Jeudi 5 Avril


Retour à la vue des calendrier
Jeudi 5 Avril
Heure: 12:15 - 13:30
Lieu: Salle B107, bâtiment B, Université de Villetaneuse
Résumé: Apports de la Programmation Linéaire en Nombres Entiers pour la modélisation et l'extraction d'ensembles de motifs
Description: Abdelkader Ouali Un problème récurrent en extraction de motifs est la sélection de motifs pertinents parmi le grand ensemble de motifs découverts. Pour réduire le nombre de motifs extraits et donc de faciliter l'analyse du résultat de la fouille est l'extraction de motifs de plus haut niveau reposant sur des caractéristiques qui impliquent plusieurs motifs locaux. Ces motifs sont appelés ensembles de motifs ou pattern sets. Extraire le meilleur ensemble de motifs relativement à une mesure donnée permet de mieux cibler le processus d’extraction vers les meilleurs motifs mais rend la tâche plus ardue, notamment en raison de la taille importante de l'espace de recherche et le manque de techniques d'élagage efficaces pour ce type de problèmes. La plupart des approches existantes (souvent heuristiques) sacrifient la preuve d'optimalité au détriment de solutions approchées. Toutefois, la qualité de solutions obtenues par ces approches reste très variable.

La PLNE (Programmation Linéaire en Nombres Entiers) est un au cadre générique qui procure un haut niveau de flexibilité et d’expressivité pour composer différentes types de contraintes. L'utilisation de la PLNE pour la modélisation de tâches d’optimisation en fouille de données est un domaine qui a été très peu exploré. C'est dans ce cadre que s'inscrivaient mes travaux de thèse.

Dans cet exposé, je vais montrer comment la PLNE peut être utilisée pour modéliser différentes contraintes portant sur des ensembles de motifs. Outre le cadre général de l’extraction d'ensembles de motifs, je vais illustrer l’intérêt de mon approche sur deux problèmes bien connus en fouille de données : le clustering conceptuel et le problème de pavage (tiling). Enfin, je présenterai quelques résultats récents sur l'utilisation des moyennes ordonnées pondérées (communément appelées OWA pour Ordered Weighted) afin de trouver un équilibre optimal sur la taille des clusters du clustering conceptuel.