Mardi 24 Février
Heure: 
14:00  17:00 
Lieu: 
Salle B107, bâtiment B, Université de Villetaneuse 
Résumé: 
Profile of random trees 
Description: 
Michael Drmota 
Mercredi 25 Février
Heure: 
14:00  17:00 
Lieu: 
Salle B107, bâtiment B, Université de Villetaneuse 
Résumé: 
Quasirandom properties of subsequences of sequences generated by finite automata 
Description: 
Michael Drmota Automatic sequences T(n) are the output sequence of a finite automaton, wherethe input is the qadic digital representation of n. The most prominent exampleis the ThueMorse sequence t(n) (that is also the fixed point of the substitution0 > 01, 1 > 10). Automatic sequences have been studied in many diff erent contextsfrom combinatorics to algebra, number theory, harmonic analysis, geometryand dynamical systems. For example, they have a linear subword complexity andthey are almost periodic.Since the subword complexity is linear the entropy of the related dynamical system is zero. This also means thatthey do not behave like a random sequence. However, the situation changes drastically whenone uses proper subsequences of automatic sequences, for example the subsequence along primes orsquares. It is conjectured that the resulting sequences are normal sequences so thatthey behave like random sequences (=quasi random sequences).Recently this property was proved (together with C. Mauduit and J. Rivat)for the ThueMorse sequence along the subsequence of squares  and it turns out that thispropery extends to several other automatic sequences and also to subsequences of the form[n^c], where 1 < c < 4/3. Thus such subsequences of automatic sequences give rise toa completely new class of pseudo random sequences that can be computed very efficiently. 
Heure: 
14:00  15:00 
Lieu: 
Amphi A 
Résumé: 
QuasiRandom Properties of Subsequences of Sequences Generated by Finite Automata 
Description: 
Michael Drmota Automatic sequences T(n) are the output sequence of a finite automaton, where the input is the qadic digital representation of n. The most prominent example is the ThueMorse sequence t(n) (that is also the fixed point of the substitution 0 > 01, 1 > 10). Automatic sequences have been studied in many diff erent contexts from combinatorics to algebra, number theory, harmonic analysis, geometry and dynamical systems. For example, they have a linear subword complexity and they are almost periodic.
Since the subword complexity is linear the entropy of the related dynamical system is zero. This also means that they do not behave like a random sequence. However, the situation changes drastically when one uses proper subsequences of automatic sequences, for example the subsequence along primes or squares. It is conjectured that the resulting sequences are normal sequences so that they behave like random sequences (=quasi random sequences). Recently this property was proved (together with C. Mauduit and J. Rivat) for the ThueMorse sequence along the subsequence of squares  and it turns out that this propery extends to several other automatic sequences and also to subsequences of the form [n^c], where 1 < c < 4/3. Thus such subsequences of automatic sequences give rise to a completely new class of pseudo random sequences that can be computed very efficiently. 
Vendredi 27 Février
Heure: 
11:00  12:30 
Lieu: 
Salle B107, bâtiment B, Université de Villetaneuse 
Résumé: 
Linear numeral systems 
Description: 
Ian Mackie We take a fresh look at an old problem of representing natural numbers in the lambdacalculus. Our interest is in finding representations where we can compute efficiently (and where possible, in constant time) the following functions: successor, predecessor, addition, subtraction and test for zero. Surprisingly, we find a solution in the linear lambdacalculus, where copying and erasing are not permitted. 

