## Bounded Model Checking of MPL Systems via Predicate Abstractions

## FORMATS 2019

## Muhammad Syifa'ul Mufid ${ }^{1,3}$ <br> Dieky Adzkiya² Alessandro Abate ${ }^{1}$

${ }^{1}$ Department of Computer Science, University of Oxford, UK
${ }^{2}$ Department of Mathematics, ITS Surabaya, Indonesia
${ }^{3}$ Indonesia Endowment Fund for Education (LPDP)

lembaga pengelola dana pendidikan

Amsterdam, 27 August 2019

## Outline

- Max-Plus-Linear (MPL) systems and time difference
- Predicate abstractions of MPL systems
- Bounded Model Checking of MPL systems
- Conclusion


## Max-Plus-Linear Systems

- Based on max-plus algebra $\left(\mathbb{R}_{\max }, \oplus, \otimes\right)$ where $\mathbb{R}_{\max }:=\mathbb{R} \cup\{-\infty\}$. For all $a, b \in \mathbb{R}_{\text {max }}$

$$
a \oplus b:=\max \{a, b\}, \quad a \otimes b:=a+b
$$

- The operations can be applied to matrices. For $A \in \mathbb{R}_{\max }^{n \times n}$, $A^{\otimes r}$ to denote $A \otimes \ldots \otimes A$ ( $r$ times)
- Defined as $\mathbf{x}(k+1)=A \otimes \mathbf{x}(k)$, where $A \in \mathbb{R}_{\max }^{n \times n}$ and $\mathbf{x}(k) \in \mathbb{R}^{n}$.
- Applications: transportations, scheduling, biological systems...


## Max-Plus-Linear Systems

- The precedence graph of $A$, denoted by $\mathscr{G}(A)$, is a weighted directed graph with vertices $1,2 \ldots, n$ and an edge from $j$ to $i$ with weight $A(i, j)$ for each $A(i, j) \neq-\infty$
- The average weight of path $p=i_{0} i_{1} \ldots i_{k}$ in $\mathscr{G}(A)$ is equal to

$$
\frac{A\left(i_{1}, i_{0}\right)+\ldots+A\left(i_{k}, i_{k-1}\right)}{k}
$$

- A matrix $A \in \mathbb{R}_{\max }^{n \times n}$ is called irreducible if $\mathscr{G}(A)$ is strongly connected
- If $A$ is irreducible then there is only one eigenvalue $\lambda=$ the maximum average weight of circuits


## Max-Plus-Linear Systems

## Transient Condition*

For an irreducible matrix $A \in \mathbb{R}_{\max }^{n \times n}$ and its corresponding eigenvalue $\lambda$, there exist $k_{0}, c \in \mathbb{N}$ such that $A^{\otimes k+c}=\lambda c \otimes A^{\otimes k}$ for all $k \geq k_{0}$. The smallest such $k_{0}$ and $c$ are called the transient and the cyclicity of $A$, respectively.

[^0]
## Max-Plus-Linear Systems

## Transient Condition*

For an irreducible matrix $A \in \mathbb{R}_{\max }^{n \times n}$ and its corresponding eigenvalue $\lambda$, there exist $k_{0}, c \in \mathbb{N}$ such that $A^{\otimes k+c}=\lambda c \otimes A^{\otimes k}$ for all $k \geq k_{0}$. The smallest such $k_{0}$ and $c$ are called the transient and the cyclicity of $A$, respectively.

Given $\mathbf{x}(k+1)=A \otimes \mathbf{x}(k)$ and an initial $\mathbf{x}(0)$

$$
\mathbf{x}(0), \mathbf{x}(1), \mathbf{x}(2), \ldots
$$

is eventually periodic in max-plus algebraic sense. For all $k \geq k_{0}$,

$$
\mathbf{x}(k+c)=\lambda c \otimes \mathbf{x}(k)
$$

[^1]
## Max-Plus-Linear Systems

## Transient Condition*

For an irreducible matrix $A \in \mathbb{R}_{\max }^{n \times n}$ and its corresponding eigenvalue $\lambda$, there exist $k_{0}, c \in \mathbb{N}$ such that $A^{\otimes k+c}=\lambda c \otimes A^{\otimes k}$ for all $k \geq k_{0}$. The smallest such $k_{0}$ and $c$ are called the transient and the cyclicity of $A$, respectively.

Given $\mathbf{x}(k+1)=A \otimes \mathbf{x}(k)$ and an initial $\mathbf{x}(0)$

$$
\mathbf{x}(0), \mathbf{x}(1), \mathbf{x}(2), \ldots
$$

is eventually periodic in max-plus algebraic sense. For all $k \geq k_{0}$,

$$
\begin{aligned}
\mathbf{x}(k+c) & =\boldsymbol{\lambda} c \otimes \mathbf{x}(k) \\
{\left[\begin{array}{c}
x_{1}(k+c) \\
\vdots \\
x_{n}(k+c)
\end{array}\right] } & =\left[\begin{array}{c}
\lambda c \\
\vdots \\
\lambda c
\end{array}\right]+\left[\begin{array}{c}
x_{1}(k) \\
\vdots \\
x_{n}(k)
\end{array}\right]
\end{aligned}
$$

[^2]
## Max-Plus-Linear Systems

- Time differences

$$
x_{i}(k)-x_{j}(k) \text { or } x_{i}(k+1)-x_{i}(k)
$$

## Max-Plus-Linear Systems

- Time differences

$$
x_{i}-x_{j} \text { or } x_{i}^{\prime}-x_{i}
$$

## Max-Plus-Linear Systems

- Time differences

$$
x_{i}-x_{j} \text { or } x_{i}^{\prime}-x_{i}
$$

- Time difference propositions

$$
x_{i}^{\prime}-x_{i} \sim \alpha
$$

$$
\sim \in\{<, \leq, \geq,>\} \text { and } \alpha \in \mathbb{R}
$$

- Time difference specifications

LTL formula over time difference propositions

- $\bigcirc\left(x_{i}{ }^{\prime}-x_{i} \geq 5\right) \equiv x_{i}(2)-x_{i}(1) \geq 5$
$\square \diamond \square\left(x_{i}{ }^{\prime}-x_{i} \leq 8\right) \equiv \exists k \geq 0$ s.t. $\forall m \geq k x_{i}(m+1)-x_{i}(m) \leq 8$


## Max-Plus-Linear Systems



## Max-Plus-Linear Systems


$I=\mathbb{R}^{n}$
For all $\mathbf{x}(0) \in I$

$$
\mathbf{x}(0), \mathbf{x}(1), \mathbf{x}(2), \ldots \text { satisfies } \varphi
$$

## Max-Plus-Linear Systems


$I=\mathbb{R}^{n}$
For all $\mathbf{x}(0) \in I$

$$
\mathbf{x}(0), \mathbf{x}(1), \mathbf{x}(2), \ldots \text { satisfies } \varphi
$$

- Infinite and continuous state space
- The primed variables
- This problem is undecidable
- Solve the problem by applying predicate abstractions (PA) and bounded model checking (BMC)


## PA of MPL Systems

- Abstractions: techniques to generate a finite and smaller system from a large or even infinite-space system

$$
\hat{S} \models \varphi \rightarrow S \models \varphi
$$

## PA of MPL Systems

- Abstractions: techniques to generate a finite and smaller system from a large or even infinite-space system

$$
\hat{S} \models \varphi \rightarrow S \models \varphi
$$

- MPL systems $\rightarrow$ Piece-Wise Affine (PWA) System Partitioning state space into several convex domains (PWA regions).
Each region has corresponding affine dynamics
- Given $A \in \mathbb{R}_{\text {max }}^{n \times n}$, the region w.r.t. $\mathbf{g} \in\{1, \ldots, n\}^{n}$ is

$$
R_{\mathbf{g}}=\bigcap_{i=1}^{n} \bigcap_{j=1}^{n}\left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{g_{i}}-x_{j} \geq A(i, j)-A\left(i, g_{i}\right)\right\}
$$

$R_{\mathrm{g}}$ is a Difference-Bound Matrix (DBM)

- If $R_{\mathrm{g}} \neq \emptyset$ then the corresponding affine dynamics

$$
x_{i}^{\prime}=x_{g_{i}}+A\left(i, g_{i}\right), \quad i=1, \ldots, n
$$

## PA of MPL Systems

- Predicate abstraction: using a set of predicates

$$
P=\left\{p_{1}, \ldots, p_{k}\right\}
$$

- Predicates are identified from the (concrete) system and specifications
- Abstract states are generated from all Boolean assignments w.r.t. $P$

$$
|\hat{S}| \leq 2^{k}
$$

- Predicates also serve as atomic propositions*

[^3]
## PA of MPL Systems

- Predicates from MPL systems?


## PA of MPL Systems

- Predicates from MPL systems?

$$
R_{\mathbf{g}}=\bigcap_{i=1}^{n} \bigcap_{j=1}^{n}\left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{g_{i}}-x_{j} \geq A(i, j)-A\left(i, g_{i}\right)\right\}
$$

## PA of MPL Systems

- Predicates from MPL systems?

$$
R_{\mathbf{g}}=\bigcap_{i=1}^{n} \bigcap_{j=1}^{n}\left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{g_{i}}-x_{j} \geq A(i, j)-A\left(i, g_{i}\right)\right\}
$$

Predicates are in the form of

$$
x_{k}-x_{j} \sim A(i, j)-A(i, k), \quad i=1, \ldots, n, \quad k<j \in \operatorname{fin}_{i}
$$

where $\mathrm{fin}_{i}=\{j \mid A(i, j) \neq-\infty\}$
WLOG $\sim \in\{>, \geq\}$

## PA of MPL Systems

- Predicates from specifications?

$$
\begin{aligned}
& x_{i}^{\prime}-x_{i} \sim \alpha \\
& \max _{j \in \mathrm{fin}}^{i}
\end{aligned}\left\{x_{j}+A(i, j)\right\}-x_{i} \sim \alpha
$$

## PA of MPL Systems

- Predicates from specifications?

$$
\left.\begin{array}{rl}
x_{i}^{\prime}-x_{i} & \sim \alpha \\
\max _{j \in \mathrm{fin}}^{i}
\end{array}, x_{j}+A(i, j)\right\}-x_{i} \sim \alpha
$$

Predicates are in the form of $x_{j}-x_{i} \sim \alpha-A(i, j)$ for all $j \in \mathrm{fin}_{i}$

- If $i \in \mathrm{fin}_{i}$ i.e. $A(i, i) \neq-\infty$, we can ignore $x_{i}-x_{i} \sim \alpha-A(i, i)$


## PA of MPL Systems

## Example:

$$
\mathbf{x}^{\prime}=A \otimes \mathbf{x}=\left[\begin{array}{ll}
2 & 5 \\
3 & 3
\end{array}\right] \otimes\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text { and } t \equiv x_{1}^{\prime}-x_{1} \leq 5
$$

## PA of MPL Systems

## Example:

$$
\mathbf{x}^{\prime}=A \otimes \mathbf{x}=\left[\begin{array}{ll}
2 & 5 \\
3 & 3
\end{array}\right] \otimes\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text { and } t \equiv x_{1}^{\prime}-x_{1} \leq 5
$$

Predicates from MPL system
$x_{k}-x_{j} \sim A(i, j)-A(i, k)$

Predicates from TD proposition

$$
x_{j}-x_{i} \sim \alpha-A(i, j)
$$

## PA of MPL Systems

## Example:

$$
\mathbf{x}^{\prime}=A \otimes \mathbf{x}=\left[\begin{array}{ll}
2 & 5 \\
3 & 3
\end{array}\right] \otimes\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text { and } t \equiv x_{1}^{\prime}-x_{1} \leq 5
$$

Predicates from MPL system

$$
\begin{gathered}
x_{k}-x_{j} \sim A(i, j)-A(i, k) \\
x_{1}-x_{2} \geq 3 \\
x_{1}-x_{2} \geq 0
\end{gathered}
$$

Predicates from TD proposition

$$
\begin{gathered}
x_{j}-x_{i} \sim \alpha-A(i, j) \\
x_{2}-x_{1} \leq 0
\end{gathered}
$$

## PA of MPL Systems

## Example:

$$
\mathbf{x}^{\prime}=A \otimes \mathbf{x}=\left[\begin{array}{ll}
2 & 5 \\
3 & 3
\end{array}\right] \otimes\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \text { and } t \equiv x_{1}^{\prime}-x_{1} \leq 5
$$

Predicates from MPL system

$$
\begin{gathered}
x_{k}-x_{j} \sim A(i, j)-A(i, k) \\
x_{1}-x_{2} \geq 3 \\
x_{1}-x_{2} \geq 0
\end{gathered}
$$

Predicates from TD proposition

$$
\begin{gathered}
x_{j}-x_{i} \sim \alpha-A(i, j) \\
x_{2}-x_{1} \leq 0
\end{gathered}
$$

There are two predicates, $P=P_{\text {mat }} \cup P_{\text {time }}=\left\{p_{1}, p_{2}\right\}$ where

$$
\begin{aligned}
& p_{1} \equiv x_{1}-x_{2} \geq 3 \\
& p_{2} \equiv x_{1}-x_{2} \geq 0
\end{aligned}
$$

## PA of MPL Systems

## Example:

There are four possible Boolean assignments

$$
\begin{aligned}
\neg p_{1} \neg p_{2} & \equiv\left(x_{1}-x_{2}<3\right) \wedge\left(x_{1}-x_{2}<0\right) \\
\neg p_{1} p_{2} & \equiv\left(x_{1}-x_{2}<3\right) \wedge\left(x_{1}-x_{2} \geq 0\right) \\
p_{1} \neg p_{2} & \equiv\left(x_{1}-x_{2} \geq 3\right) \wedge\left(x_{1}-x_{2}<0\right) \quad \text { empty set } \\
p_{1} p_{2} & \equiv\left(x_{1}-x_{2} \geq 3\right) \wedge\left(x_{1}-x_{2} \geq 0\right)
\end{aligned}
$$

but only three abstracts states:

$$
\begin{array}{ll}
\hat{s}_{0} \equiv \neg p_{1} \neg p_{2} & \operatorname{DBM}\left(\hat{s}_{0}\right)=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid x_{1}-x_{2}<0\right\} \\
\hat{s}_{1} \equiv \neg p_{1} p_{2} & \operatorname{DBM}\left(\hat{s}_{1}\right)=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid 0 \leq x_{1}-x_{2}<3\right\} \\
\hat{s}_{2} \equiv p_{1} p_{2} & \operatorname{DBM}\left(\hat{s}_{2}\right)=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid x_{1}-x_{2} \geq 3\right\}
\end{array}
$$

## PA of MPL Systems

## Example:

There are four possible Boolean assignments

$$
\begin{aligned}
\neg p_{1} \neg p_{2} & \equiv\left(x_{1}-x_{2}<3\right) \wedge\left(x_{1}-x_{2}<0\right) \\
\neg p_{1} p_{2} & \equiv\left(x_{1}-x_{2}<3\right) \wedge\left(x_{1}-x_{2} \geq 0\right) \\
p_{1} \neg p_{2} & \equiv\left(x_{1}-x_{2} \geq 3\right) \wedge\left(x_{1}-x_{2}<0\right) \quad \text { empty set } \\
p_{1} p_{2} & \equiv\left(x_{1}-x_{2} \geq 3\right) \wedge\left(x_{1}-x_{2} \geq 0\right)
\end{aligned}
$$

but only three abstracts states:

$$
\begin{array}{ll}
\hat{s}_{0} \equiv \neg p_{1} \neg p_{2} & \operatorname{DBM}\left(\hat{s}_{0}\right)=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid x_{1}-x_{2}<0\right\} \\
\hat{s}_{1} \equiv \neg p_{1} p_{2} & \operatorname{DBM}\left(\hat{s}_{1}\right)=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid 0 \leq x_{1}-x_{2}<3\right\} \\
\hat{s}_{2} \equiv p_{1} p_{2} & \operatorname{DBM}\left(\hat{s}_{2}\right)=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid x_{1}-x_{2} \geq 3\right\}
\end{array}
$$

Next step: generate the abstract transition system

## PA of MPL Systems

- Concrete transition systems


## Definition (Trans. sys. associated with MPL system)

A transition system for an MPL system is a tuple $T S=(S, T, I, \mathrm{AP}, L)$ where

- the set of states $S$ is $\mathbb{R}^{n}$,
- $\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in T$ if $\mathbf{x}^{\prime}=A \otimes \mathbf{x}$,
- $I \subseteq \mathbb{R}^{n}$ is a set of initial conditions, (we use $I=\mathbb{R}^{n}$ )
- AP is a set of time-difference propositions,
- the labelling function $L: S \rightarrow 2^{\mathrm{AP}}$ is defined as follows: a state $\mathbf{x} \in S$ is labelled by ' $x_{i}{ }^{\prime}-x_{i} \sim \alpha$ ' if $[A \otimes \mathbf{x}-\mathbf{x}]_{i} \sim \alpha$, where $\sim \in\{>, \geq,<, \leq\}$.


## PA of MPL Systems

- Concrete transition systems


## Definition (Trans. sys. associated with MPL system)

A transition system for an MPL system is a tuple $T S=(S, T, I, \mathrm{AP}, L)$ where

- the set of states $S$ is $\mathbb{R}^{n}$,
- $\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in T$ if $\mathbf{x}^{\prime}=A \otimes \mathbf{x}$,
- $I \subseteq \mathbb{R}^{n}$ is a set of initial conditions, (we use $I=\mathbb{R}^{n}$ )
- AP is a set of time-difference propositions,
- the labelling function $L: S \rightarrow 2^{\mathrm{AP}}$ is defined as follows: a state $\mathbf{x} \in S$ is labelled by ' $x_{i}{ }^{\prime}-x_{i} \sim \alpha$ ' if $[A \otimes \mathbf{x}-\mathbf{x}]_{i} \sim \alpha$, where $\sim \in\{>, \geq,<, \leq\}$.
- The (abstract) transition system for MPL system is $\hat{T S}=\left(\hat{S}, \hat{T}, \hat{I}, P_{\text {mat }} \cup P_{\text {time }}, \hat{L}\right)$


## PA of MPL Systems

- Concrete transition systems


## Definition (Trans. sys. associated with MPL system)

A transition system for an MPL system is a tuple $T S=(S, T, I, \mathrm{AP}, L)$ where

- the set of states $S$ is $\mathbb{R}^{n}$,
- $\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in T$ if $\mathbf{x}^{\prime}=A \otimes \mathbf{x}$,
- $I \subseteq \mathbb{R}^{n}$ is a set of initial conditions, (we use $I=\mathbb{R}^{n}$ )
- AP is a set of time-difference propositions,
- the labelling function $L: S \rightarrow 2^{\mathrm{AP}}$ is defined as follows: a state $\mathbf{x} \in S$ is labelled by ' $x_{i}{ }^{\prime}-x_{i} \sim \alpha$ ' if $[A \otimes \mathbf{x}-\mathbf{x}]_{i} \sim \alpha$, where $\sim \in\{>, \geq,<, \leq\}$.
- The (abstract) transition system for MPL system is $\hat{T S}=\left(\hat{S}, \hat{T}, \hat{I}, P_{\text {mat }} \cup P_{\text {time }}, \hat{L}\right)$

$$
\forall \hat{s} \in \hat{S}, p \in \hat{L}(\hat{s}) \text { iff } p \text { is true in } \hat{s}
$$

## PA of MPL Systems

- Concrete transition systems


## Definition (Trans. sys. associated with MPL system)

A transition system for an MPL system is a tuple $T S=(S, T, I, \mathrm{AP}, L)$ where

- the set of states $S$ is $\mathbb{R}^{n}$,
- $\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in T$ if $\mathbf{x}^{\prime}=A \otimes \mathbf{x}$,
- $I \subseteq \mathbb{R}^{n}$ is a set of initial conditions, (we use $I=\mathbb{R}^{n}$ )
- AP is a set of time-difference propositions,
- the labelling function $L: S \rightarrow 2^{\mathrm{AP}}$ is defined as follows: a state $\mathbf{x} \in S$ is labelled by ' $x_{i}{ }^{\prime}-x_{i} \sim \alpha$ ' if $[A \otimes \mathbf{x}-\mathbf{x}]_{i} \sim \alpha$, where $\sim \in\{>, \geq,<, \leq\}$.
- The (abstract) transition system for MPL system is $\hat{T} S=\left(\hat{S}, \hat{T}, \hat{I}, P_{\text {mat }} \cup P_{\text {time }}, \hat{L}\right)$

$$
\left(\hat{s}_{i}, \hat{s}_{j}\right) \in \hat{T} \text { if } \operatorname{Im}\left(\operatorname{DBM}\left(\hat{s}_{i}\right)\right) \cap \operatorname{DBM}\left(\hat{s}_{j}\right) \neq \emptyset
$$

where $\operatorname{Im}\left(\operatorname{DBM}\left(\hat{s}_{i}\right)\right)=\left\{A \otimes \mathbf{x} \mid \mathbf{x} \in \operatorname{DBM}\left(\hat{s}_{i}\right)\right\}$ (by DBM manipulation)

## PA of MPL Systems



## PA of MPL Systems

(x,

## PA of MPL Systems

$\left(x_{1}^{\prime}-x_{1} \leq 5\right) \Leftrightarrow p_{2}$
Specs: $\Delta \square\left(x_{1}^{\prime}-x_{1} \leq 5\right) \equiv \Delta \square p_{2}$

## PA of MPL Systems


$\left(x_{1}^{\prime}-x_{1} \leq 5\right) \Leftrightarrow p_{2}$
Specs: $\diamond \square\left(x_{1}^{\prime}-x_{1} \leq 5\right) \equiv \diamond \square p_{2}$

- One TD proposition may correspond to more than one predicates


## Proposition

Suppose $p_{1}, \ldots, p_{k}$ are the predicates corresponding to a TD proposition $t \equiv x_{i}^{\prime}-x_{i} \sim \alpha$.
i. For $\sim\{>, \geq\}, t \Leftrightarrow\left(p_{1} \vee \ldots \vee p_{k}\right)$
ii. For $\sim\{<, \leq\}, t \Leftrightarrow\left(p_{1} \wedge \ldots \wedge p_{k}\right)$

## PA of MPL Systems



## PA of MPL Systems



## PA of MPL Systems



- Infinite and continuous state space
- The primed variables
- This problem is undecidable


## BMC of MPL Systems

- Find a counterexample with length $k$
- Increase the length until a pre-known completeness threshold is reached or the problem becomes intractable
- To find completeness threshold is at least as hard as solving the original model-checking problem


## BMC of MPL Systems

- Find a counterexample with length $k$
- Increase the length until a pre-known completeness threshold is reached or the problem becomes intractable
- To find completeness threshold is at least as hard as solving the original model-checking problem
- Two types of $k$-length bounded counterexample $\pi=\hat{s}_{0} \ldots \hat{s}_{k}$

no-loop path



## BMC of MPL Systems

- Find a counterexample with length $k$
- Increase the length until a pre-known completeness threshold is reached or the problem becomes intractable
- To find completeness threshold is at least as hard as solving the original model-checking problem
- Two types of $k$-length bounded counterexample $\pi=\hat{s}_{0} \ldots \hat{s}_{k}$

no-loop path

lasso-shaped:

$$
\pi=\pi_{\text {stem }}\left(\pi_{\text {loop }}\right)^{\omega}
$$

where $\pi_{\text {stem }}=\hat{s}_{0} \ldots \hat{s}_{l-1}$ and $\pi_{l o o p}=\hat{s}_{l} \ldots \hat{s}_{k}$

## BMC of MPL Systems

- The framework



## BMC of MPL Systems

- The framework

- BMC by NuSMV 2.6


## BMC of MPL Systems

- Spuriousness checking

Algorithms via forward-reachability analysis. Completeness:
$\square$ For no-loop paths
$\square$ For lasso-shaped paths (irreducible MPL systems only)

## BMC of MPL Systems

- Spuriousness checking Algorithms via forward-reachability analysis. Completeness:
$\square$ For no-loop paths
$\square$ For lasso-shaped paths (irreducible MPL systems only)
- Refinement procedure
- Lazy abstraction*: find pivot state, a state in which the spuriousness starts

[^4]
## BMC of MPL Systems

- Spuriousness checking Algorithms via forward-reachability analysis. Completeness:
$\square$ For no-loop paths
$\square$ For lasso-shaped paths (irreducible MPL systems only)
- Refinement procedure
$\square$ Lazy abstraction: find pivot state, a state in which the spuriousness starts
$\square$ Splitting procedure in VeriSiMPL 2*
splitting a state with more than one outgoing transitions

[^5]
## BMC of MPL Systems

- Spuriousness checking Algorithms via forward-reachability analysis. Completeness:
$\square$ For no-loop paths
- For lasso-shaped paths (irreducible MPL systems only)
- Refinement procedure



## BMC of MPL Systems

- Spuriousness checking Algorithms via forward-reachability analysis. Completeness:
$\square$ For no-loop paths
- For lasso-shaped paths (irreducible MPL systems only)
- Refinement procedure


$$
\begin{aligned}
& \operatorname{DBM}\left(\hat{s}_{0}\right)=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid x_{1}-x_{2}<0\right\} \\
& \operatorname{DBM}\left(\hat{s}_{1}\right)=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid 0 \leq x_{1}-x_{2}<3\right\} \\
& \operatorname{DBM}\left(\hat{s}_{2}\right)=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid x_{1}-x_{2} \geq 3\right\}
\end{aligned}
$$

## BMC of MPL Systems

- Spuriousness checking

Algorithms via forward-reachability analysis. Completeness:
$\square$ For no-loop paths
$\square$ For lasso-shaped paths (irreducible MPL systems only)

- Refinement procedure


$$
\begin{aligned}
& \operatorname{DBM}\left(\hat{s}_{0}\right)=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid x_{1}-x_{2}<0\right\} \\
& \operatorname{DBM}\left(\hat{s}_{1}\right)=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid 0 \leq x_{1}-x_{2}<3\right\} \\
& \operatorname{DBM}\left(\hat{s}_{2}\right)=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid x_{1}-x_{2} \geq 3\right\}
\end{aligned}
$$

Partition of $\operatorname{DBM}\left(\hat{s}_{1}\right)$ is

$$
\operatorname{DBM}\left(\hat{s}_{1 a}\right)=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid 0 \leq x_{1}-x_{2} \leq 2\right\} \text { and } \operatorname{DBM}\left(\hat{s}_{1 b}\right)=\left\{\mathbf{x} \in \mathbb{R}^{2} \mid 2 \leq x_{1}-x_{2}<3\right\}
$$

## BMC of MPL Systems

- Spuriousness checking

Algorithms via forward-reachability analysis. Completeness:
$\square$ For no-loop paths

- For lasso-shaped paths (irreducible MPL systems only)
- Refinement procedure
$\square$ Lazy abstraction: find pivot state, a state in which the spuriousness starts
- Splitting procedure in VeriSiMPL 2
splitting a state with more than one outgoing transitions
- Upper bound of completeness thresholds

Lemma
Consider an irreducible $A \in \mathbb{R}_{\max }^{n \times n}$ with transient $k_{0}$ and cyclicity $c$ and the resulting abstract transition system $\hat{T S}=\left(\hat{S}, \hat{T}, \hat{I}, P_{\text {mat }} \cup P_{\text {time }}, \hat{L}\right)$. The completeness threshold for $\hat{T S}$ and for any LTL formula $\hat{\varphi}$ over $P_{\text {mat }} \cup P_{\text {time }}$ is bounded by $k_{0}+c$.

## BMC of MPL Systems



## BMC of MPL Systems



BMC for irreducible MPL systems is complete

## BMC of MPL Systems



- Infinite and continuous state space
- The primed variables
- This problem is undecidable


## BMC of MPL Systems



- Infinite and continuous state space
- The primed variables
- This problem is decidable for irreducible MPL systems


## Conclusions

- New abstraction technique of MPL systems via a set of predicates.
- BMC of MPL systems w.r.t. TD specifications is decidable for irreducible ones.
- The completeness thresholds are related to the transient and cyclicity of MPL systems


[^0]:    * Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley, Chichester (1992)

[^1]:    * Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley, Chichester (1992)

[^2]:    * Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley, Chichester (1992)

[^3]:    * Clarke, E., Grumberg, O., Talupur, M., Wang, D.: Making predicate abstraction efficient. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 126-140. Springer, Heidelberg (2003).

[^4]:    * Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proceedings of the ACM Symposium on Principles of Programming Languages

[^5]:    * Adzkiya, D., Zhang, Y., Abate, A.: VeriSiMPL 2: an open-source software for the verification of max-plus-linear systems. Discrete Event Dyn. Syst. 26(1), 109-145 (2016).

