
tugraz
Institute of Software Technology

Time to Learn –
Learning Timed Automata from Tests

Martin Tappler Bernhard K. Aichernig Kim Guldstrand Larsen
Florian Lorber

Institute of Software Technology, Graz University of Technology, Austria
Department of Computer Science, Aalborg University

August 28th, 2019

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
1 / 15



tugraz
Institute of Software Technology

Learning a Car Alarm System

Car Alarm
System

open
close
lock
unlock

armed
sound
flash

lock?,4.1 close?,15.4 armed!,17.4

lock?,3.2 close?,13.7 unlock?,14.1 open?,23.1

close?,2.9 lock?,16.2 armed!,18.2 open?,29.5 flash!,29.5

close?,0.7 lock?,5.4 armed!,7.4 unlock?,21.5 off!,21.5

open

close

lock

unlock

armed

sound

flash

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
2 / 15



tugraz
Institute of Software Technology

Learning a Car Alarm System

Car Alarm
System

open
close
lock
unlock

armed
sound
flash

lock?,4.1 close?,15.4 armed!,17.4

lock?,3.2 close?,13.7 unlock?,14.1 open?,23.1

close?,2.9 lock?,16.2 armed!,18.2 open?,29.5 flash!,29.5

close?,0.7 lock?,5.4 armed!,7.4 unlock?,21.5 off!,21.5

open

close

lock

unlock

armed

sound

flash

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
2 / 15



tugraz
Institute of Software Technology

Learning a Car Alarm System

Car Alarm
System

open
close
lock
unlock

armed
sound
flash

lock?,4.1 close?,15.4 armed!,17.4

lock?,3.2 close?,13.7 unlock?,14.1 open?,23.1

close?,2.9 lock?,16.2 armed!,18.2 open?,29.5 flash!,29.5

close?,0.7 lock?,5.4 armed!,7.4 unlock?,21.5 off!,21.5

open

close

lock

unlock

armed

sound

flash

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
2 / 15



tugraz
Institute of Software Technology

Learning a Car Alarm System

Car Alarm
System

open
close
lock
unlock

armed
sound
flash

lock?,4.1 close?,15.4 armed!,17.4

lock?,3.2 close?,13.7 unlock?,14.1 open?,23.1

close?,2.9 lock?,16.2 armed!,18.2 open?,29.5 flash!,29.5

close?,0.7 lock?,5.4 armed!,7.4 unlock?,21.5 off!,21.5

open

close

lock

unlock

armed

sound

flash

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
2 / 15



tugraz
Institute of Software Technology

Learning a Car Alarm System

Car Alarm
System

open
close
lock
unlock

armed
sound
flash

lock?,4.1 close?,15.4 armed!,17.4

lock?,3.2 close?,13.7 unlock?,14.1 open?,23.1

close?,2.9 lock?,16.2 armed!,18.2 open?,29.5 flash!,29.5

close?,0.7 lock?,5.4 armed!,7.4 unlock?,21.5 off!,21.5

open

close

lock

unlock

armed

sound

flash

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
2 / 15



tugraz
Institute of Software Technology

Motivation – Learning-Based Verification

System
Under

Learning
Test Driver

Test Cases

Learner

Model q0start q1

Ping/ConnectionClosed
Connect/ConnAck

Ping/Pong

Connect/ConnectionClosedlearn consistent

outM(Ping) = ConC

outSUT(Ping) =

ConC

outM(Con) = ConAck

outSUT(Con) =

ConAck

outM(Con · Ping) = ConAck · Pong

outSUT(Con · Ping) =

ConAck · Pong

Verify

Verification

I Model checking [Fiterau-Brostean et al., 2016], comparison of
models [Aarts et al., 2012, Tappler et al., 2017]

I Issue: “we had to eliminate timing based behavior as well as
re-transmissions” [Fiterau-Brostean et al., 2016]

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
3 / 15



tugraz
Institute of Software Technology

Motivation – Learning-Based Verification

System
Under

Learning
Test Driver

execute
tests

Test Cases

Learner

Model q0start q1

Ping/ConnectionClosed
Connect/ConnAck

Ping/Pong

Connect/ConnectionClosedlearn consistent

outM(Ping) = ConC

outSUT(Ping) = ConC

outM(Con) = ConAck

outSUT(Con) = ConAck

outM(Con · Ping) = ConAck · Pong

outSUT(Con · Ping) = ConAck · Pong

Verify

Verification

I Model checking [Fiterau-Brostean et al., 2016], comparison of
models [Aarts et al., 2012, Tappler et al., 2017]

I Issue: “we had to eliminate timing based behavior as well as
re-transmissions” [Fiterau-Brostean et al., 2016]

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
3 / 15



tugraz
Institute of Software Technology

Motivation – Learning-Based Verification

System
Under

Learning
Test Driver

execute
tests

Test Cases

Learner

Model q0start q1

Ping/ConnectionClosed
Connect/ConnAck

Ping/Pong

Connect/ConnectionClosedlearn consistent

outM(Ping) = ConC

outSUT(Ping) = ConC

outM(Con) = ConAck

outSUT(Con) = ConAck

outM(Con · Ping) = ConAck · Pong

outSUT(Con · Ping) = ConAck · Pong

Verify

Verification

I Model checking [Fiterau-Brostean et al., 2016], comparison of
models [Aarts et al., 2012, Tappler et al., 2017]

I Issue: “we had to eliminate timing based behavior as well as
re-transmissions” [Fiterau-Brostean et al., 2016]

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
3 / 15



tugraz
Institute of Software Technology

Motivation – Learning-Based Verification

System
Under

Learning
Test Driver

execute
tests

Test Cases

Learner

Model q0start q1

Ping/ConnectionClosed
Connect/ConnAck

Ping/Pong

Connect/ConnectionClosedlearn consistent

outM(Ping) = ConC

outSUT(Ping) = ConC

outM(Con) = ConAck

outSUT(Con) = ConAck

outM(Con · Ping) = ConAck · Pong

outSUT(Con · Ping) = ConAck · Pong

Verify

Verification

I Model checking [Fiterau-Brostean et al., 2016], comparison of
models [Aarts et al., 2012, Tappler et al., 2017]

I Issue: “we had to eliminate timing based behavior as well as
re-transmissions” [Fiterau-Brostean et al., 2016]

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
3 / 15



tugraz
Institute of Software Technology

Motivation – Learning-Based Verification

System
Under

Learning
Test Driver

execute
tests

Test Cases

Learner

Model q0start q1

Ping/ConnectionClosed
Connect/ConnAck

Ping/Pong

Connect/ConnectionClosedlearn consistent

outM(Ping) = ConC

outSUT(Ping) = ConC

outM(Con) = ConAck

outSUT(Con) = ConAck

outM(Con · Ping) = ConAck · Pong

outSUT(Con · Ping) = ConAck · Pong

Verify

Verification

I Model checking [Fiterau-Brostean et al., 2016], comparison of
models [Aarts et al., 2012, Tappler et al., 2017]

I Issue: “we had to eliminate timing based behavior as well as
re-transmissions” [Fiterau-Brostean et al., 2016]

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
3 / 15



tugraz
Institute of Software Technology

Timed Automata
I Finite automata . . .
I with inputs and outputs
I extended with real-valued clocks

I used in guards
I reset upon transitions

I constraints limiting sojourn time
I Assumptions for

testing [Hessel et al., 2003]:
I output urgent:

outputs fire as soon as possible
I input enabled:

inputs must be accepted
I deterministic

q0

start

q1 q2

q3

q4

press?
{c}

release?
c ≥ 5

release?
c < 5

touch!

starthold!
c ≥ 10

release?

endhold!

A Lamp Touch Sensor

release?,1.1 press?,2.3 release?,8.9 touch!,8.9

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
4 / 15



tugraz
Institute of Software Technology

Timed Automata
I Finite automata . . .
I with inputs and outputs
I extended with real-valued clocks

I used in guards
I reset upon transitions

I constraints limiting sojourn time
I Assumptions for

testing [Hessel et al., 2003]:
I output urgent:

outputs fire as soon as possible
I input enabled:

inputs must be accepted
I deterministic

q0

start

q1 q2

q3

q4

press?

{c}

release?

c ≥ 5

release?

c < 5

touch!

starthold!

c ≥ 10

release?

endhold!

A Lamp Touch Sensor

release?,1.1 press?,2.3 release?,8.9 touch!,8.9

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
4 / 15



tugraz
Institute of Software Technology

Timed Automata
I Finite automata . . .
I with inputs and outputs
I extended with real-valued clocks

I used in guards
I reset upon transitions

I constraints limiting sojourn time
I Assumptions for

testing [Hessel et al., 2003]:
I output urgent:

outputs fire as soon as possible
I input enabled:

inputs must be accepted
I deterministic

q0

start

q1 q2

q3

q4

press?
{c}

release?
c ≥ 5

release?
c < 5

touch!

starthold!
c ≥ 10

release?

endhold!

A Lamp Touch Sensor

release?,1.1 press?,2.3 release?,8.9 touch!,8.9

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
4 / 15



tugraz
Institute of Software Technology

Timed Automata
I Finite automata . . .
I with inputs and outputs
I extended with real-valued clocks

I used in guards
I reset upon transitions

I constraints limiting sojourn time
I Assumptions for

testing [Hessel et al., 2003]:
I output urgent:

outputs fire as soon as possible
I input enabled:

inputs must be accepted
I deterministic

q0

start

q1 q2

q3

q4

press?
{c}

release?
c ≥ 5

release?
c < 5

touch!

starthold!
c ≥ 10

release?

endhold!

A Lamp Touch Sensor

release?,1.1 press?,2.3 release?,8.9 touch!,8.9

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
4 / 15



tugraz
Institute of Software Technology

Timed Automata
I Finite automata . . .
I with inputs and outputs
I extended with real-valued clocks

I used in guards
I reset upon transitions

I constraints limiting sojourn time
I Assumptions for

testing [Hessel et al., 2003]:
I output urgent:

outputs fire as soon as possible
I input enabled:

inputs must be accepted
I deterministic

q0

start

q1 q2

q3

q4

press?
{c}

release?
c ≥ 5

release?
c < 5

touch!

starthold!
c ≥ 10

release?

endhold!

A Lamp Touch Sensor

release?,1.1 press?,2.3 release?,8.9 touch!,8.9

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
4 / 15



tugraz
Institute of Software Technology

Timed Automata
I Finite automata . . .
I with inputs and outputs
I extended with real-valued clocks

I used in guards
I reset upon transitions

I constraints limiting sojourn time
I Assumptions for

testing [Hessel et al., 2003]:
I output urgent:

outputs fire as soon as possible
I input enabled:

inputs must be accepted
I deterministic

q0

start

q1 q2

q3

q4

press?
{c}

release?
c ≥ 5

release?
c < 5

touch!

starthold!
c ≥ 10

release?

endhold!

A Lamp Touch Sensor

release?,1.1 press?,2.3 release?,8.9 touch!,8.9

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
4 / 15



tugraz
Institute of Software Technology

Automata Learning for Timed Systems

I Motivation: Model-based analysis for black-box timed systems
I Existing approaches:

I Passive learning of real-time
automata [Verwer et al., 2010, Verwer et al., 2012]:

→ does not distinguish inputs and outputs
I Active learning of event-recording

automata [Grinchtein et al., 2010, Grinchtein et al., 2006]
→ high runtime complexity
I Both: restrictions on clock resets

I Promising results of genetic programming in program synthesis
(e.g. mutual exclusion algorithms) [Katz and Peled, 2017]

I Apply genetic programing for timed automata
I Focus: generate models for testing

I input-enabled, arbitrary clock resets

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
5 / 15



tugraz
Institute of Software Technology

Automata Learning for Timed Systems

I Motivation: Model-based analysis for black-box timed systems
I Existing approaches:

I Passive learning of real-time
automata [Verwer et al., 2010, Verwer et al., 2012]:

→ does not distinguish inputs and outputs
I Active learning of event-recording

automata [Grinchtein et al., 2010, Grinchtein et al., 2006]
→ high runtime complexity
I Both: restrictions on clock resets

I Promising results of genetic programming in program synthesis
(e.g. mutual exclusion algorithms) [Katz and Peled, 2017]

I Apply genetic programing for timed automata
I Focus: generate models for testing

I input-enabled, arbitrary clock resets

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
5 / 15



tugraz
Institute of Software Technology

Automata Learning for Timed Systems

I Motivation: Model-based analysis for black-box timed systems
I Existing approaches:

I Passive learning of real-time
automata [Verwer et al., 2010, Verwer et al., 2012]:

→ does not distinguish inputs and outputs
I Active learning of event-recording

automata [Grinchtein et al., 2010, Grinchtein et al., 2006]
→ high runtime complexity
I Both: restrictions on clock resets

I Promising results of genetic programming in program synthesis
(e.g. mutual exclusion algorithms) [Katz and Peled, 2017]

I Apply genetic programing for timed automata
I Focus: generate models for testing

I input-enabled, arbitrary clock resets

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
5 / 15



tugraz
Institute of Software Technology

Automata Learning for Timed Systems

I Motivation: Model-based analysis for black-box timed systems
I Existing approaches:

I Passive learning of real-time
automata [Verwer et al., 2010, Verwer et al., 2012]:

→ does not distinguish inputs and outputs
I Active learning of event-recording

automata [Grinchtein et al., 2010, Grinchtein et al., 2006]
→ high runtime complexity
I Both: restrictions on clock resets

I Promising results of genetic programming in program synthesis
(e.g. mutual exclusion algorithms) [Katz and Peled, 2017]

I Apply genetic programing for timed automata
I Focus: generate models for testing

I input-enabled, arbitrary clock resets

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
5 / 15



tugraz
Institute of Software Technology

Automata Learning for Timed Systems

I Motivation: Model-based analysis for black-box timed systems
I Existing approaches:

I Passive learning of real-time
automata [Verwer et al., 2010, Verwer et al., 2012]:

→ does not distinguish inputs and outputs
I Active learning of event-recording

automata [Grinchtein et al., 2010, Grinchtein et al., 2006]
→ high runtime complexity
I Both: restrictions on clock resets

I Promising results of genetic programming in program synthesis
(e.g. mutual exclusion algorithms) [Katz and Peled, 2017]

I Apply genetic programing for timed automata
I Focus: generate models for testing

I input-enabled, arbitrary clock resets

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
5 / 15



tugraz
Institute of Software Technology

Automata Learning for Timed Systems

I Motivation: Model-based analysis for black-box timed systems
I Existing approaches:

I Passive learning of real-time
automata [Verwer et al., 2010, Verwer et al., 2012]:

→ does not distinguish inputs and outputs
I Active learning of event-recording

automata [Grinchtein et al., 2010, Grinchtein et al., 2006]
→ high runtime complexity
I Both: restrictions on clock resets

I Promising results of genetic programming in program synthesis
(e.g. mutual exclusion algorithms) [Katz and Peled, 2017]

I Apply genetic programing for timed automata
I Focus: generate models for testing

I input-enabled, arbitrary clock resets

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
5 / 15



tugraz
Institute of Software Technology

Genetic Programming

of TA – Basic

Test

Evaluate
Fitness

Random
Population

Timed
System

Stop?

Create New
Population
(Mutation &
Crossover)

Output
Fittest

timed
traces

timed automata

yes
no

mutated
timed

automata

1 Create small random timed
automata

2 Test system to get timed traces
3 Fitness: simulate automata

I # accepted traces
I # outputs of accepted traces
I determinism
I penalty for model size

4 New population: mutate &
crossover

5 Stop if all traces accepted or
max. # rounds

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
6 / 15



tugraz
Institute of Software Technology

Genetic Programming of TA – Basic

Test Evaluate
Fitness

Random
Population

Timed
System

Stop?

Create New
Population
(Mutation &
Crossover)

Output
Fittest

timed
traces

timed automata

yes
no

mutated
timed

automata

1 Create small random timed
automata

2 Test system to get timed traces
3 Fitness: simulate automata

I # accepted traces
I # outputs of accepted traces
I determinism
I penalty for model size

4 New population: mutate &
crossover

5 Stop if all traces accepted or
max. # rounds

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
6 / 15



tugraz
Institute of Software Technology

Genetic Programming of TA – Basic

Test Evaluate
Fitness

Random
Population

Timed
System

Stop?

Create New
Population
(Mutation &
Crossover)

Output
Fittest

timed
traces

timed automata

yes
no

mutated
timed

automata

1 Create small random timed
automata

2 Test system to get timed traces
3 Fitness: simulate automata

I # accepted traces
I # outputs of accepted traces
I determinism
I penalty for model size

4 New population: mutate &
crossover

5 Stop if all traces accepted or
max. # rounds

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
6 / 15



tugraz
Institute of Software Technology

Genetic Programming of TA – Basic

Test Evaluate
Fitness

Random
Population

Timed
System

Stop?

Create New
Population
(Mutation &
Crossover)

Output
Fittest

timed
traces

timed automata

yes
no

mutated
timed

automata

1 Create small random timed
automata

2 Test system to get timed traces
3 Fitness: simulate automata

I # accepted traces
I # outputs of accepted traces
I determinism
I penalty for model size

4 New population: mutate &
crossover

5 Stop if all traces accepted or
max. # rounds

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
6 / 15



tugraz
Institute of Software Technology

Genetic Programming of TA – Basic

Test Evaluate
Fitness

Random
Population

Timed
System

Stop?

Create New
Population
(Mutation &
Crossover)

Output
Fittest

timed
traces

timed automata

yes
no

mutated
timed

automata

1 Create small random timed
automata

2 Test system to get timed traces
3 Fitness: simulate automata

I # accepted traces
I # outputs of accepted traces
I determinism
I penalty for model size

4 New population: mutate &
crossover

5 Stop if all traces accepted or
max. # rounds

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
6 / 15



tugraz
Institute of Software Technology

Genetic Programming of TA – Basic

Test Evaluate
Fitness

Random
Population

Timed
System

Stop?

Create New
Population
(Mutation &
Crossover)

Output
Fittest

timed
traces

timed automata

yes
no

mutated
timed

automata

1 Create small random timed
automata

2 Test system to get timed traces
3 Fitness: simulate automata

I # accepted traces
I # outputs of accepted traces
I determinism
I penalty for model size

4 New population: mutate &
crossover

5 Stop if all traces accepted or
max. # rounds

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
6 / 15



tugraz
Institute of Software Technology

Creating a New Population – Detailed

I Probabilistic choice between mutation and crossover
I Fitness-based selection of parents from population
I Repeat npop times

Choose
Operation

Mutate Crossover

Fitness-Based
Selection

Apply

do npop times

Population New Population

pcross1− pcross

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
7 / 15



tugraz
Institute of Software Technology

Creating a New Population – Detailed

I Probabilistic choice between mutation and crossover
I Fitness-based selection of parents from population
I Repeat npop times

Choose
Operation

Mutate Crossover

Fitness-Based
Selection

Apply

do npop times

Population New Population

pcross1− pcross

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
7 / 15



tugraz
Institute of Software Technology

Genetic Programming of TA – Optimized

Test Evaluate Evaluate

Random
Global

Population
Random Local
Population

Timed
System

Stop?

Create New
Population

Create New
Population

Migrate

Output
Fittest

timed
traces timed automata timed automata

yes
no

I Two populations:
1 Global search: all timed

traces
2 Local search: timed

traces not accepted by
global population

I From local search to global
search:

I Migration
I Crossover

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
8 / 15



tugraz
Institute of Software Technology

Mutation & Crossover (1)

I Mutation operators for changing all aspects of timed automata
I Chosen at random
I An operator inspired by passive automata learning: merge location

Merge Location Example

q0

start

q1 q2

q3

?press
{c}

?release
c ≥ 5

?release
c < 5

?release

!touch

merge q2 and q3

q0

start

q1 q2

?press
{c}

?release
c ≥ 5

?release
c < 5

!touch

?release

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
9 / 15



tugraz
Institute of Software Technology

Mutation & Crossover (1)

I Mutation operators for changing all aspects of timed automata
I Chosen at random
I An operator inspired by passive automata learning: merge location

Merge Location Example

q0

start

q1 q2

q3

?press
{c}

?release
c ≥ 5

?release
c < 5

?release

!touch

merge q2 and q3

q0

start

q1 q2

?press
{c}

?release
c ≥ 5

?release
c < 5

!touch

?release

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
9 / 15



tugraz
Institute of Software Technology

Mutation & Crossover (2)

I An operator inspired by active automata learning: split location

Split Location Example

q0

start

q2

?press
{c}

?release
c < 5

?release
c ≥ 5

!touch

split q0

q0

start

q1 q2

?press
{c}

?release
c ≥ 5

?release
c < 5

?release
c < 5

?release
c ≥ 5

!touch

I Crossover: randomised product
I explore parents and synchronise on labels
I random combination of parents’ edges

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
10 / 15



tugraz
Institute of Software Technology

Mutation & Crossover (2)

I An operator inspired by active automata learning: split location

Split Location Example

q0

start

q2

?press
{c}

?release
c < 5

?release
c ≥ 5

!touch

split q0

q0

start

q1 q2

?press
{c}

?release
c ≥ 5

?release
c < 5

?release
c < 5

?release
c ≥ 5

!touch

I Crossover: randomised product
I explore parents and synchronise on labels
I random combination of parents’ edges

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
10 / 15



tugraz
Institute of Software Technology

Challenge: Parameter Configuration

I Lots of Parameters
I # clocks, clock-bound range
I weights for fitness computation
I # tests, population size, # generations, test length
I crossover probability

→ We have guidelines
I Some are fixed

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
11 / 15



tugraz
Institute of Software Technology

Challenge: Parameter Configuration

I Lots of Parameters
I # clocks, clock-bound range
I weights for fitness computation
I # tests, population size, # generations, test length
I crossover probability

→ We have guidelines
I Some are fixed

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
11 / 15



tugraz
Institute of Software Technology

Challenge: Parameter Configuration

I Lots of Parameters
I # clocks, clock-bound range
I weights for fitness computation
I # tests, population size, # generations, test length
I crossover probability

→ We have guidelines
I Some are fixed

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
11 / 15



tugraz
Institute of Software Technology

Experiments – a Learned Model (1)

I Automatic generation
of human-readable
models

I Experiments with:
I 40 random TA
I 4 TA from the

literature
I up to 26 locations

and 1 clock
I up to 10 locations

and 2 clocks
I Evaluation

1 learn from training
data

2 simulate on test data

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
12 / 15



tugraz
Institute of Software Technology

Experiments – a Learned Model (1)

I Automatic generation
of human-readable
models

I Experiments with:
I 40 random TA
I 4 TA from the

literature
I up to 26 locations

and 1 clock
I up to 10 locations

and 2 clocks
I Evaluation

1 learn from training
data

2 simulate on test data

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
12 / 15



tugraz
Institute of Software Technology

Experiments – a Learned Model (1)

I Automatic generation
of human-readable
models

I Experiments with:
I 40 random TA
I 4 TA from the

literature
I up to 26 locations

and 1 clock
I up to 10 locations

and 2 clocks
I Evaluation

1 learn from training
data

2 simulate on test data

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
12 / 15



tugraz
Institute of Software Technology

Experiments – a Learned Model (2)

I Results:
I successfully learned

all 44 models
I consistent with given

training data
I high accuracy on

test data
I Runtime:

I several minutes and
up to 20 hours

I not yet parallelized

I GUI demo: link in paper

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
13 / 15



tugraz
Institute of Software Technology

Experiments – a Learned Model (2)

I Results:
I successfully learned

all 44 models
I consistent with given

training data
I high accuracy on

test data
I Runtime:

I several minutes and
up to 20 hours

I not yet parallelized

I GUI demo: link in paper

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
13 / 15



tugraz
Institute of Software Technology

Experiments – a Learned Model (2)

I Results:
I successfully learned

all 44 models
I consistent with given

training data
I high accuracy on

test data
I Runtime:

I several minutes and
up to 20 hours

I not yet parallelized

I GUI demo: link in paper

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
13 / 15



tugraz
Institute of Software Technology

Experiments – Evolution of Fitness

0 100 200 300 400 500 600
0%

50%

100%

generations

ac
ce
pt
ed

tr
ai
ni
ng

da
ta

Fitness of Car Alarm System Models

maximum
median

minimum

I Early generations accept only initial inputs
I Further behaviour continuously added
→ Random generation infeasible
I Final generations decrease model size

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
14 / 15



tugraz
Institute of Software Technology

Experiments – Evolution of Fitness

0 100 200 300 400 500 600
0%

50%

100%

generations

ac
ce
pt
ed

tr
ai
ni
ng

da
ta

Fitness of Car Alarm System Models

maximum
median

minimum

I Early generations accept only initial inputs
I Further behaviour continuously added
→ Random generation infeasible
I Final generations decrease model size

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
14 / 15



tugraz
Institute of Software Technology

Experiments – Evolution of Fitness

0 100 200 300 400 500 600
0%

50%

100%

generations

ac
ce
pt
ed

tr
ai
ni
ng

da
ta

Fitness of Car Alarm System Models

maximum
median

minimum

I Early generations accept only initial inputs
I Further behaviour continuously added
→ Random generation infeasible
I Final generations decrease model size

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
14 / 15



tugraz
Institute of Software Technology

Concluding Remarks
Summary

I Genetic Programming for timed automata including mutation,
crossover, subpopulations, and fine-grained fitness computation

I Evaluated on 44 timed automata used as black boxes
I up to 26 locations
I up to two clocks with arbitrary resets

I Implemented in a tool

Conclusion
I Successfully learned medium-sized models from tests
I Future work:

I active learning
I relaxing assumptions
I synthesis via model-checking-based fitness computation

Thank you!

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
15 / 15



tugraz
Institute of Software Technology

Concluding Remarks
Summary

I Genetic Programming for timed automata including mutation,
crossover, subpopulations, and fine-grained fitness computation

I Evaluated on 44 timed automata used as black boxes
I up to 26 locations
I up to two clocks with arbitrary resets

I Implemented in a tool

Conclusion
I Successfully learned medium-sized models from tests
I Future work:

I active learning
I relaxing assumptions
I synthesis via model-checking-based fitness computation

Thank you!

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
15 / 15



tugraz
Institute of Software Technology

Concluding Remarks
Summary

I Genetic Programming for timed automata including mutation,
crossover, subpopulations, and fine-grained fitness computation

I Evaluated on 44 timed automata used as black boxes
I up to 26 locations
I up to two clocks with arbitrary resets

I Implemented in a tool

Conclusion
I Successfully learned medium-sized models from tests
I Future work:

I active learning
I relaxing assumptions
I synthesis via model-checking-based fitness computation

Thank you!
Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests

15 / 15



tugraz
Institute of Software Technology

Aarts, F., Kuppens, H., Tretmans, J., Vaandrager, F. W., and
Verwer, S. (2012).
Learning and testing the bounded retransmission protocol.
In Heinz, J., de la Higuera, C., and Oates, T., editors, Proceedings
of the Eleventh International Conference on Grammatical Inference,
ICGI 2012, University of Maryland, College Park, USA, September
5-8, 2012, volume 21 of JMLR Proceedings, pages 4–18.
JMLR.org.

Fiterau-Brostean, P., Janssen, R., and Vaandrager, F. W. (2016).
Combining model learning and model checking to analyze TCP
implementations.
In Chaudhuri, S. and Farzan, A., editors, Computer Aided
Verification - 28th International Conference, CAV 2016, Toronto,
ON, Canada, July 17-23, 2016, Proceedings, Part II, volume 9780
of Lecture Notes in Computer Science, pages 454–471. Springer.

Grinchtein, O., Jonsson, B., and Leucker, M. (2010).
Learning of event-recording automata.

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
0 / 15



tugraz
Institute of Software Technology

Theor. Comput. Sci., 411(47):4029–4054.

Grinchtein, O., Jonsson, B., and Pettersson, P. (2006).
Inference of event-recording automata using timed decision trees.
In Baier, C. and Hermanns, H., editors, CONCUR 2006 -
Concurrency Theory, 17th International Conference, CONCUR
2006, Bonn, Germany, August 27-30, 2006, Proceedings, volume
4137 of Lecture Notes in Computer Science, pages 435–449.
Springer.

Hessel, A., Larsen, K. G., Nielsen, B., Pettersson, P., and Skou, A.
(2003).
Time-optimal real-time test case generation using UPPAAL.
In FATES 2003, volume 2931 of LNCS, pages 114–130. Springer.

Katz, G. and Peled, D. (2017).
Synthesizing, correcting and improving code, using model
checking-based genetic programming.
STTT, 19(4):449–464.

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
0 / 15



tugraz
Institute of Software Technology

Tappler, M., Aichernig, B. K., and Bloem, R. (2017).
Model-based testing IoT communication via active automata
learning.
In 2017 IEEE International Conference on Software Testing,
Verification and Validation, ICST 2017, Tokyo, Japan, March
13-17, 2017, pages 276–287. IEEE Computer Society.

Verwer, S., de Weerdt, M., and Witteveen, C. (2010).
A likelihood-ratio test for identifying probabilistic deterministic
real-time automata from positive data.
In Sempere, J. M. and García, P., editors, Grammatical Inference:
Theoretical Results and Applications, 10th International
Colloquium, ICGI 2010, Valencia, Spain, September 13-16, 2010.
Proceedings, volume 6339 of Lecture Notes in Computer Science,
pages 203–216. Springer.

Verwer, S., de Weerdt, M., and Witteveen, C. (2012).
Efficiently identifying deterministic real-time automata from labeled
data.

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
0 / 15



tugraz
Institute of Software Technology

Machine Learning, 86(3):295–333.

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
0 / 15


	Appendix

