|
 |
Mardi 4 Juillet
Heure: |
14:00 - 17:00 |
Lieu: |
Salle B107, bâtiment B, Université de Villetaneuse |
Résumé: |
Random generation of closed lambda-terms |
Description: |
Maciej Bendkowski |
Vendredi 7 Juillet
Heure: |
11:00 - 12:30 |
Lieu: |
Salle B107, bâtiment B, Université de Villetaneuse |
Résumé: |
Partiality and container monads |
Description: |
Niccolò Veltri We investigate monads of partiality in Martin-Löf type theory, following Moggis general monad-based method for modelling effectful computations. These monads are often called lifting monads and appear in category theory with different but related definitions. In this talk, we unveil the relation between containers and lifting monads. We show that the lifting monads usually employed in type theory can be specified in terms of containers. Moreover, we give a precise characterization of containers whose interpretations carry a lifting monad structure. We show that these conditions are tightly connected with Rosolinis notion of dominance. We provide several examples, putting particular emphasis on Caprettas delay monad and its quotiented variant, the non-termination monad. |
Mardi 11 Juillet
Heure: |
14:00 - 17:00 |
Lieu: |
Salle B107, bâtiment B, Université de Villetaneuse |
Résumé: |
Sur le diamètre des polytopes en nombres entiers |
Description: |
Lionel Pournin |
Mardi 18 Juillet
Heure: |
14:00 - 17:00 |
Lieu: |
Salle B107, bâtiment B, Université de Villetaneuse |
Résumé: |
clôture de cette année de séminaires & exposés de stagiaires |
Heure: |
14:30 - 17:30 |
Lieu: |
Salle B107, bâtiment B, Université de Villetaneuse |
Résumé: |
Roger Apéry et l'irrationalité de zêta(3) |
Description: |
Youssef Abdelaziz |
Heure: |
15:00 - 18:00 |
Lieu: |
Salle B107, bâtiment B, Université de Villetaneuse |
Résumé: |
Arbres de synchronisation et théorie de la concurrence |
Description: |
Medhi Naima |
Mercredi 30 Août
Heure: |
11:00 - 12:30 |
Lieu: |
Salle B107, bâtiment B, Université de Villetaneuse |
Résumé: |
Coherence for skew near-semiring categories |
Description: |
Tarmo Uustalu We consider skew near-semiring categories, a relaxation of near-semiring categories where the unitors, associators, annihilator and distributor are not required to be natural isomorphisms, they are just natural transformations in a particular direction. We prove a coherence theorem for such categories. The theorem states that, in a free skew near-semiring category over a set of objects, any two maps between an object and an object in normal form are equal.
Our main motivating examples for skew near-semiring categories are from programming with effects. While (relative) monads and lax monoidal functors are the same as skew monoids in particular skew monoidal categories, (relative) MonadPlus and Alternative instances are skew near-semiring objects.
This is joint work with Mauro Jaskelioff, Exequiel Rivas and Niccolò Veltri. |
Mardi 5 Septembre
Heure: |
14:00 - 17:00 |
Lieu: |
Salle B107, bâtiment B, Université de Villetaneuse |
Résumé: |
On the shape of random Pólya structures |
Description: |
Michael Wallner |
Mardi 19 Septembre
Heure: |
14:00 - 17:00 |
Lieu: |
Salle B107, bâtiment B, Université de Villetaneuse |
Résumé: |
TBA |
Description: |
Valentin Bonzom |
Vendredi 22 Septembre
Heure: |
11:00 - 12:30 |
Lieu: |
Salle B107, bâtiment B, Université de Villetaneuse |
Résumé: |
Circular Proofs for Subtyping and Termination |
Description: |
Rodolphe Lepigre In a recent (submitted) work with Christophe Raffalli, we designed a rich type system for an extension of System F with subtyping. It includes primitive sums and products, existential types, and (co-)inductive types. Using a combination of (pointed) subtyping and circular proofs, we were able to express the system with typing and subtyping rules that are syntax-directed (up to circularity). During my talk, I will try to give you a flavour of the techniques we used. In particular, I will show how choice operators can be used to get rid of typing contexts, and to allow the commutation of quantifiers with other connectives. I will then introduce the circular proof framework that is used for handling inductive and co-inductive types in subtyping rules, and general recursion in typing rules. |
|
|