

Vanderbilt University

Reachability Analysis for High-Index Linear Differential Algebraic Equations (DAEs)

https://github.com/verivital/daev/

 17th International Conference on Formal Modeling and Analysis of Timed Systems (FORMATS'19), August 27, 2019
 Hoang-Dung Tran, Luan Viet Nguyen, Nathaniel Hamilton, Weiming Xiang & Taylor T. Johnson

VeriVITAL-The Verification and Validation for Intelligent and Trustworthy Autonomy Laboratory (<u>http://www.verivital.com</u>) Electrical Engineering and Computer Science (EECS)

Motivation: Mass Dampers

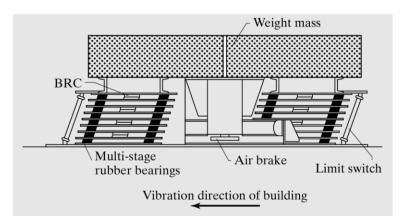
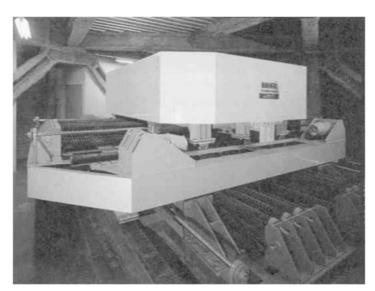


FIGURE 4.4: Tuned mass damper with spring and damper assemblage.



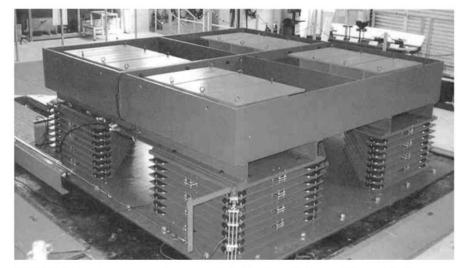
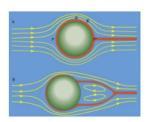


FIGURE 4.6: Tuned mass damper—Huis Ten Bosch Tower, Nagasaki. (Courtesy of J. Connor.)

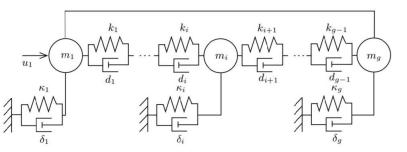
FIGURE 4.3:Tuned mass damper for Chiba-Port Tower. (Courtesy of J. Connor.)[Intro to Structural Motion Control, Connor 2003]

Motivation

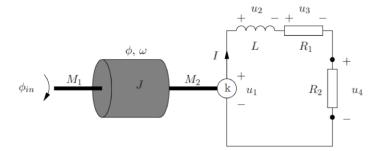


 $\begin{aligned} \frac{\partial v}{\partial t} &= \Delta v - \nabla \rho + f, \text{ in } \Omega \times (0, T) \\ \nabla v &= 0, \text{ in } \Omega \times (0, T), \end{aligned}$

Index-2 semi-discretized Stoke System (fluids)



Index-3 damped mass-spring system (earthquake)

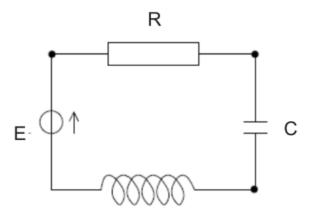


Index-3 DAE system electrical generator (power)

Index-2 interconnected rotating masses (IRM) system (automotive)

- Most existing cyber-physical systems (CPS) verification techniques only focus on physical behaviors as ordinary differential equations (ODEs), or hybrid variants thereof (hybrid automata, etc.)
- Many CPS domains naturally model systems as DAEs instead of ODEs
 - Mechatronics, robotics, electrical circuits, earthquake engineering, water distribution networks / fluid dynamics (certain problems), process/chemical engineering, …
 3

- Consider an RLC (resistor, inductor, capacitor) circuit
- Kirchhoff's current law (KCL) and voltage law (KVL) => algebraic constraints + ODEs for transient behavior
 - KCL: conservation of current: $i_E = i_R = i_C = i_L$
 - KVL: conservation of energy: $V_R + V_C + V_L + V_E = 0$
 - Ohm's laws:



$$C\dot{V_C} = i_C$$

 $L\dot{V_L} = i_L$
 $V_R = R i_R$

Replace equal currents (*i_R* to *i_E*, *i_C* to *i_L*), don't have to, but reduces dimensionality for fewer state variables

$$\dot{V_C} = \frac{1}{C} i_L$$

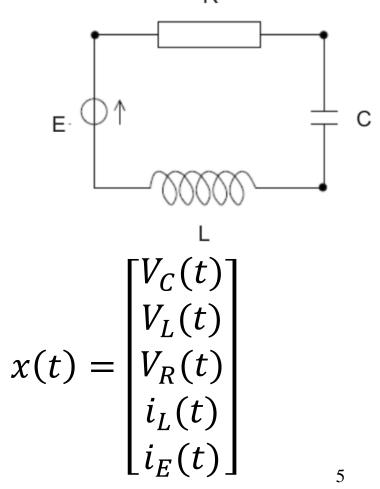
$$\dot{V_L} = \frac{1}{L} i_E$$

$$0 = V_R + R i_E$$

$$0 = V_E + V_R + V_C + V_L$$

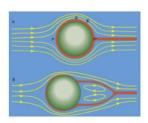
$$0 = i_L - i_E$$

Now a DAE system with:



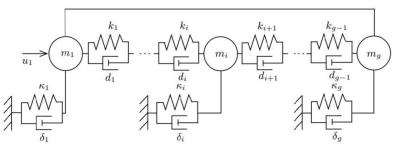
 $\dot{V}_C = \frac{1}{C} i_L$ $\dot{V}_L = \frac{1}{L} i_E$ $0 = V_R + Ri_E$ Linear DAE system: $0 = V_E + V_R + V_C + V_L$ dx $0=i_L-i_E$ R $x(t) = \begin{bmatrix} V_C(t) \\ V_L(t) \\ V_R(t) \\ i_L(t) \end{bmatrix}, \quad z(t) = V_E(t)$ $B = \begin{bmatrix} 0 & 0 & 1 & 0 & R \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix} \qquad D = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

Motivation

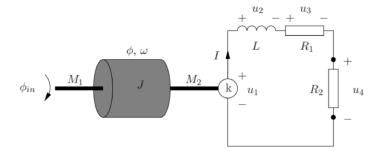


$$\begin{split} \frac{\partial v}{\partial t} &= \Delta v - \nabla \rho + f, \text{ in } \Omega \times (0,T) \\ \nabla v &= 0, \text{ in } \Omega \times (0,T), \end{split}$$

Index-2 semi-discretized Stoke System (fluids)



Index-3 damped mass-spring system (earthquake)

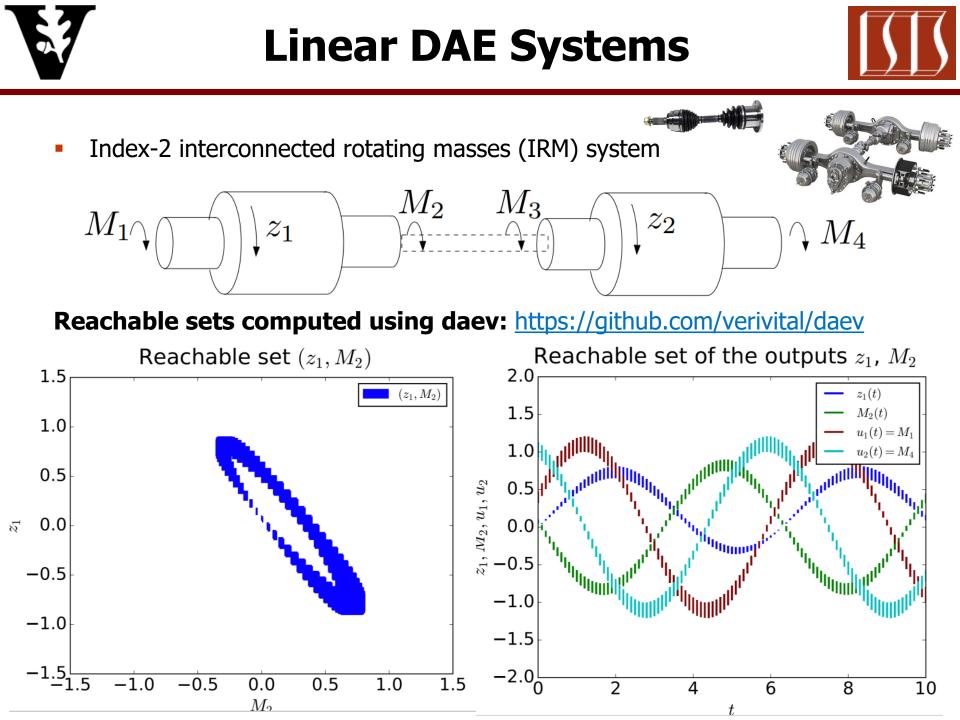


Index-3 DAE system electrical generator (power)

Index-2 interconnected rotating masses (IRM) system (automotive)

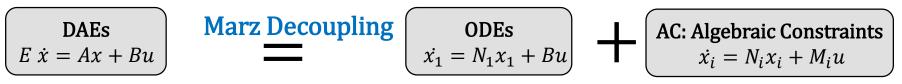
- Most existing cyber-physical systems (CPS) verification techniques *only focus* on ODE dynamics, or hybrid variants thereof (hybrid automata, etc.)
- Verifying DAE systems is more complex than ODE systems
- No existing works (to our knowledge) on *verifying high-index* (>1) DAEs
- Scalability: state-space explosion / "curse of dimensionality"
- How to verify safety of systems with DAE dynamics?

- Linear DAE System: $E\dot{x}(t) = Ax(t) + Bu(t)$
 - $x(t) \in \mathbb{R}^n$ is the state vector
 - $u(t) \in \mathbb{R}^m$ is the s input vector
 - $E, A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$ are the DAEs matrices, where E is singular (non-invertible)
 - <u>Index of a DAE</u>: typically (can depend on initial conditions) the minimum number of times to differentiate DAEs wrt t to get ODEs ("<u>index reduction</u>"), where ODEs are called index-0, can typically evaluate rank(E) to check
 - Example: Index-2 interconnected rotating masses (IRM) system



Our Approach

1. Decoupling



- 2. Consistency Checking
 - Define a consistent space for the initial state and input
 - Guarantee a solution for the DAE system
- 3. Construct reachable set for the decoupled system
 - Using *Star-sets* and Simulation
- 4. Construct reachable set for original DAE system
- 5. Perform safety verification & falsification using computed reachable set

• **Definition (Tractability index).** Assume that the DAE system $E\dot{x}(t) = Ax(t) + Bu(t)$ is **solvable**, i.e., the matrix pair (*E*, *A*) is **regular**. A **matrix chain** is defined by:

 $E_0 = E, A_0 = A$

 $E_{j+1} = E_j - A_j Q_j, A_{j+1} = A_j O_j, j \ge 0$, where $E_j Q_j = 0, Q_j^2 = Q_j, P_j = I_n - Q_j$ Where \exists index μ s.t. E_{μ} is non-singular and $\forall j \in [0, \mu - 1), E_j$ is singular

 μ is called the **tractability index**

A matrix pair (E, A) is **<u>regular</u>** if det $(sE - A) \neq 0$

 Lemma 1 (Index-1 DAE decoupling). An index-1 DAE system can be decoupled using the matrix chain defined as follows:

 $\Delta_1: \dot{x_1}(t) = N_1 x_1(t) + M_1 u(t), \text{ ODE subsystems}$

 Δ_2 : $\dot{x_2}(t) = N_2 x_1(t) + M_2 u(t)$, AC subsystems

 $x(t) = x_1(t) + x_2(t)$

 $x_1(t) = P_0 x(t), N_1 = P_0 E_1^{-1} A_0, M_1 = P_0 E_1^{-1} B$

 $x_2(t) = Q_0 x(t), N_2 = Q_0 E_1^{-1} A_0, M_2 = Q_0 E_1^{-1} B$

 Lemma 2 (Index-2 DAE decoupling). An index-2 DAE system can be decoupled using the matrix chain defined as follows:

 Δ_1 : $\dot{x_1}(t) = N_1 x_1(t) + M_1 u(t)$, ODE subsystems

 Δ_2 : $\dot{x_2}(t) = N_2 x_1(t) + M_2 u(t)$, AC subsystems 1

 $\Delta_3: \dot{x_3}(t) = N_3 x_1(t) + M_3 u(t) + L_3 \dot{x_2}(t)$, AC subsystems 2

 $x(t) = x_1(t) + x_2(t) + x_3(t)$

 $\begin{aligned} x_1(t) &= P_0 P_1 x(t), N_1 = P_0 P_1 E_2^{-1} A_2, M_1 = P_0 P_1 E_2^{-1} B\\ x_2(t) &= P_0 Q_1 x(t), N_2 = P_0 Q_1 E_2^{-1} A_2, M_2 = P_0 Q_1 E_2^{-1} B\\ x_3(t) &= Q_0 x(t), N_3 = Q_0 P_1 E_2^{-1} A_2, M_3 = Q_0 P_1 E_2^{-1} B, L_3 = Q_0 Q_1 \end{aligned}$

- Intuition: basically taking derivatives wrt t of the algebraic constraint subsystems to get ODEs
- Scalability issue: increasing dimensionality, more state variables being introduced

 Lemma 3 (Index-3 DAE decoupling). An index-3 DAE system can be decoupled using the matrix chain defined as follows:

$$\Delta_{1}: \dot{x}_{1}(t) = N_{1}x_{1}(t) + M_{1}u(t), \text{ ODE subsystems}$$

$$\Delta_{2}: \dot{x}_{2}(t) = N_{2}x_{1}(t) + M_{2}u(t), \text{ AC subsystems 1}$$

$$\Delta_{3}: \dot{x}_{3}(t) = N_{3}x_{1}(t) + M_{3}u(t) + L_{3}\dot{x}_{2}(t), \text{ AC subsystems 2}$$

$$\Delta_{4}: \dot{x}_{4}(t) = N_{4}x_{1}(t) + M_{4}u(t) + L_{4}\dot{x}_{3}(t) + Z_{4}\dot{x}_{2}(t), \text{ AC subsystems 3}$$

$$x(t) = x_{1}(t) + x_{2}(t) + x_{3}(t) + x_{4}(t)$$

$$x_{1}(t) = P_{0}P_{1}P_{2}x(t), N_{1} = P_{0}P_{1}P_{2}E_{3}^{-1}A_{3}, M_{1} = P_{0}P_{1}P_{2}E_{3}^{-1}B$$

$$x_{2}(t) = P_{0}P_{1}Q_{2}x(t), N_{2} = P_{0}P_{1}Q_{2}E_{3}^{-1}A_{3}, M_{2} = P_{0}P_{1}Q_{2}E_{3}^{-1}B$$

$$x_{3}(t) = P_{0}Q_{1}x(t), N_{3} = P_{0}Q_{1}P_{2}E_{3}^{-1}A_{3}, M_{3} = P_{0}Q_{1}P_{2}E_{3}^{-1}B, L_{3} = P_{0}Q_{1}Q_{2}$$

$$x_{4}(t) = Q_{0}x(t), N_{3} = Q_{0}P_{1}P_{2}E_{3}^{-1}A_{3}, M_{4} = Q_{0}P_{1}P_{2}E_{3}^{-1}B, L_{4} = Q_{0}Q_{1}, Z_{4} = Q_{0}P_{1}Q_{2}$$

Admissible Projectors

• Why is it needed?

Algorithm 3.1 Admissible Projectors Construction							
Input : (E, A) % matrices of a DAE system							
Output: admissible projectors							
1: procedure Initialization							
2: projectors = $[]$ % a list of projectors							
3: $E_0 = E$, $A_0 = A$ and $n = number of state variables$							
4: procedure Construction of admissible projectors							
5: if $rank(E_0) == n$:							
6: $exit() \% E$ is nonsingular, thus, the DAE is equivalent to an ODE.							
7: else:							
8: $Q_0 = orthogonal_projector_on_Ker(E_0), P_0 = I_n - Q_0, E_1 = E_0 - A_0Q_0$							
9: if $rank(E_1) == n$:							
10: projectors $\leftarrow Q_0$ % the DAE has index-1							
11: else:							
12: $Q_1 = orthogonal_projector_on_Ker(E_1), P_1 = I_n - Q_1$							
13: $A_1 = A_0 P_0, \ E_2 = E_1 - A_1 Q_1$							
14: if $rank(E_2) == n$:							
15: $Q_1^* = -Q_1 E_2^{-1} A_1$							
16: projectors $\leftarrow (Q_0, Q_1^*)$ % the DAE has index-2							
17: else:							
18: $Q_2 = orthogonal_projector_on_Ker(E_2), P_2 = I_n - Q_2$							
19: $A_2 = A_1 P_1, \ E_3 = E_2 - A_2 Q_2$ 20: if $rank(E_3) == n$:							
20: if $rank(E_3) == n$: 21: $Q'_2 = Q_2 E_3^{-1} A_2, P'_2 = I_n - Q'_2, Q'_1 = Q_1 P'_2 E_3^{-1} A_1$							
21. $Q_2 = Q_2 L_3 A_2, I_2 = I_n = Q_2, Q_1 = Q_1 I_2 L_3 A_1$ 22: $E'_2 = E_1 - A_1 Q'_1, P'_1 = I_n - Q'_1, A'_2 = A_1 P'_1$							
22. $D_2 = D_1 - A_1Q_1, I_1 = I_n - Q_1, A_2 = A_1I_1$ 23: $Q_2'' = orthogonal_projector_on_Ker(E_2'), P_2'' = I_n - Q_2''$							
24: $E_3'' = E_2' - A_2' Q_2'', Q_2^* = -Q_2'' (E_3'')^{-1} A_2'$							
25: $P_3 = D_2 = P_2 Q_2, Q_2 = Q_2 (D_3) = P_2$ projectors $\leftarrow (Q_0, Q_1', Q_2) \%$ the DAE has index-3							
$26: ext{ else:} ext{ else:}$							
27: $exit()$ % the DAE has index lager than 3							
28: return projectors							

Example: Decoupling for IRM System

Consistent initial set of states

IRM can be decoupled into one ODE and two AC subsystems

 To guarantee a solution for the DAE system, the initial states and inputs must satisfy the following conditions

Index-1 DAE: $x_2(0) = N_2 x_1(0) + M_2 u(0)$ Index-2 DAE: $x_2(0) = N_2 x_1(0) + M_2 u(0)$ $x_3(0) = N_3 x_1(0) + M_3 u(0) + L_3 \dot{x}_2(0)$ Index-3 DAE: $x_2(0) = N_2 x_1(0) + M_2 u(0)$ $x_3(0) = N_3 x_1(0) + M_3 u(0) + L_3 \dot{x}_2(0)$ $x_4(0) = N_4 x_1(0) + M_4 u(0) + L_4 \dot{x}_3(0) + Z_4 \dot{x}_2(0)$

- Where input u(t) is **<u>smooth</u>** such that: $\dot{u}(t) = A_u u(t), u(0) = u_0 \in U_0$
 - $A_u \in \mathbb{R}^{m \times n}$: user-defined input matrix
 - U₀: the set of initial inputs

• **Definition (Consistent space).** Consider the DAE system Δ : $E\dot{x}(t) = Ax(t) + Bu(t)$, by letting u(t) = 0, we define a **consistent matrix** Γ as:

Index-1
$$\Delta$$
: $\Gamma = Q_0 - N_2 P$
Index-2 Δ : $\begin{bmatrix} P_0 Q_1 - N_2 P_0 P_1 \\ Q_0 - (N_3 + L_3 N_2 N_1) P_0 P_1 \end{bmatrix}$
Index-2 Δ : $\begin{bmatrix} P_0 P_1 Q_2 - N_2 P_0 P_1 P_2 \\ P_0 Q_1 - (N_3 + L_3 N_2 N_1) P_0 P_1 P_2 \\ Q_0 - [N_4 + L_4 (N_3 N_1 + L_3 N_2 N_1^2) + Z_4 N_2 N_1] P_0 P_1 P_2 \end{bmatrix}$

Then, $Ker(\Gamma)$ is the <u>consistent space</u> of the system Δ , also denotes null space of the matrix Γ

• An initial state x_0 is **<u>consistent</u>** if it is in the consistent space, i.e., $\Gamma x_0 = 0$

• **Definition (Modified Star-Set).** A <u>modified star set</u> Θ is a tuple $\langle V, P \rangle$, where $V = [v_1, v_2, ..., v_k] \in \mathbb{R}^{n \times k}$ is a <u>star basis matrix</u> and *P* is a <u>linear</u> <u>predicate</u>. The set of states represented by the star is given by:

$$\llbracket \Theta \rrbracket = \{ x | x = \Sigma_{i=1}^{k} (\alpha_{i} v_{i}) = V \times \alpha, P(\alpha) \triangleq C\alpha \leq d \}$$

where, $\alpha = [\alpha_1 = 1, \alpha_2, ..., \alpha_k]^T$, $C \in \mathbb{R}^{p \times k}$, $P \in \mathbb{R}^p$, and p is the number of linear constraints. $V = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $-1 \qquad \Theta \qquad 2 \qquad X_1 \qquad C = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix} \qquad d = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 1 \\ 1 \\ 1 \end{bmatrix}$

[Stanley Bak, Hoang-Dung Tran, Taylor T. Johnson, "Numerical Verification of Affine Systems with Up to a Billion Dimensions", HSCC'19]

[Hoang-Dung Tran, Patrick Musau, Diego Manzanas Lopez, Xiaodong Yang, Luan Viet Nguyen, Weiming Xiang, Taylor T. Johnson, "Star-Based Reachability Analysis for Deep Neural Networks", FM'19]

• Lemma 4 (Reachable Set Construction). Given an autonomous DAE system $E\dot{x}(t) = Ax(t) + Bu(t)$ where u(t) = 0 and a consistent initial set of states $\Theta(0) = \langle V(0), P \rangle$, let $\Theta_1(t)$ be the <u>reachable set</u> at time t of the corresponding ODE subsystem after decoupling. Then, the <u>reachable set at time</u> t of the system is given by $\Theta(t) = \langle V(t) = \Psi V_1(t), P \rangle$, where Ψ is a reachable set projector defined as

Index-1: $\Psi = I_n + N_2$ Index-2: $\Psi = I_n + N_2 + N_3 + L_3 N_2 N_1$ Index-3: $\Psi = I_n + N_2 + N_3 + L_3 N_2 N_1 + L_4 N_3 N_1 + L_4 L_3 N_2 N_1^2 + Z_4 N_2 N_1$

• Recall N_i , L_j , Z_k are from Marz decoupling discussed earlier

Algorithm 5.1 Reachable set computation

Inputs: Matrices of an autonomous DAE system (E, A), initial set of states $\Theta(0) =$

 $\langle V(0), P \rangle$, time step h, number of steps N.

Output: Reachable set % A list of stars

- 1: procedure Initialization
- $2: \quad ListOfStars = []$
- 3: Decoupling the system
- 4: Obtain consistent space $Ker(\Gamma)$
- 5: If $V(0) \notin Ker(\Gamma)$: exit() % inconsistent initial set of states
- 6: **Else**: Obtain initial set of states for ODE subsystem:

7:
$$\Theta_1(0) = \langle V_1(0), P \rangle, V_1(0) = [v_1^1(0) \cdots v_k^1(0)]$$

8: procedure REACHABLE SET CONSTRUCTION

for $j = 0, 1, 2, \cdots, N$: 9: for $i = 1, 2, \dots, k$: 10: Compute $v_i^1(jh) = e^{N_1 jh} v_i^1(0)$ % using ODE solvers 11: Construct $V_1(jh) = [v_1^1(jh) \ v_2^1(jh) \ \cdots \ v_k^1(jh)]$ 12:Compute V(jh) from $V_1(jh)$ 13:14:Construct $\Theta(jh) = \langle V(jh), P \rangle$ $ListOfStars \leftarrow \Theta(jh)$ 15:return ListOfStars 16:

Bounded-time safety verification/falsification

Algorithm 5.2 Bounded-time safety verification/falsification

Inputs: Reachable_Set % a list of stars; $Unsafe(\Delta) \triangleq Gx \leq f$ % the unsafe set **Output**: Safe/Unsafe and Unsafe_Trace

- 1: procedure Initialization
- 2: N = number of stars in the reachable set
- $3: \quad Status = Safe$
- 4: $Unsafe_Trace = []$
- 5: **procedure** Verification/Falsification

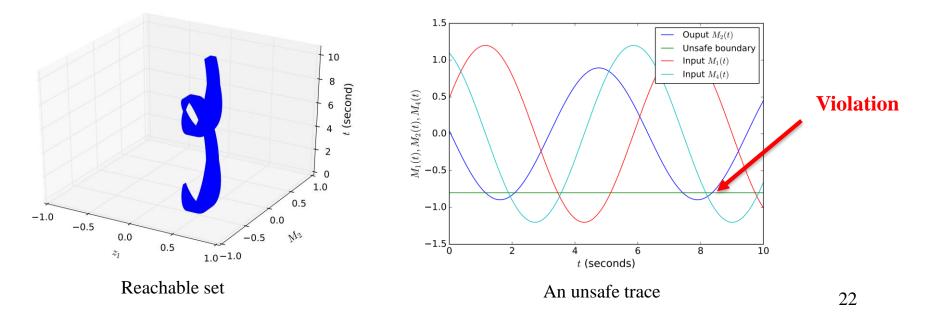
6: for
$$j = 1, 2, \dots, N$$
:
7: $\Theta_j = Reachable_Set[j] = \langle V_j, P \rangle, P \triangleq C\alpha \leq d$
8: Construct $\overline{P} \triangleq \begin{bmatrix} GV_j \\ C \end{bmatrix} \alpha \leq \begin{bmatrix} f \\ d \end{bmatrix}$
9: If \overline{P} is feasible:
10: Status = Unsafe, get $\alpha_{feasible}$, exit()
11: If Status = Unsafe:
12: for $j = 1, 2, \dots, N$:
13: Compute $x_j = V_j \alpha_{feasible}$
14: Unsafe_Trace $\leftarrow x_j$
15: return Status, Unsafe_Trace

Reachability Analysis for IRM System

• Sinusoid input
$$\begin{bmatrix} \dot{M}_1(t) \\ \dot{M}_4(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} M_1(t) \\ M_4(t) \end{bmatrix}, u(0) = \begin{bmatrix} M_1(0) \\ M_4(0) \end{bmatrix} \in U$$

• A consistent initial set of states $V(0) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0.513 & 0 \\ -0.513 & 0 \\ -0.616 & 0.447 \\ 0.308 & 0.894 \end{bmatrix}, P(\alpha) \triangleq C\alpha \le d, C = \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix}, d = \begin{bmatrix} 0.2 \\ -0.1 \\ 1.2 \\ -1.0 \end{bmatrix}$

• Safety verification w.r.t unsafe specification $M_2(t) \le -0.8$



Scalability Performance

Table 1. Verification results for all benchmarks using Daev.

Benchmarks	n	Index	Unsafe Set	Result	V-T(s)
RL network [24]	3	2	$x_1 \le -0.2 \land x_2 \le -0.1$	unsafe	0.184
			$x_1 \ge 0.2$	safe	0.44
RLC circuit [12]	4	1	$x_1 + x_3 \ge 0.2$	unsafe	0.224
			$x_4 \le -0.3$	safe	1.37
Interconnected ro- tating mass [30]	4	2	$x_3 \le -0.9$	unsafe	0.37
			$x_4 \le -1.0$	safe	0.114
Generator [20]	9	3	$x_9 \ge 0.01$	unsafe	0.4
			$x_1 \ge 1.0$	safe	0.684
Damped-mass spring [27]	11	3	$x_3 \le 1 \land x_8 \le 1.5$	safe	1.06
			$x_8 \le -0.2$	unsafe	1.08
PEEC [9]	480	2	$x_{478} \ge 0.05$	safe	28.84
			$x_{478} \ge 0.01$	unsafe	28.25
MNA-1 [9]	578	2	$x_1 \ge -0.001$	safe	192.7
			$x_1 \ge -0.0015$	unsafe	202.6
MNA-4 [9]	980	3	$x_2 \ge 0.0005$	safe	1858.4
			$x_2 \ge 0.0002$	unsafe	1836.04
Stokes-equation [27]	4880	2	$v_x^c + v_y^c \le -0.04$	unsafe	3502.3
			$v_x^c \ge 0.2$	safe	3532.3

Benchmark details: ARCH'18 paper, "Linear Differential-Algebraic Equations"

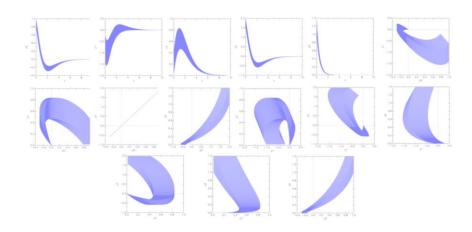
Takeaways:

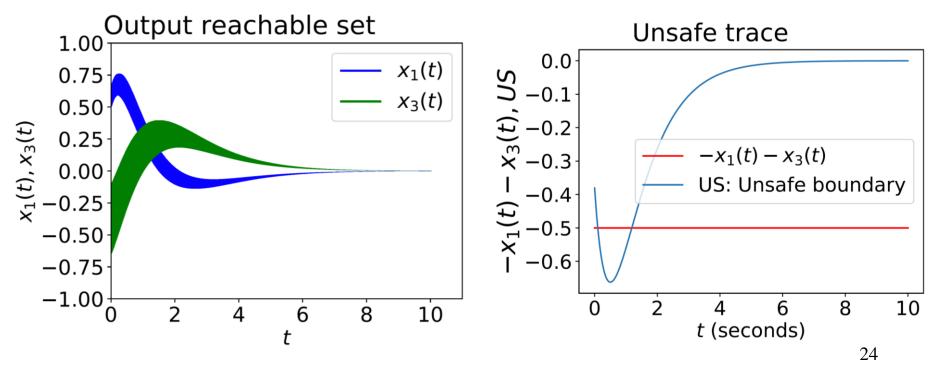
- Daev is scalable in verifying large DAE systems (≥ 1K state variables) where other overapproximation approaches not applicable
- Daev can produce unsafe traces

• Available: <u>https://github.com/verivital/daev</u>

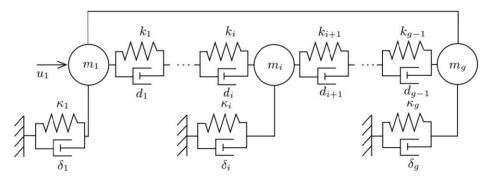
https://github.com/verivital/daev /releases/tag/formats2019

RLC Circuit

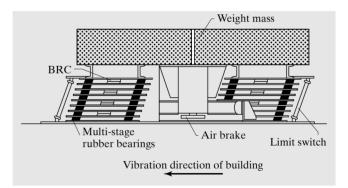


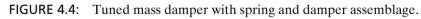


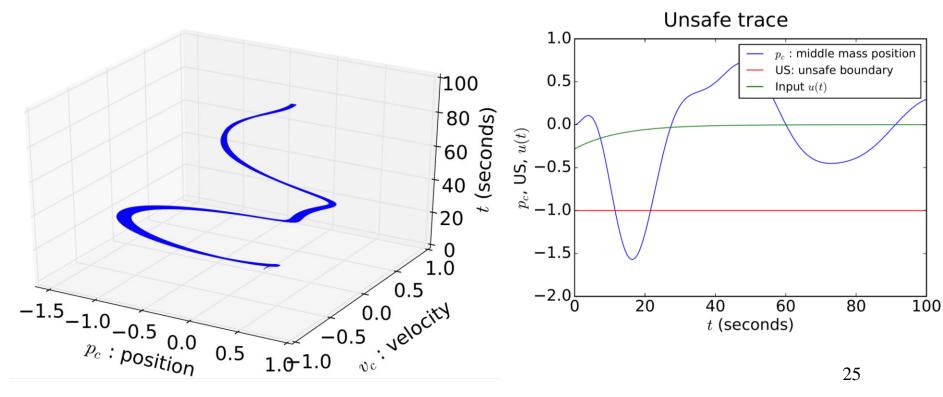
Damped Mass Spring



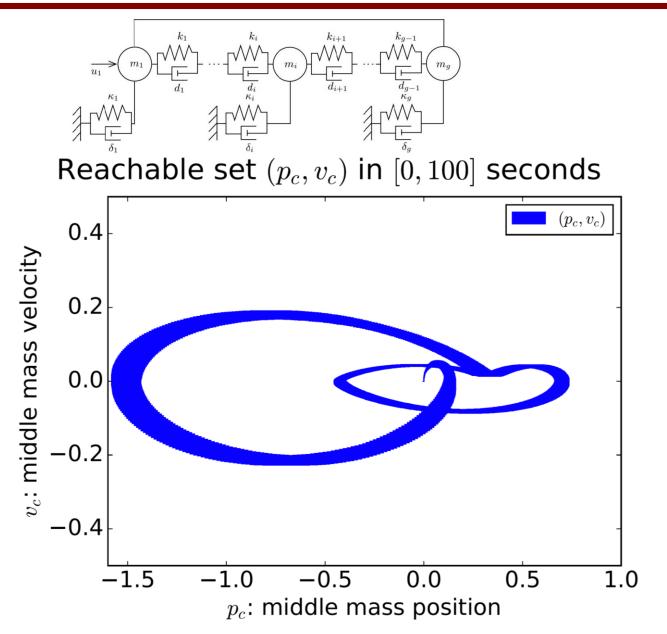
Reachable Set (p_c, v_c) vs. time t







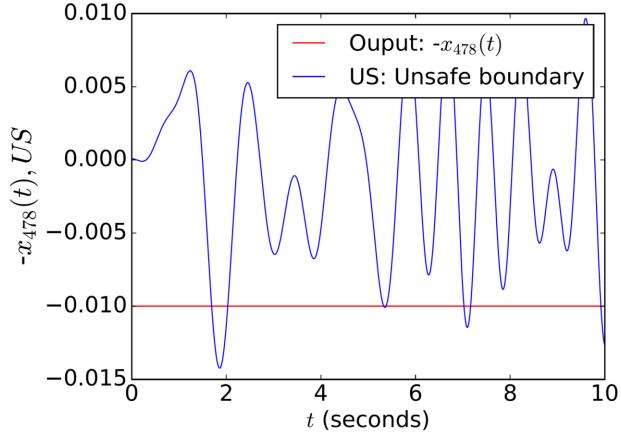
Damped Mass Spring

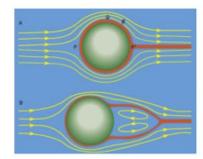


26

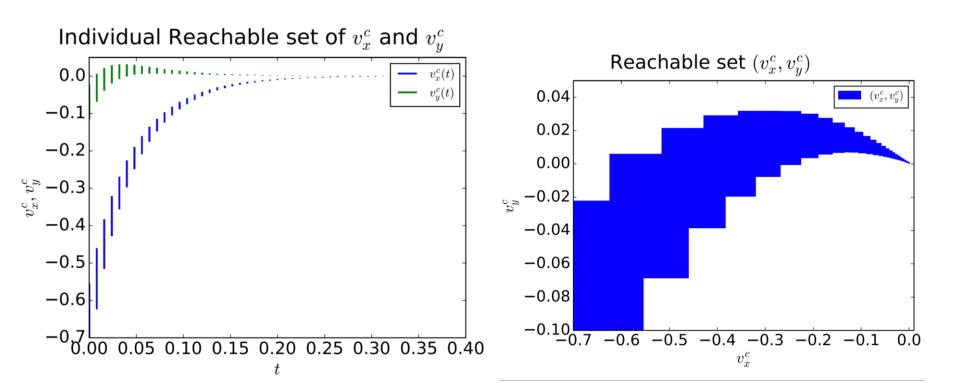
Partial Element Equivalent Circuit (PEEC)

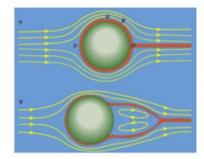
 Electromagnetics application: RF engineering Unsafe trace



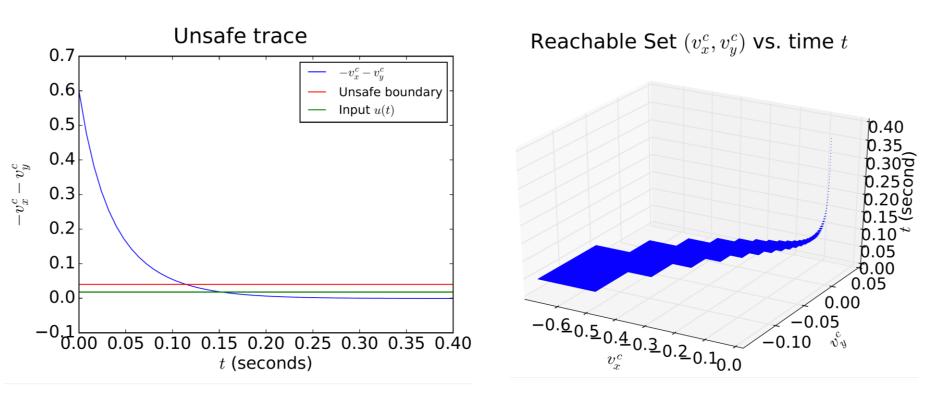


$$\begin{aligned} \frac{\partial v}{\partial t} &= \Delta v - \nabla \rho + f, \text{ in } \Omega \times (0, T) \\ \nabla v &= 0, \text{ in } \Omega \times (0, T), \end{aligned}$$





$$\begin{aligned} \frac{\partial v}{\partial t} &= \Delta v - \nabla \rho + f, \text{ in } \Omega \times (0,T) \\ \nabla v &= 0, \text{ in } \Omega \times (0,T), \end{aligned}$$



Scalability Analysis

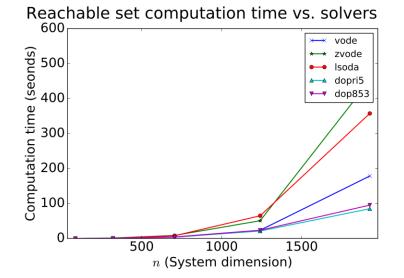
• Stokes-equation PDE
$$\frac{\partial v}{\partial t} = \Delta v - \nabla \rho + f$$
, in $\Omega \times (0, T)$,
 $\nabla v = 0$, in $\Omega \times (0, T)$,

Boundary conditions => algebraic constraints (Finite-difference method based on marker-and-cell [MAC])

Table 2. Verification time of Stokes-equation with different dimensions n. on marker-and-cell [MAC])

n	86	321	706	1241	1926	2761
D-T	0.012s	0.63s	6.32s	40.38s	155.32s	466.38s
RSC-T	0.019s	0.37s	2.98s	19.29s	68.15s	200.89 <i>s</i>
CS-T	0.0017s	0.0014s	0.0015s	0.0017s	0.0018s	0.002s
V-T	0.0327s	1.0014s	9.3015 <i>s</i>	59.6717s	223.4718s	667.272s

D-T: decoupling time, RSC-T: reachable set computation time CS-T: checking safety time V-T: verification time (overall total time sum)



Takeaway:

- Decoupling and reachable set computation times dominate the time for verification process
- Time for checking safety is almost unchanged and very small
- *vode*, *dopri5*, and *dop853* solvers should be used for large DAE systems

Conclusion

- A simulation-based reachability analysis for high-index, linear DAE systems
- Based on the effective combination of a decoupling method and a reachable set computation using star-sets
- Design and implementation of the approach in a Python toolbox, called **Daev:** <u>https://github.com/verivital/daev/</u>
- Applied to verify/falsify high-index linear DAE systems
- Approach can deal with DAE systems with up to thousands of state variables

Future Work

- \checkmark Enhance the time performance and the scalability of our approach
- Apply to verify million-dimensional DAE systems
- DAEs with hybrid/switching behavior (time or state-dependent)

Thank You

|{|| Controlling Groups of Swarm Robots

- **Students**
 - **Technologies** VU EECS: Hoang-Dung Tran (PhD), Nate Hamilton (PhD), Ayana Wild (PhD), Patrick Musau (PhD), Xiaodong Yang (PhD), Ran Hao (PhD), Tianshu Bao (PhD), Diego Manzanas (PhD), Weiming Xiang (Postdoc), Joel Rosenfeld (Postdoc)

NVIDIA.

United

FOR

WITED STATES AIR

UTA CSE:Shafiul Chowdhury (PhD)

THE RESENCE LABORIT

- UTA Alumni: Luan Viet Nguyen (PhD), Omar Beg (PhD), Nathan Hervey (MS), Ruoshi Zhang (MS), Shweta Hardas (MS), Randy Long (MS), Rahul (MS), Amol (MS)
- **Recent Collaborators**
 - Vanderbilt: Gabor Karsai, Xenofon Koutsoukos, Janos Sztipanovits, ...
 - UTA: Ali Davoudi, Christoph Csallner, Matt Wright, Steve Mattingly, Colleen Casey
 - Illinois: Sayan Mitra, Marco Caccamo Lui Sha, Amy LaViers
 - AFRL: Stanley Bak and Steven Drager
 - Toyota: Jim Kapinski, Xiaoqing Jin, Jyo Deshmukh, Ken Butts, Issac Ito
 - Waterloo: Sebastian Fischmeister
 - Toronto: Andreas Veneris
 - ANU: Sergiy Bogomolov
 - UTSW: Ian White, Victor Salinas, Rama Ranganathan

Taylor T. Johnson

http://www.TaylorTJohnson.com Taylor.Johnson@vanderbilt.edu http://www.verivital.com

VANDERBILT

Thank You! Questions?

UNIVERSITY ®