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Max-Plus-Linear Systems

� Based on max-plus algebra (Rmax,⊕,⊗) where Rmax := R∪{−∞}.
For all a,b ∈ Rmax

a⊕b := max{a,b}, a⊗b := a+b

� The operations can be applied to matrices. For A ∈ Rn×n
max ,

A⊗r to denote A⊗ . . .⊗A (r times)

� Defined as x(k+1) = A⊗x(k), where A ∈ Rn×n
max and x(k) ∈ Rn.

� Applications: transportations, scheduling, biological systems...
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Max-Plus-Linear Systems

� The precedence graph of A, denoted by G (A), is a weighted directed graph
with vertices 1,2 . . . ,n and an edge from j to i with weight A(i, j) for each
A(i, j) 6=−∞

� The average weight of path p = i0i1 . . . ik in G (A) is equal to

A(i1, i0)+ . . .+A(ik, ik−1)

k

� A matrix A ∈ Rn×n
max is called irreducible if G (A) is strongly connected

� If A is irreducible then there is only one eigenvalue
λ = the maximum average weight of circuits
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Max-Plus-Linear Systems

Transient Condition*

For an irreducible matrix A ∈ Rn×n
max and its corresponding eigenvalue λ ,

there exist k0,c ∈N such that A⊗k+c = λc⊗A⊗k for all k ≥ k0. The smallest
such k0 and c are called the transient and the cyclicity of A, respectively.

Given x(k+1) = A⊗x(k) and an initial x(0)

x(0), x(1), x(2), . . .

is eventually periodic in max-plus algebraic sense.

x(k+ c) = λc⊗x(k)

x1(k+ c)
...

xn(k+ c)

=

λc
...

λc

+
x1(k)

...
xn(k)



* Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linear-
ity: An Algebra for Discrete Event Systems. Wiley, Chichester (1992)
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Max-Plus-Linear Systems

� Time differences

xi(k)− xj(k) or xi(k+1)− xi(k)

� Time difference propositions

xi
′− xi ∼ α

∼ ∈ {<,≤,≥,>} and α ∈ R
� Time difference specifications

LTL formula over time difference propositions
� ©(xi

′− xi ≥ 5)≡ xi(2)− xi(1)≥ 5
� ♦�(xi

′− xi ≤ 8)≡ ∃k ≥ 0 s.t. ∀m≥ k xi(m+1)− xi(m)≤ 8
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Max-Plus-Linear Systems

x(k+1) =
A⊗ x(k)

set of initial
vectors I

TD spec ϕ

A, I |= ϕ?

For all x(0) ∈ I

x(0), x(1), x(2), . . . satisfies ϕ
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Max-Plus-Linear Systems

x(k+1) =
A⊗ x(k)

set of initial
vectors I

TD spec ϕ

A, I |= ϕ?

I = Rn

For all x(0) ∈ I

x(0), x(1), x(2), . . . satisfies ϕ

� Infinite and continuous state space
� The primed variables
� This problem is undecidable
� Solve the problem by applying predicate abstractions (PA) and

bounded model checking (BMC)
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PA of MPL Systems
� Abstractions: techniques to generate a finite and smaller system from a large

or even infinite-space system

Ŝ |= ϕ → S |= ϕ

� MPL systems→ Piece-Wise Affine (PWA) System

Partitioning state space into several convex domains (PWA regions).
Each region has corresponding affine dynamics

� Given A ∈ Rn×n
max , the region w.r.t. g ∈ {1, . . . ,n}n is

Rg =
n⋂

i=1

n⋂
j=1

{
x ∈ Rn|xgi − xj ≥ A(i, j)−A(i,gi)

}
Rg is a Difference-Bound Matrix (DBM)

� If Rg 6= /0 then the corresponding affine dynamics

xi
′ = xgi +A(i,gi), i = 1, . . . ,n
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Ŝ |= ϕ → S |= ϕ

� MPL systems→ Piece-Wise Affine (PWA) System
Partitioning state space into several convex domains (PWA regions).
Each region has corresponding affine dynamics

� Given A ∈ Rn×n
max , the region w.r.t. g ∈ {1, . . . ,n}n is

Rg =
n⋂

i=1

n⋂
j=1

{
x ∈ Rn|xgi − xj ≥ A(i, j)−A(i,gi)

}
Rg is a Difference-Bound Matrix (DBM)

� If Rg 6= /0 then the corresponding affine dynamics

xi
′ = xgi +A(i,gi), i = 1, . . . ,n

7 of 20



PA of MPL Systems

� Predicate abstraction: using a set of predicates

P = {p1, . . . ,pk}

� Predicates are identified from the (concrete) system and specifications
� Abstract states are generated from all Boolean assignments w.r.t. P

|Ŝ| ≤ 2k

� Predicates also serve as atomic propositions*

* Clarke, E., Grumberg, O., Talupur, M., Wang, D.: Making predicate abstraction
efficient. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp.
126-140. Springer, Heidelberg (2003).
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PA of MPL Systems

� Predicates from MPL systems?
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PA of MPL Systems

� Predicates from MPL systems?

Rg =
n⋂

i=1

n⋂
j=1

{
x ∈ Rn|xgi − xj ≥ A(i, j)−A(i,gi)

}
Predicates are in the form of

xk− xj ∼ A(i, j)−A(i,k), i = 1, . . . ,n, k < j ∈ fini

where fini = {j|A(i, j) 6=−∞}
WLOG ∼ ∈ {>,≥}
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PA of MPL Systems

� Predicates from specifications?

xi
′− xi ∼ α

max
j∈fini

{xj +A(i, j)}− xi ∼ α

� If i ∈ fini i.e. A(i, i) 6=−∞, we can ignore xi− xi ∼ α−A(i, i)
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PA of MPL Systems
Example:

x′ = A⊗x =

[
2 5
3 3

]
⊗
[

x1
x2

]
and t ≡ x′1− x1 ≤ 5

Predicates from MPL system
xk− xj ∼ A(i, j)−A(i,k)

x1− x2 ≥ 3

x1− x2 ≥ 0

Predicates from TD proposition
xj− xi ∼ α−A(i, j)

x2− x1 ≤ 0

There are two predicates, P = Pmat ∪Ptime = {p1,p2} where

p1 ≡ x1− x2 ≥ 3

p2 ≡ x1− x2 ≥ 0

11 of 20



PA of MPL Systems
Example:

x′ = A⊗x =

[
2 5
3 3

]
⊗
[

x1
x2

]
and t ≡ x′1− x1 ≤ 5

Predicates from MPL system
xk− xj ∼ A(i, j)−A(i,k)

x1− x2 ≥ 3

x1− x2 ≥ 0

Predicates from TD proposition
xj− xi ∼ α−A(i, j)

x2− x1 ≤ 0

There are two predicates, P = Pmat ∪Ptime = {p1,p2} where

p1 ≡ x1− x2 ≥ 3

p2 ≡ x1− x2 ≥ 0

11 of 20



PA of MPL Systems
Example:

x′ = A⊗x =

[
2 5
3 3

]
⊗
[

x1
x2

]
and t ≡ x′1− x1 ≤ 5

Predicates from MPL system
xk− xj ∼ A(i, j)−A(i,k)

x1− x2 ≥ 3

x1− x2 ≥ 0

Predicates from TD proposition
xj− xi ∼ α−A(i, j)

x2− x1 ≤ 0

There are two predicates, P = Pmat ∪Ptime = {p1,p2} where

p1 ≡ x1− x2 ≥ 3

p2 ≡ x1− x2 ≥ 0

11 of 20



PA of MPL Systems
Example:

x′ = A⊗x =

[
2 5
3 3

]
⊗
[

x1
x2

]
and t ≡ x′1− x1 ≤ 5

Predicates from MPL system
xk− xj ∼ A(i, j)−A(i,k)

x1− x2 ≥ 3

x1− x2 ≥ 0

Predicates from TD proposition
xj− xi ∼ α−A(i, j)

x2− x1 ≤ 0

There are two predicates, P = Pmat ∪Ptime = {p1,p2} where

p1 ≡ x1− x2 ≥ 3

p2 ≡ x1− x2 ≥ 0

11 of 20



PA of MPL Systems
Example:
There are four possible Boolean assignments

¬p1¬p2 ≡ (x1− x2 < 3)∧ (x1− x2 < 0)

¬p1p2 ≡ (x1− x2 < 3)∧ (x1− x2 ≥ 0)

p1¬p2 ≡ (x1− x2 ≥ 3)∧ (x1− x2 < 0) empty set

p1p2 ≡ (x1− x2 ≥ 3)∧ (x1− x2 ≥ 0)

but only three abstracts states:

ŝ0 ≡ ¬p1¬p2 DBM(ŝ0) = {x ∈ R2 | x1− x2 < 0}
ŝ1 ≡ ¬p1p2 DBM(ŝ1) = {x ∈ R2 | 0≤ x1− x2 < 3}
ŝ2 ≡ p1p2 DBM(ŝ2) = {x ∈ R2 | x1− x2 ≥ 3}

Next step: generate the abstract transition system
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PA of MPL Systems

� Concrete transition systems

Definition (Trans. sys. associated with MPL system)
A transition system for an MPL system is a tuple TS = (S,T, I,AP,L) where
• the set of states S is Rn,
• (x,x′) ∈ T if x′ = A⊗x,
• I ⊆ Rn is a set of initial conditions, (we use I = Rn)
• AP is a set of time-difference propositions,
• the labelling function L : S→ 2AP is defined as follows: a state x ∈ S is

labelled by ‘xi
′− xi ∼ α’ if [A⊗x−x]i ∼ α , where ∼ ∈ {>,≥,<,≤}.

� The (abstract) transition system for MPL system is T̂S=(Ŝ, T̂, Î,Pmat ∪Ptime, L̂)
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′− xi ∼ α’ if [A⊗x−x]i ∼ α , where ∼ ∈ {>,≥,<,≤}.

� The (abstract) transition system for MPL system is T̂S=(Ŝ, T̂, Î,Pmat ∪Ptime, L̂)

∀ŝ ∈ Ŝ, p ∈ L̂(ŝ) iff p is true in ŝ
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� Concrete transition systems

Definition (Trans. sys. associated with MPL system)
A transition system for an MPL system is a tuple TS = (S,T, I,AP,L) where
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• AP is a set of time-difference propositions,
• the labelling function L : S→ 2AP is defined as follows: a state x ∈ S is

labelled by ‘xi
′− xi ∼ α’ if [A⊗x−x]i ∼ α , where ∼ ∈ {>,≥,<,≤}.

� The (abstract) transition system for MPL system is T̂S=(Ŝ, T̂, Î,Pmat ∪Ptime, L̂)

(ŝi, ŝj) ∈ T̂ if Im(DBM(ŝi))∩DBM(ŝj) 6= /0

where Im(DBM(ŝi)) = {A⊗x | x ∈ DBM(ŝi)} (by DBM manipulation)
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PA of MPL Systems

ŝ0 ŝ1

ŝ2

/0 {p2}

{p1 ,p2} T̂S

(x′1− x1 ≤ 5)⇔ p2

Specs: ♦�(x′1− x1 ≤ 5)≡ ♦�p2

T̂S 6|= ♦�p2→ TS 6|= ♦�(x′1− x1 ≤ 5)?

dont know yet
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T̂S 6|= ♦�p2→ TS 6|= ♦�(x′1− x1 ≤ 5)?

dont know yet

� One TD proposition may correspond to more than one predicates

Proposition

Suppose p1, . . . ,pk are the predicates corresponding to a TD proposition
t ≡ x′i− xi ∼ α .
i. For ∼ {>,≥}, t⇔ (p1∨ . . .∨pk)

ii. For ∼ {<,≤}, t⇔ (p1∧ . . .∧pk)
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PA of MPL Systems
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PA of MPL Systems

x(k+1) =
A⊗ x(k)

set of initial
vectors I

TD spec ϕ

A, I |= ϕ?

Pred. Abs. T̂S |= ϕ̂?

� Infinite and continuous state space
� The primed variables
� This problem is undecidable
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BMC of MPL Systems

� Find a counterexample with length k
� Increase the length until a pre-known completeness threshold is reached or

the problem becomes intractable
� To find completeness threshold is at least as hard as solving the original

model-checking problem

� Two types of k-length bounded counterexample π = ŝ0 . . . ŝk

ŝ0 ŝ1 . . . ŝk ŝ0 ŝ1 . . . ŝl . . . ŝk

no-loop path lasso-shaped path

lasso-shaped:
π = πstem(πloop)

ω

where πstem = ŝ0 . . . ŝl−1 and πloop = ŝl . . . ŝk
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BMC of MPL Systems

� The framework
x(k+ 1) =
A⊗ x(k)

set of initial
vectors I

TD spec ϕ

A, I |= ϕ? Pred. Abs. T̂S |= ϕ̂?

BMC
(T̂S, ϕ̂,k)k < CT not found

yes

k← k+1

T̂S |= ϕ̂

A, I |= ϕ

no

spuriousness
checkingfound

T̂S 6|= ϕ̂

A, I 6|= ϕ

no

refinement
procedure

yes

T̂S← T̂Sref

� BMC by NuSMV 2.6
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BMC of MPL Systems

� Spuriousness checking
Algorithms via forward-reachability analysis. Completeness:
� For no-loop paths
� For lasso-shaped paths (irreducible MPL systems only)

� Refinement procedure
� Upper bound of completeness thresholds

Lemma
Consider an irreducible A ∈ Rn×n

max with transient k0 and cyclicity c and the
resulting abstract transition system T̂S = (Ŝ, T̂, Î,Pmat ∪Ptime, L̂). The
completeness threshold for T̂S and for any LTL formula ϕ̂ over Pmat ∪Ptime
is bounded by k0 + c.
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� Lazy abstraction*: find pivot state, a state in which the spuriousness starts

� Splitting procedure in VeriSiMPL 2
splitting a state with more than one outgoing transitions

� Upper bound of completeness thresholds

Lemma
Consider an irreducible A ∈ Rn×n

max with transient k0 and cyclicity c and the
resulting abstract transition system T̂S = (Ŝ, T̂, Î,Pmat ∪Ptime, L̂). The
completeness threshold for T̂S and for any LTL formula ϕ̂ over Pmat ∪Ptime
is bounded by k0 + c.

* Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Pro-
ceedings of the ACM Symposium on Principles of Programming Languages
(POPL 2002), pp. 58-70 (2002).
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completeness threshold for T̂S and for any LTL formula ϕ̂ over Pmat ∪Ptime
is bounded by k0 + c.

* Adzkiya, D., Zhang, Y., Abate, A.: VeriSiMPL 2: an open-source software for
the verification of max-plus-linear systems. Discrete Event Dyn. Syst. 26(1),
109-145 (2016).
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BMC of MPL Systems
� Spuriousness checking

Algorithms via forward-reachability analysis. Completeness:
� For no-loop paths
� For lasso-shaped paths (irreducible MPL systems only)

� Refinement procedure
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ω

π is spurious

pivot state is ŝ1
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BMC of MPL Systems

� Spuriousness checking
Algorithms via forward-reachability analysis. Completeness:
� For no-loop paths
� For lasso-shaped paths (irreducible MPL systems only)

� Refinement procedure
� Lazy abstraction: find pivot state, a state in which the spuriousness starts
� Splitting procedure in VeriSiMPL 2

splitting a state with more than one outgoing transitions

� Upper bound of completeness thresholds

Lemma
Consider an irreducible A ∈ Rn×n

max with transient k0 and cyclicity c and the
resulting abstract transition system T̂S = (Ŝ, T̂, Î,Pmat ∪Ptime, L̂). The
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BMC of MPL Systems

BMC
(T̂S, ϕ̂,k)k < CT not found

yes

k← k+1

T̂S |= ϕ̂

no

spuriousness
checkingfound

T̂S 6|= ϕ̂

no

refinement
procedure

yes

T̂S← T̂Sref
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BMC of MPL Systems

BMC
(T̂S, ϕ̂,k)

k < k0 + c not found

yes

k← k+1

T̂S |= ϕ̂

no

spuriousness
checkingfound

T̂S 6|= ϕ̂

no

refinement
procedure

yes

T̂S← T̂Sref

BMC for irreducible MPL systems is complete
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BMC of MPL Systems

x(k+1) =
A⊗ x(k)

set of initial
vectors I

TD spec ϕ

A, I |= ϕ Pred. Abs. T̂S |= ϕ̂?

BMC
(T̂S, ϕ̂,k)

� Infinite and continuous state space
� The primed variables
� This problem is undecidable
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Conclusions

� New abstraction technique of MPL systems
via a set of predicates.

� BMC of MPL systems w.r.t. TD specifications is decidable
for irreducible ones.

� The completeness thresholds are related to the transient
and cyclicity of MPL systems
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