

E.g. ngb_{π_l}
Definition of Knowledge

- Thread \(\pi \) knows a property \(\varphi \) in a local \(s|_\pi \) if \(\varphi \) holds in all reachable \(s' \) such that \(s'|_\pi = s|_\pi \)

\[s|_\pi \models K_\pi \varphi \]

e.g. \(\{ p_1 \} \models K_{\pi_1} p_2 \)
as \(\{ p_1, p_8 \} \) is unreachable

\[\text{ngb}_{\pi_l} \]
Definition of Knowledge

- Thread π knows a property φ in a local $s|_\pi$ if φ holds in all reachable s' such that $s'|_\pi = s|_\pi$

$$s|_\pi = K_\pi \varphi$$

e.g. $\{p_1\} = K_{\pi_1} p_2$

as $\{p_1, p_8\}$ is unreachable
Definition of Knowledge

- Thread π knows a property φ in a local $s|_\pi$ if φ holds in all reachable s' such that $s'|_\pi = s|_\pi$

 $s|_\pi \models K_{\pi} \varphi$

 e.g. $\{p_1\} \models K_{\pi_l} p_2$
 as $\{p_1, p_8\}$ is unreachable
Definition of Knowledge

- Thread π knows a property φ in a local $s|_\pi$ if φ holds in all reachable s' such that $s'|_\pi = s|_\pi$

$$s|_\pi \models K_\pi \varphi$$

e.g. $\{p_1\} \models K_{\pi_1} p_2$
as $\{p_1, p_8\}$ is unreachable

Knowledge is stable:
if $s|_\pi \models K_\pi \varphi$, then
φ continues to hold (globally) unless a local move occurs
Knowledge for enforcing constraints

What are useful knowledge properties for enforcing priorities?

- \(\pi_l \) can fire transition \(a \) if \(\max_a: \)

 \(\text{en}_a \land \neg \text{en}_b \)

- \(\text{en}_a \) is a local condition, always known in \(\pi_l \):

 \(s|_{\pi_l} \models K_{\pi_l} \text{en}_a \) or \(s|_{\pi_l} \models K_{\pi_l} \neg \text{en}_a \)

\(a \ll b \) and \(d \ll e \)
Knowledge for enforcing constraints

What are useful knowledge properties for enforcing priorities?

- \(\pi_l \) can fire transition \(a \) if \(\text{max}_a : \ en_a \land \neg en_b \)
- \(en_a \) is a local condition, always known in \(\pi_l \):
 \[s|\pi_l \models K_{\pi_l}en_a \text{ or } s|\pi_l \models K_{\pi_l}\neg en_a \]

Question: are there local states \(s|\pi_l \) in which also \(\neg en_b \) holds?

\[a \ll b \text{ and } d \ll e \]
Knowledge for enforcing constraints

What are useful knowledge properties for enforcing priorities?

- \(\{p_1\} |\Rightarrow K_{\pi_l} en_a \) but
- \(\{p_1\} |\nRightarrow K_{\pi_l} \neg en_b \)

\[a \ll b \text{ and } d \ll e \]
Knowledge for enforcing constraints

What are useful knowledge properties for enforcing priorities?

- \{p_1\} \models K_{\pi_l} en_a \text{ but } \{p_1\} \not\models K_{\pi_l} \neg en_b
- \{p_1, p_4\} \models K_{\pi_l} en_a \text{ and } \{p_1, p_4\} \models K_{\pi_l} \neg en_b

\(a \ll b\) and \(d \ll e\)
Knowledge for enforcing constraints

What are useful knowledge properties for enforcing priorities?

- \(\{p_1\} \models K_{\pi_l} \text{en}_a \) but \(\{p_1\} \not\models K_{\pi_l} \text{en}_b \)
- \(\{p_1, p_4\} \models K_{\pi_l} \text{en}_a \) and \(\{p_1, p_4\} \models K_{\pi_l} \text{en}_b \)
- \(\{p_5, p_6\} \models K_{\pi_l} \text{en}_d \) but \(\{p_5, p_6\} \models K_{\pi_l} \text{en}_e \)
- \(\{p_5\} \models K_{\pi_l} \text{en}_d \) and \(\{p_5\} \models K_{\pi_l} \text{en}_e \)

\(a \ll b \) and \(d \ll e \)
Knowledge for enforcing constraints

Here, we can enforce the global constraint by just adding local conditions:

- allows a only in the local state $\{p_1, p_4\}$ of π_l
- allows d only in the local state $\{p_5\}$ of π_l

Achieve a distributed solution: use a standard solution for PN

In the general case: one need to add new transitions (synchronizations) but exploiting knowledge helps to minimize the number of synchronizations

\[a \ll b \text{ and } d \ll e \]
Outline

1 Motivation

2 Knowledge for Compositional Control
 - One-safe Petri Nets PN and control constraints
 - Locality and knowledge
 - Knowledge for Control

3 Knowledge for Distributed Implementation
 - Distributed Setting: implementation relations
 - Knowledge Required to achieve a Correct Distributed Implementation
 - Knowledge and Communication

4 Discussion
Distributed setting

- A process π is a set of places $P_\pi \subseteq P$ (exactly 1 token) and T_π contains for each transition in which π is involved, a corresponding local transition.
Distributed setting

- A process π is a set of places $P_\pi \subseteq P$ (exactly 1 token) and T_π contains for each transition in which π is involved, a corresponding local transition.

- The neighborhood ngb_π of π is exactly the set of local places P_π.

![Diagram of distributed setting with places and transitions labeled](image-url)
Distributed setting

- A process π is a set of places $P_{\pi} \subseteq P$ (exactly 1 token) and T_{π} contains for each transition in which π is involved, a corresponding local transition.
- The neighborhood ngb_{π} of π is exactly the set of local places P_{π}.
- Everything else is unchanged.
Distributed setting

- A process π is a set of places $P_\pi \subseteq P$ (exactly 1 token) and T_π contains for each transition in which π is involved, a corresponding local transition.
- The neighborhood ngb_π of π is exactly the set of local places P_π.
- Everything else is unchanged.

We have now a new Petri Net with a different transition set.

Question: what does it mean that a distributed execution implements a centralized one?
Implementation relations \(\preceq \)

\(\preceq \) must support the methodology:

1. verify \(PN \models \varphi \) for some global property \(\varphi \)
2. preserve \(\varphi \) on a distributed implementation \(I \) (\(PN \models \varphi \) and \(I \preceq PN \) guarantees \(I \models \varphi \))
Implementation relations \(\preceq \)

\(\preceq \) must support the methodology:

1. verify \(PN \models \varphi \) for some global property \(\varphi \)
2. preserve \(\varphi \) on a distributed implementation \(I \) (\(PN \models \varphi \) and \(I \preceq PN \) guarantees \(I \models \varphi \))

(Almost) Minimal requirement on \(\preceq \): guarantee sequential consistency

1. Transition correctness (local traces are projections of a trace of PN)
2. Atomicity (all local traces are projections of the same trace)
Implementation relations \preceq

\preceq must support the methodology:

1. verify $PN \models \varphi$ for some global property φ
2. preserve φ on a distributed implementation I ($PN \models \varphi$ and $I \preceq PN$ guarantees $I \models \varphi$)

(Almost) Minimal requirement on \preceq: guarantee sequential consistency

(1) Transition correctness (local traces are projections of a trace of PN)
(2) Atomicity (all local traces are projections of the same trace)

Typical implementation relations add:

(3) Inter process order constraints (synchronize before/after joint transitions)
(4) Progress (or coverage) constraints
Illustrating some Implementation relations
Illustrating some Implementation relations

\(\leq_{ss} \): requires synchronization before and after transitions
Illustrating some Implementation relations

\(\leq \): requires synchronization only before transitions

\begin{itemize}
 \item \(p_1 \rightarrow p_2 \) requires synchronization on \(\alpha \)
 \item \(p_3 \rightarrow p_4 \) requires synchronization on \(b \)
 \item \(p_5 \rightarrow p_6 \) requires synchronization on \(c \)
\end{itemize}

Given the graph, the synchronization requirements are as follows:

- Transition \(\alpha \) requires synchronization.
- Transition \(b \) requires synchronization.
- Transition \(c \) requires synchronization.
Illustrating some Implementation relations

\leq_{ns}: requires no synchronization
Illustrating some Implementation relations

\[\leq_{ns}: \text{requires no synchronization} \]

In case of conflict: need to control
local processes for any relation \(\leq \)
(conflict resolution)
Knowledge characterizing enabling conditions

For \(\preceq \), the enabling condition \(go_t^\pi \) for a local transition \(t \):

1. \(t \) is globally enabled (in the Petri Net sense) or already partially executed:

\[
in_t = en_t^\pi \land \forall \pi' \in proc(t). \ (en_t^\pi' \lor done_t^\pi')
\]
Knowledge characterizing enabling conditions

For \preceq, the enabling condition go^π_t for a local transition t:

1. t is globally enabled (in the Petri Net sense) or already partially executed:

$$int_t = en^\pi_t \land \forall \pi' \in proc(t) . (en^\pi'_t \lor done^\pi'_t)$$

2. t has no unresolved conflict:
Knowledge characterizing enabling conditions

For \preceq, the enabling condition go_t^π for a local transition t:

1. t is globally enabled (in the Petri Net sense) or already partially executed:

$$\text{int}_t = \text{en}_t^\pi \land \forall \pi' \in \text{proc}(t) . (\text{en}_t^\pi' \lor \text{done}_t^\pi')$$

2. t has no unresolved conflict:
Knowledge characterizing enabling conditions

For \(\preceq \), the enabling condition \(go^\pi_t \) for a local transition \(t \):

1. \(t \) is globally enabled (in the Petri Net sense) or already partially executed:

\[
in_t = \text{en}^\pi_t \land \forall \pi' \in \text{proc}(t) . (\text{en}^\pi_{t'} \lor \text{done}^\pi_{t'})
\]

2. \(t \) has no unresolved conflict: there must exist a predicate \(\text{select}_t \) such that

\[
\text{select}_t \implies \Box \text{select}_t \land \forall t' . (t' \text{ in conflict with } t \implies \Box \neg \text{select}_{t'})
\]
Knowledge characterizing enabling conditions

For \(\preceq \), the enabling condition \(\text{go}_t^\pi \) for a local transition \(t \):

1. \(t \) is globally enabled (in the Petri Net sense) or already partially executed:

\[
\text{in}_t = \text{en}_t^\pi \land \forall \pi' \in \text{proc}(t). (\text{en}_t^\pi' \lor \text{done}_t^\pi')
\]

2. \(t \) has no unresolved conflict: there must exist a predicate \(\text{select}_t \) such that

\[
\text{select}_t \implies \Box \text{select}_t \land \forall t'. (t' \text{ in conflict with } t \implies \Box \neg \text{select}_{t'})
\]

\(\pi \) must know \(\text{go}_t^\pi \)
Knowledge characterizing enabling conditions

For ≤, the enabling condition \(go^\pi_t \) for a local transition \(t \):

1. \(t \) is globally enabled (in the Petri Net sense) or already partially executed:
 \[
 in_t = en^\pi_t \land \forall \pi' \in proc(t) . (en^\pi'_t \lor done^\pi'_t)
 \]

2. \(t \) has no unresolved conflict: there must exist a predicate \(select_t \) such that
 \[
 select_t \implies \square select_t \land \forall t' . (t' \text { in conflict with } t \implies \square \neg select_{t'})
 \]

\(\pi \) must know \(go^\pi_t \)

and

\(proc \) can evaluate this knowledge property on its local state (distributed setting)
Knowledge of the global specification preserved in a distributed setting

Is the knowledge computed on the Petri Net useful?

What may be preserved:

\[a \ll b \quad \text{and} \quad d \ll e \]
Knowledge of the global specification preserved in a distributed setting

Is the knowledge computed on the Petri Net useful?

What may be preserved:

- One may use the Petri Net knowledge and weaken it by taking into account the uncertainty induced by \leq

\[a \ll b \text{ and } d \ll e \]
Knowledge of the global specification preserved in a distributed setting

Is the knowledge computed on the Petri Net useful?
What may be preserved:

- One may use the Petri Net knowledge and weaken it by taking into account the uncertainty induced by \preceq
- (Non) enabledness of a transition in a local state

\[a \preceq b \text{ and } d \preceq e \]
Knowledge of the global specification preserved in a distributed setting

Is the knowledge computed on the Petri Net useful?

What may be preserved:

- One may use the Petri Net knowledge and weaken it by taking into account the uncertainty induced by \leq
- (Non) enabledness of a transition in a local state
- Not preserved: knowledge for achieving synchronization

\[a \ll b \text{ and } d \ll e \]
Knowledge of the global specification preserved in a distributed setting

Is the knowledge computed on the Petri Net useful? What may be preserved:

- One may use the Petri Net knowledge and weaken it by taking into account the uncertainty induced by \preceq
- (Non) enabledness of a transition in a local state
- Not preserved: knowledge for achieving synchronization

Fact: to achieve synchronization, to resolve conflicts one must communicate $a \ll b$ and $d \ll e$
Knowledge through communication

A typical protocol for achieving distributed implementation:

\[en_a^1, en_b^1 \]

\[\text{I can do a, you?} \]

\[en_a^2 \]

\[\text{I can do a, you?} \]

\[en_a^1 \vee gone^1 \]

\[en_a^2 \vee gone^2 \]
Knowledge through communication

A typical protocol for achieving distributed implementation:

No useful information gained – neither in case of a positive nor a negative response (I can do a is potentially non persistent information)
Knowledge through communication

A typical protocol for achieving distributed implementation:

- process 1 can now decide to set $select_a$ (I can only do a is stable information for the synchronization partner)
Knowledge through communication

- convey information providing stronger knowledge — when possible (e.g. information about absence of conflict)
Knowledge through communication

- try to resolve conflicts early
Knowledge through communication

- combine static and dynamic knowledge: avoid requesting knowledge that is statically available
The explicit use of knowledge is useful for reasoning about the distribution of centralized specifications. It provides a generic, framework independent way for

- optimizing existing and developing new distribution algorithms
- providing correctness proofs for them due to separation of concerns:
 - characterize the required implementation relation as a set of (knowledge) properties
 - prove that the proposed protocol guarantees them

Perspectives

- take into account data, timing, ... (discrete and continuous)
- formulate the platform characteristics (communication primitives) in terms of knowledge
- devise modular proofs for distribution strategies