|
 |
Jeudi 2 Mars
Heure: |
12:30 - 13:30 |
Lieu: |
Salle B107, bâtiment B, Université de Villetaneuse |
Résumé: |
On big data, optimization and learning |
Description: |
Prof. Andrea Lodi In this talk I review a couple of applications on Big Data that I personally like and I try to explain my point of view as a Mathematical Optimizer -- especially concerned with discrete (integer) decisions -- on the subject. I advocate a tight integration of Machine Learning and Mathematical Optimization (among others) to deal with the challenges of decision-making in Data Science. For such an integration I try to answer three questions: 1) what can optimization do for machine learning? 2) what can machine learning do for optimization? 3) which new applications can be solved by the combination of machine learning and optimization? |
Heure: |
14:00 - 15:00 |
Lieu: |
Salle B107, bâtiment B, Université de Villetaneuse |
Résumé: |
Reachability Analysis of Pushdown Systems with an Upper Stack |
Description: |
Adrien Pommellet Pushdown systems (PDSs) are a natural model for sequential programs, but they can fail to accurately represent the way an assembly stack actually operates. Indeed, one may want to access the part of the memory that is below the current stack or base pointer, hence the need for a model that keeps track of this part of the memory. To this end, we introduce pushdown systems with an upper stack (UPDSs), an extension of PDSs where symbols popped from the stack are not destroyed but instead remain just above its top, and may be overwritten by later push rules.
We prove that the sets of successors post* and predecessors pre* of a regular set of configurations of such a system are not always regular, but that post* is context-sensitive, so that we can decide whether a single configuration is forward reachable or not. In order to underapproximate pre* in a regular fashion, we consider a bounded-phase analysis of UPDSs, where a phase is a part of a run during which either push or pop rules are forbidden. We then present a method to overapproximate post* that relies on regular abstractions of runs of UPDSs. Finally, we show how these approximations can be used to detect stack overflows and stack pointer manipulations with malicious intent. |
Vendredi 3 Mars
Heure: |
11:00 - 12:30 |
Lieu: |
Salle B107, bâtiment B, Université de Villetaneuse |
Résumé: |
Introduction à la théorie de la complexité géométrique, d'après K. Mulmuley |
Description: |
Luc Pellissier La théorie de la complexité géométrique est un programme de recherche porté par Ketan Mulmuley, qui vise à résoudre des questions de complexité après les avoir traduites comme des inclusions de surfaces algébriques représentant des groupes de symétries.
Après avoir présenté la théorie avec beaucoup de recul, on présentera un résultat de séparation obtenu ainsi (entre P et une classe ad hoc). |
|
|