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Overview and Contribution

Expected reachability-price games on priced probabilistic timed
automata (PPTA)

Conditions to reduce to a finite stochastic game arena.

Decidability for PPTA with single clock and price-rates restricted
to {0,1}.
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Timed Automaton (TA)
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Priced Timed Automaton
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x ≤ 4 a

x > 5 ∧ y > 7 b

{x}

location cost (per time unit)

Cost bounded reachability: given threshold k and a goal
location, whether exists a timed path ρ such that cost(ρ) ≤ k?
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Priced Probabilistic Timed automata
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x ≤ 2, b

The semantics is given by an uncountable MDP with a set of
timed actions from Act × IR≥0.
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Reachability on (Priced) Probabilistic Timed
automata

Reachability with cost ≤ k and probability ≥ p?

Undecidable for three clocks and clock rates in {0,1}

Undecidable even for two clocks and integer clock rates

Optimal expected cost problem is decidable for probabilistic
timed automata.
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Two-player reachability games
Mathematical model for supervisory controller synthesis.

`1

`2

`3

`4

`5

Controller/Player Min vertices

Environment/
Player Max vertices

token

Round: Player owning
current location moves
the token

edges model
choices

Reachability objective: Does Player Min have a strategy to
reach `3?

A strategy for a player from a vertex v that he owns is an
edge/action chosen from v given a finite run ending in v .
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Stochastic game
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Two-player reachability-price timed games

0 ¨̂

−1

`0 `2

`1

x := 0 x > 0

Player Max does not have an optimal positional strategy
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Two-player reachability-price timed games
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Optimal strategy for Min player: transition from `0 to `1 at time
4/3

A similar example with two clocks appears in the following paper.
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Two-player reachability-price timed games
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• Negative prices: may not be positional strategies for Max
player

• Arbitrary positive prices: optimal strategies may not be
boundary
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Reachability price games on Timed automata

Cost-bounded reachability
• Undecidable for three clocks with costs 0,1.

• Undecidable for two clocks with both positive and negative
prices

• Decidability for one-clock bi-valued (a set of two integers
from {−d ,0,d}) price timed automata
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Priced Probabilistic Timed Game Arena (PTGA)
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T = (T,LMin,LMax) The semantics is given by a stochastic
game arena [[T ]] = ([[T]],SMin,SMax).

SMin: controlled by player Min

SMax: controlled by player Max
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Expected reachability-price game (ERPG)

Player Min attempts to reach a final state with expected cost as
low as possible.

EReach(s, µ, χ)
def
= Eµ,χs

{∑min{i |Xi∈F}
i=1 π(Xi−1,Yi)

}
.

Amount that Player Min loses to Player Max.

Upper value : Val(s)
def
= infµ∈ΣMin supχ∈ΣMax

EReach(s, µ, χ) .

Lower value : Val(s)
def
= supχ∈ΣMax

infµ∈ΣMin EReach(s, µ, χ) .

A game is determined if Val(s) = Val(s) for all s ∈ S.

Proposition
Every expected reachability-price game is determined.
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Expected reachability-price problem

Given an expected reachability-price game T = (T,LMin,LMax),
• initial state s ∈ S,

• a bound B ∈ R
decide whether Val(s) ≤ B.
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Optimality equations

• characterises the value in an expected reachability-price
game.

• P : S → R≥0 is a solution of optimality equations Opt(T ),

if, for all s ∈ S:

P(s)=


0 if s ∈ F

inf
τ∈A(s)

{π(s, τ)+
∑

s′∈S
p(s′|s, τ)·P(s′)} if s ∈ SMin\F

sup
τ∈A(s)

{π(s, τ)+
∑

s′∈S
p(s′|s, τ)·P(s′)} if s ∈ SMax\F .

P |= Opt(T )
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P |= Opt(T )

Proposition
If P |= Opt(T ), then Val(s) = P(s) for all s ∈ S and, for every
ε>0, both players have pure ε-optimal strategies.

The problem of solving an expected reachability-price game on
T can be reduced to solving the optimality equations Opt(T ).
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Region graph

x

y

mx = 2,my = 1
1

1

2

1. for each x ∈ C, either both v(x) > mx and v ′(x) > mx or
bv(x)c = bv ′(x)c

2. for each x ∈ C such that v(x) ≤ mx

frac(v(x)) = 0 iff frac(v ′(x)) = 0
3. for all x , y ∈ C such that v(x) ≤ mx and v(y) ≤ my ,

frac(v(x)) ≤ frac(v(y)) iff frac(v ′(x)) ≤ frac(v ′(y)).
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Boundary region abstraction (PTGA)
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s to thin region R: ((b, c,a),R)
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Boundary region abstraction (PTGA)
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21

1 c+ = b+

R

s to thick region R in the future:
• infimum delay action: ((b−, c−,a),R)

• supremum delay action: ((b+, c+,a),R)
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Boundary region abstraction (PTGA)
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Summarise the boundary timed actions:
finitely many actions from each state

Ŝ = {((`, ν), (`, ζ)) | (`, ζ) ∈ R ∧ ν ∈ ζ}
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Boundary region abstraction (PTGA)

Lemma
For every state of a boundary region abstraction, its reachable
sub-graph is finite.

The reachable sub-graph from the initial valuation corresponds
to the standard corner-point abstraction.

Expected Reachability-Price Games 22



ERPG on Boundary region abstraction

Non-expansive and monotonically decreasing functions

A function F : X → R is non-expansive if
|F (ν)−F (ν ′)| ≤ ‖ν−ν ′‖ for all ν, ν ′ ∈ X .

Nice functions

F : Ŝ → R≥0 is regionally nice if for every region (`, ζ) ∈ R the
function F ((`, ·), (`, ζ)) is nice.
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Properties of nice functions

Non-expansive and monotonically decreasing functions

1. Minimum and Maximum. F ,F ′ : Ŝ → R are regionally
nice functions.

Then min(F ,F ′) and max(F ,F ′) are also regionally nice.

2. Convex Combination. 〈fi〉ni=1 are nice functions then for
〈pi ∈ [0,1]〉ni=1 with

∑n
i=1 pi = 1. Then

∑n
i=1 pi · fi is nice.

3. Limit. The limit of a sequence of nice functions is nice.
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Optimality equations for ERPG on BRA

P : Ŝ → R≥0 is a solution of optimality equations Opt(T̂ ):
P |= Opt(T̂ ), if for every s ∈ Ŝ:

P(s)=


0 if s ∈ F̂
min
α∈Â(s)

{π(s, α) +
∑

s′∈S
p(s′|s, α) · P(s′)} if s ∈ ŜMin\F̂

max
α∈Â(s)

{π(s, α) +
∑

s′∈S
p(s′|s, α) · P(s′)} if s ∈ ŜMax\F̂
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ERPG on Boundary region abstraction

Consider f : Ŝ → R over boundary region abstraction.

f̃ : S → R over PTGA: f̃ (`, ν) = f ((`, ν), (`, [ν])).

Let T be a binary-priced probabilistic timed game.

Theorem
If P |= Opt(T̂ ) and P is regionally nice then P̃ |= Opt(T ).

Conditions for reducing expected reachability-price games over
the boundary region abstraction.
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One-clock binary-priced PTGA

Clock values in {0,1}

Proposition
Let T be a one-clock binary-priced PTGA. If P |= Opt(T̂ ), then
P is regionally nice.

Proof sketch: Ψ : [Ŝ → R≥0]→ [Ŝ → R≥0]

Ψ(f )(s) =


0 if s ∈ F̂
min
α∈Â(s)

{π(s, α) +
∑

s′∈S
p(s′|s, α)·f (s′)} if s ∈ ŜMin\F̂

max
α∈Â(s)

{π(s, α) +
∑

s′∈S
p(s′|s, α)·f (s′)} if s ∈ ŜMax\F̂ .

ΨN is a contraction: Using Banach’s fixed point theorem: Ψ can
be used in an iterative scheme to converge to the solution of
optimality equations Opt(T̂ ).
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One-clock binary-priced PTGA

Clock values in {0,1}

Proposition
Let T be a one-clock binary-priced PTGA. If P |= Opt(T̂ ), then
P is regionally nice.
Proof sketch:

Now show that the fixpoint is regionally nice.

If f is regionally nice, then so is π(s, α) +
∑

s′∈S
p(s′|s, α)·f (s′) for

one-clock binary-priced PTGA.

Fixpoint is regionally nice follows from properties of nice
functions: Minimum and maximum, convex combination, Limit
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One-clock binary-priced PTGA

Clock values in {0,1}

Proposition
Let T be a one-clock binary-priced PTGA. If P |= Opt(T̂ ), then
P is regionally nice.

Recall
If P |= Opt(T̂ ) and P is regionally nice then P̃ |= Opt(T ).

The expected reachability-price game problem is decid-
able for one-clock binary-priced PTGA.
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Conclusion

• Two-player expected reachability-price games

• Decidability of one-clock binary-priced PTGA

• Reduction of expected reachability-price problem to the
game on boundary region abstraction

• Nice function

• Future Work: Complexity

Thank You

Expected Reachability-Price Games 30



Conclusion

• Two-player expected reachability-price games

• Decidability of one-clock binary-priced PTGA

• Reduction of expected reachability-price problem to the
game on boundary region abstraction

• Nice function

• Future Work: Complexity

Thank You

Expected Reachability-Price Games 30


