2013


Retour à la vue des calendrier
Mardi 22 Octobre
Heure: 12:30 - 13:30
Lieu: Salle B107, bâtiment B, Université de Villetaneuse
Résumé: Programmation linéaire colorée
Description: Pauline Sarrabezolles Considérons d + 1 ensembles de points de R^d en position
générique, et attribuons à chacun des ces ensembles une couleur
distincte. D'après le théorème de Carathéodory coloré, prouvé par Imre
Barany en 1982, si un point est contenu dans l'enveloppe convexe de
chacun de ces ensembles, alors il est contenu dans l'enveloppe convexe
d'un simplexe formé d'un point de chaque couleur. Un tel simplexe est
dit arc-en-ciel. La conjecture de la profondeur
simpliciale colorée, formulée par Antoine Deza et ses coauteurs en
2006, dit qu'un tel point est en fait contenu dans au moins d^2 + 1
simplexes arc-en-ciel, ce qui a été vérifié par différents auteurs
pour d = 1, 2 et 3. Nous vérifions cette conjecture en dimension 4 et
améliorons les bornes connues dans les dimensions plus élevées. Ces
résultats sont obtenus grâce à une généralisation combinatoire des
configurations colorées de points, suggérée par Imre Barany : les
systèmes octaédriques. Nous présentons de plus des algorithmes
résolvant divers problèmes de programmation linéaire colorée.
Mardi 12 Novembre
Heure: 12:30 - 13:30
Lieu: Salle B107, bâtiment B, Université de Villetaneuse
Résumé: Disjunctive conic cuts for mixed integer convex optimization
Description: Pietro Belotti We study the convex hull of the intersection of a convex set E and a linear disjunction, which is at the core of solution techniques for Mixed Integer Conic Optimization. We prove that if there exists a cone K that has the same intersection with the boundary of the disjunction as E, then the convex hull is the intersection of E with K. The existence of such a cone is difficult to prove for general conic optimization. However, for the special case of Mixed Integer Second Order Cone Optimization (MISOCO), such a cone can be efficiently generated. This cone provides a conic cut for MISOCO that can be used effectively in branch-and-cut algorithms for MISOCO problems. We show some preliminary computational results that substantiate our claims. (Joint work with Julio C. Goez, Imre Polik, Ted K. Ralphs, Tamas Terlaky)
Mardi 19 Novembre
Heure: 12:00 - 13:30
Lieu: Salle B107, bâtiment B, Université de Villetaneuse
Résumé: Line graphs and Facility Location Problem
Description: Laurent Beaudou (This is a joint work with M. Baïou, Z. Li and V. Limouzy) The line graph of a digraph can be defined in a few different ways. One 
of them came naturally from our study of a facility location problem. We discuss the complexity of recognizing such graphs and their cousins. During this seminar, we shall also have an overview of the historical birth 
of facility location problems.
Mardi 26 Novembre
Heure: 12:00 - 13:30
Lieu: Salle B107, bâtiment B, Université de Villetaneuse
Résumé: On unified methods for multi-attribute VRPs, route evaluation operators and large neighborhoods
Description: Thibaut VIDAL The research on
heuristics for VRP has been historically articulated around several
streams of research dedicated to some major problem variants, e.g.
with time windows, multiple depots, multi-period deliveries. Such
diverse research lines are justified if the nature of problems calls
for drastically different approaches. However, VRP variants share
naturally many common aspects, and many specific heuristic strategies
may be applicable to a broader range of problems. The identification
of fundamental resolution strategies is thus of primary concern to
progress towards more unified VRP algorithms, providing the means to
address various application cases in a timely manner without
extensive problem-tailored development.
Vendredi 29 Novembre
Heure: 12:00 - 13:30
Lieu: Salle B107, bâtiment B, Université de Villetaneuse
Résumé: Vector space decomposition for linear programming
Description: Jacques Desrosiers This presentation describes a vector space decomposition algorithm for
a linear program with bounded variables. Given a current feasible
solution, the exchange mechanism towards the next one is split into
independent parts based on two orthogonal vector subspaces, that is,
the master and the subproblem ones. The subproblem generates
directions (rays) compatible with the vector subspace of the master
problem. Indeed the subproblem partially satisfies the exchange
mechanism that is completed at the master level. Special cases of this
generic vector space decomposition algorithm are, amongst others, the
Primal Simplex, the Improved Primal Simplex yielding non-degenerate
pivots only, the Dynamic Constraints Aggregation method for the set
partitioning problem, and the strongly polynomial Minimum Mean
Cycle-Cancelling algorithm for the capacitated network flow problem.