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Motivation – Learning-Based Verification

System
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Learning
Test Driver

Test Cases
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outM(Ping) = ConC

outSUT(Ping) =

ConC

outM(Con) = ConAck

outSUT(Con) =

ConAck

outM(Con · Ping) = ConAck · Pong

outSUT(Con · Ping) =

ConAck · Pong

Verify

Verification

I Model checking [Fiterau-Brostean et al., 2016], comparison of
models [Aarts et al., 2012, Tappler et al., 2017]

I Issue: “we had to eliminate timing based behavior as well as
re-transmissions” [Fiterau-Brostean et al., 2016]
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Timed Automata
I Finite automata . . .
I with inputs and outputs
I extended with real-valued clocks

I used in guards
I reset upon transitions

I constraints limiting sojourn time
I Assumptions for

testing [Hessel et al., 2003]:
I output urgent:

outputs fire as soon as possible
I input enabled:

inputs must be accepted
I deterministic

q0

start

q1 q2

q3

q4

press?
{c}

release?
c ≥ 5

release?
c < 5

touch!

starthold!
c ≥ 10

release?

endhold!

A Lamp Touch Sensor

release?,1.1 press?,2.3 release?,8.9 touch!,8.9
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Automata Learning for Timed Systems

I Motivation: Model-based analysis for black-box timed systems
I Existing approaches:

I Passive learning of real-time
automata [Verwer et al., 2010, Verwer et al., 2012]:

→ does not distinguish inputs and outputs
I Active learning of event-recording

automata [Grinchtein et al., 2010, Grinchtein et al., 2006]
→ high runtime complexity
I Both: restrictions on clock resets

I Promising results of genetic programming in program synthesis
(e.g. mutual exclusion algorithms) [Katz and Peled, 2017]

I Apply genetic programing for timed automata
I Focus: generate models for testing

I input-enabled, arbitrary clock resets
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Genetic Programming

of TA – Basic

Test

Evaluate
Fitness

Random
Population

Timed
System

Stop?

Create New
Population
(Mutation &
Crossover)

Output
Fittest

timed
traces

timed automata

yes
no

mutated
timed

automata

1 Create small random timed
automata

2 Test system to get timed traces
3 Fitness: simulate automata

I # accepted traces
I # outputs of accepted traces
I determinism
I penalty for model size

4 New population: mutate &
crossover

5 Stop if all traces accepted or
max. # rounds

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
6 / 15



tugraz
Institute of Software Technology

Genetic Programming of TA – Basic

Test Evaluate
Fitness

Random
Population

Timed
System

Stop?

Create New
Population
(Mutation &
Crossover)

Output
Fittest

timed
traces

timed automata

yes
no

mutated
timed

automata

1 Create small random timed
automata

2 Test system to get timed traces
3 Fitness: simulate automata

I # accepted traces
I # outputs of accepted traces
I determinism
I penalty for model size

4 New population: mutate &
crossover

5 Stop if all traces accepted or
max. # rounds

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
6 / 15



tugraz
Institute of Software Technology

Genetic Programming of TA – Basic

Test Evaluate
Fitness

Random
Population

Timed
System

Stop?

Create New
Population
(Mutation &
Crossover)

Output
Fittest

timed
traces

timed automata

yes
no

mutated
timed

automata

1 Create small random timed
automata

2 Test system to get timed traces
3 Fitness: simulate automata

I # accepted traces
I # outputs of accepted traces
I determinism
I penalty for model size

4 New population: mutate &
crossover

5 Stop if all traces accepted or
max. # rounds

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
6 / 15



tugraz
Institute of Software Technology

Genetic Programming of TA – Basic

Test Evaluate
Fitness

Random
Population

Timed
System

Stop?

Create New
Population
(Mutation &
Crossover)

Output
Fittest

timed
traces

timed automata

yes
no

mutated
timed

automata

1 Create small random timed
automata

2 Test system to get timed traces
3 Fitness: simulate automata

I # accepted traces
I # outputs of accepted traces
I determinism
I penalty for model size

4 New population: mutate &
crossover

5 Stop if all traces accepted or
max. # rounds

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
6 / 15



tugraz
Institute of Software Technology

Genetic Programming of TA – Basic

Test Evaluate
Fitness

Random
Population

Timed
System

Stop?

Create New
Population
(Mutation &
Crossover)

Output
Fittest

timed
traces

timed automata

yes
no

mutated
timed

automata

1 Create small random timed
automata

2 Test system to get timed traces
3 Fitness: simulate automata

I # accepted traces
I # outputs of accepted traces
I determinism
I penalty for model size

4 New population: mutate &
crossover

5 Stop if all traces accepted or
max. # rounds

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
6 / 15



tugraz
Institute of Software Technology

Genetic Programming of TA – Basic

Test Evaluate
Fitness

Random
Population

Timed
System

Stop?

Create New
Population
(Mutation &
Crossover)

Output
Fittest

timed
traces

timed automata

yes
no

mutated
timed

automata

1 Create small random timed
automata

2 Test system to get timed traces
3 Fitness: simulate automata

I # accepted traces
I # outputs of accepted traces
I determinism
I penalty for model size

4 New population: mutate &
crossover

5 Stop if all traces accepted or
max. # rounds

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
6 / 15



tugraz
Institute of Software Technology

Creating a New Population – Detailed

I Probabilistic choice between mutation and crossover
I Fitness-based selection of parents from population
I Repeat npop times

Choose
Operation

Mutate Crossover

Fitness-Based
Selection

Apply

do npop times

Population New Population

pcross1− pcross
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Genetic Programming of TA – Optimized
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Mutation & Crossover (1)

I Mutation operators for changing all aspects of timed automata
I Chosen at random
I An operator inspired by passive automata learning: merge location

Merge Location Example

q0

start

q1 q2

q3

?press
{c}

?release
c ≥ 5

?release
c < 5

?release

!touch

merge q2 and q3

q0

start

q1 q2

?press
{c}

?release
c ≥ 5

?release
c < 5

!touch

?release
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Mutation & Crossover (2)

I An operator inspired by active automata learning: split location

Split Location Example

q0

start

q2

?press
{c}

?release
c < 5

?release
c ≥ 5

!touch

split q0

q0

start

q1 q2

?press
{c}

?release
c ≥ 5

?release
c < 5

?release
c < 5

?release
c ≥ 5

!touch

I Crossover: randomised product
I explore parents and synchronise on labels
I random combination of parents’ edges

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
10 / 15



tugraz
Institute of Software Technology

Mutation & Crossover (2)

I An operator inspired by active automata learning: split location

Split Location Example

q0

start

q2

?press
{c}

?release
c < 5

?release
c ≥ 5

!touch

split q0

q0

start

q1 q2

?press
{c}

?release
c ≥ 5

?release
c < 5

?release
c < 5

?release
c ≥ 5

!touch

I Crossover: randomised product
I explore parents and synchronise on labels
I random combination of parents’ edges

Martin Tappler FORMATS 2019 Time to Learn – Learning Timed Automata from Tests
10 / 15



tugraz
Institute of Software Technology

Challenge: Parameter Configuration

I Lots of Parameters
I # clocks, clock-bound range
I weights for fitness computation
I # tests, population size, # generations, test length
I crossover probability

→ We have guidelines
I Some are fixed
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Experiments – a Learned Model (1)

I Automatic generation
of human-readable
models

I Experiments with:
I 40 random TA
I 4 TA from the

literature
I up to 26 locations

and 1 clock
I up to 10 locations

and 2 clocks
I Evaluation

1 learn from training
data

2 simulate on test data
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Experiments – a Learned Model (2)

I Results:
I successfully learned

all 44 models
I consistent with given

training data
I high accuracy on

test data
I Runtime:

I several minutes and
up to 20 hours

I not yet parallelized

I GUI demo: link in paper
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Experiments – Evolution of Fitness
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I Early generations accept only initial inputs
I Further behaviour continuously added
→ Random generation infeasible
I Final generations decrease model size
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Concluding Remarks
Summary

I Genetic Programming for timed automata including mutation,
crossover, subpopulations, and fine-grained fitness computation

I Evaluated on 44 timed automata used as black boxes
I up to 26 locations
I up to two clocks with arbitrary resets

I Implemented in a tool

Conclusion
I Successfully learned medium-sized models from tests
I Future work:

I active learning
I relaxing assumptions
I synthesis via model-checking-based fitness computation

Thank you!
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