MIXED-TIME SIGNAL TEMPORAL LOGIC FORMATS 2019

Thomas Ferrère – IST Austria
Oded Maler – VERIMAG
Dejan Nickovic – AIT Austrian Institute of Technology
INTRODUCTION

- Cyber-Physical Systems (CPS)
 - Heterogeneous components
 - SW, Sensors, Actuations, uC, etc.

- CPS are often safety critical
 - → model-based development (MBD)
 - → verification and testing

- Specification-based testing for CPS
 - Signal Temporal Logic (STL)
 - Declarative properties of CPS
 - STL monitoring as basic technology
HETEROGENEITY OF CPS

- Heterogeneous components in CPS
- MBD with heterogeneous models of computation
 - Ptolemy
 - MathWorks tools
 - Simulink, SimScape, SimEvents, etc.
 - Scade
 - Verilog AMS, VHDL AMS

- What about verification and testing?

- Specification-based testing for CPS
 - STL: only dense interpretation of time
 - Sensors, actuators, analog components
 - Dense time
 - Digital controllers
 - Discrete (clocked) time

- How to specify and evaluate system-level properties with different time domains?
MOTIVATING EXAMPLE

- Bounded stabilization property
 - Digital command cmd
 - Analog response x

- Whenever cmd is on its rising edge, the absolute value of x must become lower than 1 within 600 time units and remain continuously within that range for at least 300 time units
 - Sampling period $T = 200$ time units
MIXED-TIME SIGNAL TEMPORAL LOGIC (STL-MX)

- Two specification layers
 - Discrete-time layer ψ
 - LTL with past
 - Continuous-time layer α
 - STL with past
- Time mapping operators to “switch” between layers
 - $@^{dc}$ - from discrete to continuous-time layer
 - $@^{cd}$ - from continuous to discrete-time layer

- Syntax
 $\psi ::= p \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid X \psi \mid P \psi \mid \psi_1 U \psi_2 \mid \psi_1 S \psi_2 \mid @^{cd}(\alpha)$
 $\alpha ::= x \preceq c \mid \neg \alpha \mid \alpha_1 \lor \alpha_2 \mid \alpha_1 U_1 \alpha_2 \mid \alpha_1 S_1 \alpha_2 \mid @^{dc}(\psi)$

- X – next, P – previously, U – until, S – since
- Other combinatorial and temporal operators derived in standard way
 - $\land, \rightarrow, \leftrightarrow$
 - G – always, F – eventually
 - H – historically, O – once
STL-MX SEMANTICS

Time mapping operators

- $p = @^{cd}(y)$
- $y = @^{dc}(p)$
Whenever cmd is on its rising edge, the absolute value of x must become lower than 1 within 600 time units and remain continuously within that range for at least 300 time units

- Sampling period $T = 200$ time units

- STL-MX specification

$$G((P \neg cmd \land cmd) \rightarrow @^{cd} (F_{[0,600]} G_{[0,300]} |x| \leq 1))$$
STL-MX FORMULA EQUIVALENCE

• Discrete-time formula equivalence
 • $\varphi \sim \varphi'$ iff for all signals u, w and time indices i, $(u, w, i) \models^d \varphi \iff (u, w, i) \models^d \varphi'$

• Continuous-time formula equivalence
 • $\alpha \sim \alpha'$ iff for all signals u, w and real time values t, $(u, w, t) \models^c \alpha \iff (u, w, t) \models^c \alpha'$
STL-MX PROPERTIES

- For all φ, $\varphi = @(cd)(\varphi)$

- There exists α, s.t. $\alpha \neq @(dc)(\alpha)$
STL-MX PROPERTIES

- Time mapping operators commute over Boolean connectives

\[
\begin{align*}
@^{dc}(\neg \varphi) &= \neg @^{dc}(\varphi) \\
@^{cd}(\neg \alpha) &= \neg @^{cd}(\alpha) \\
@^{dc}(\varphi_1 \lor \varphi_2) &= @^{dc}(\varphi_1) \lor @^{dc}(\varphi_2) \\
@^{cd}(\alpha_1 \lor \alpha_2) &= @^{cd}(\alpha_1) \lor @^{cd}(\alpha_2)
\end{align*}
\]
EXPRESSIVITY OF STL-MX

- STL-MX \approx STL + \text{clock event } clk

- Example: clock event \(clk \) with period \(T \) is continuous time signal
 - \(true \) at multiples of \(T \)
 - \(false \) otherwise

- Every STL-MX formula can be mapped to STL
 - Syntactic mapping \(\sigma \)
 - \(\rightarrow \) Polynomial-time reduction

STL-MX to STL mapping

\[
\begin{align*}
\sigma(p) &= p \\
\sigma(X\varphi) &= \neg clk U_{(0,\infty)}(clk \land \sigma(\varphi)) \\
\sigma(\varphi_1 U \varphi_2) &= \sigma(\varphi_2) \lor (\sigma(\varphi_1) U_{(0,\infty)} \sigma(\varphi_2)) \\
\sigma \left(@^{cd} (\alpha) \right) &= \neg clk S(clk \land \sigma(\alpha))
\end{align*}
\]
MONITORING STL-MX

• Discrete-time part
 • \(\rightarrow \) LTL monitor – temporal testers

• Dense-time part
 • \(\rightarrow \) STL monitor – temporal testers

• Combining LTL + STL monitors
 • \(\rightarrow \) time mapping operators
 • \textbf{Monitor for} \(@^{cd} \)
 • \textbf{Monitor for} \(@^{dc} \)

Monitor for the bounded stabilization property
Monitor for $@^{cd}$

- **Input:** CT signal u, sampling period T
- **Output:** DT signal $w = @^{cd}(u)$

- $I(u) = I_1 \cdot I_2 \cdots I_n$ is a time partition consistent with u
- $k := 0$
- for every time interval I_j
 - while $kT \in I_j$
 - $w(k) = u(I_j)$
 - $k := k + 1$

Monitor for $@^{dc}$

- **Input:** DT signal w, sampling period T
- **Output:** CT signal $u = @^{dc}(w)$

- for every time index k in w
 - $I_k = [kT, (k + 1)T)$
 - $u(I_k) = w(k)$
CASE STUDY: $\Delta - \Sigma$ MODULATOR

- $\Delta - \Sigma$ modulator
- Subtractor
 - $u_\Delta(t) = u_{in}(t) - u_{pls}(t)$
- Integrator
 - $u_\Sigma(t) = A \cdot \int_{0}^{t} u_\Delta(t') dt'$
- Threshold
 - $p_{out}(i) = \begin{cases}
 1, & u_\Sigma(iT) \geq v_0 \\
 0, & \text{otherwise}
 \end{cases}$
- Pulse
 - $u_{pls}(t) = \begin{cases}
 v_1, & p_{out} \left(\left\lfloor \frac{t}{T} \right\rfloor - 1 \right) = 0 \land p_{out} \left(\left\lfloor \frac{t}{T} \right\rfloor \right) = 1 \\
 v_0, & \text{otherwise}
 \end{cases}$
- Sampling period $T = 3.2 \mu s$
CASE STUDY: PROPERTY SPECIFICATION

Property 1
• When we observe a rising edge in the output, the voltage out of the integrator has to return to a value below the threshold at the next clock tick

• STL-MX specification φ_1:

$$ G((P \neg p_{out} \land p_{out}) \rightarrow X@^{cd}(u_{\Sigma} < v_0) $$

Property 2
• When the input voltage is above $1.05V$ for $12.8\mu s$ the output must have a sequence of two consecutive spikes starting over that time frame

• STL-MX specification φ_2:

$$ G(G[0,12.8](u_{in} > 1.05) \rightarrow F[0,12.8]@^{dc}(\neg p_{out} \land X p_{out} \land X^2 \neg p_{out} \land X^3 p_{out})) $$

05/09/2019
CASE STUDY: SIMULATION AND EVALUATION

\[u_{in}(t) = 0.6 \cos(1000 \cdot 2\pi \cdot t) + 0.6 \]

\[u_{in}(t) = 0.7 \cos(1000 \cdot 2\pi \cdot t) + 0.7 \]

\[\phi_1 \text{ satisfied} \]

\[\phi_1 \text{ violated} \]
CASE STUDY: EXECUTION TIMES

<table>
<thead>
<tr>
<th>Property</th>
<th>Sim #</th>
<th>u_{Σ}</th>
<th>u_{in}</th>
<th>p_{out}</th>
<th>time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ_1</td>
<td>1</td>
<td>20,470</td>
<td></td>
<td>727</td>
<td>143</td>
</tr>
<tr>
<td>φ_1</td>
<td>2</td>
<td>2,771</td>
<td></td>
<td>58</td>
<td>104</td>
</tr>
<tr>
<td>φ_2</td>
<td>3</td>
<td>26,207</td>
<td></td>
<td>971</td>
<td>45</td>
</tr>
<tr>
<td>φ_2</td>
<td>4</td>
<td>27,926</td>
<td></td>
<td>971</td>
<td>50</td>
</tr>
<tr>
<td>φ_2</td>
<td>5</td>
<td>29,495</td>
<td></td>
<td>971</td>
<td>51</td>
</tr>
<tr>
<td>φ_2</td>
<td>6</td>
<td>31,298</td>
<td></td>
<td>1,212</td>
<td>58</td>
</tr>
<tr>
<td>φ_2</td>
<td>7</td>
<td>32,133</td>
<td></td>
<td>1,212</td>
<td>59</td>
</tr>
<tr>
<td>φ_2</td>
<td>8</td>
<td>33,005</td>
<td></td>
<td>1,212</td>
<td>61</td>
</tr>
</tbody>
</table>
CASE STUDY: STL-MX VS. STL

- STL-MX specification φ_2:
 \[G(G_{0,12.8}(u_{in} > 1.05) \rightarrow F_{0,12.8}^{dc}(\neg p_{out} \land Xp_{out} \land X^2\neg p_{out} \land X^3 p_{out})) \]

- STL specification $\sigma(\varphi_2)$:
 \[G(G_{0,12.8}(u_{in} > 1.05) \rightarrow F_{0,12.8} \left(\neg p_{out} \land \neg clkU(clk \land p_{out}) \land \neg clkUclk \land (\neg clkU(clk \land \neg p_{out})) \land \neg clkUclk \land (\neg clkU(clk \land (\neg clkU(clk \land p_{out})))) \right) \]
FUTURE WORK

- Automatic insertion of @cd and @dc conversion operators based on type inference
 - Facilitate use of the specification language

- More sophisticated conversion operators
 - Instead of periodic sample and hold.
 - Truth value of discrete signal depends on integrating values at continuous time in some interval around it
 - Event-based conversion in asynchronous style

- Tighter interaction between the monitoring procedure and the simulators

- Equipping STL-mx with quantitative semantics
CONCLUSIONS

• STL-MX
 • Syntactic and semantic constructs
 • Co-existence of discrete and continuous-time specifications
 • Main application - runtime monitoring of CPS and mixed signal designs

• Step towards system-wide specification-based verification
THANK YOU!

Lecturer, Date