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Cellular automata

I A a �nite alphabet ;

I AZ the set of con�gurations.

A cellular automaton (CA) is an action F : AZ → AZ de�ned by a
local rule f : A[−r ,r ] → A (for some r > 0).

Example with A = {�,�} and r = 1 :
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f ︷ ︸︸ ︷
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Cellular automata

I A a �nite alphabet ;

I AZ the set of con�gurations.

A cellular automaton (CA) is an action F : AZ → AZ de�ned by a
local rule f : A[−r ,r ] → A (for some r > 0).

Example with A = {�,�} and r = 1 :

De�ne the shift action as σ(a)i = ai−1.



Initial measure

We are considering the case where the initial con�guration is chosen at
random.

I Mσ(AZ): set of σ-invariant probability measures;

I F extends to an actionMσ(AZ)→Mσ(AZ);

I For an initial measure µ, we consider the sequence F nµ.

Examples of initial measures:

I Bernoulli measures where each cell is drawn independently;

I Markov measures, which have �nite memory;

I Hidden Markov (image of a Markov measure by a factor).
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Limit measures, µ-limit set

Asymptotic behaviour can be described by the persistent words,
whose probability to appear does not tend to 0 as t →∞.

µ-limit set
The µ-limit set Λµ(F ) is the set of con�gurations containing only
persistent words.

Alternatively, it can be described as the support of the adherence

values of the sequence (F nµ) in the appropriate topology:

AZ: Mσ(AZ):

Cantor distance Lévy-Prohorov distance

dc(u, v) = |A|−min{|n|;un 6=vn} d(µ, ν) =
∑
u∈A∗

µ([u]0)− ν([u]0)

A|u|

Product topology Weak-* convergence topology



Limit measures, µ-limit set

Asymptotic behaviour can be described by the persistent words,
whose probability to appear does not tend to 0 as t →∞.

µ-limit set
The µ-limit set Λµ(F ) is the set of con�gurations containing only
persistent words.

Alternatively, it can be described as the support of the adherence

values of the sequence (F nµ) in the appropriate topology:

AZ: Mσ(AZ):

Cantor distance Lévy-Prohorov distance

dc(u, v) = |A|−min{|n|;un 6=vn} d(µ, ν) =
∑
u∈A∗

µ([u]0)− ν([u]0)

A|u|

Product topology Weak-* convergence topology



Self-organization: qualitative approach

Rule 184 (tra�c rule) 3-state cyclic CA

4-state cyclic CA One-sided captive such that f(ab)=f(ba)



Self-organization: qualitative approach

Theorem [H., Sablik, 2011]
Let F be a CA, µ a σ-ergodic measure. De�ne a �set of particles�
evolving at constant �speed� and such that any particle interaction is
�destructive�.

Then particles appearing in Λµ(F ) all have the same speed.



Gliders automaton

Let A = {+, 0,−} and v− < v+.
The (v−, v+)-gliders automaton is the CA with two particles:

+ evolving at speed v+;

� evolving at speed v−.

Figure: v− = −1, v+ = 1



Gliders automaton

Let A = {+, 0,−} and v− < v+.
The (v−, v+)-gliders automaton is the CA with two particles:

+ evolving at speed v+;

� evolving at speed v−.

For any ergodic measure µ with µ([+]) = µ([−]), Λµ contains no

particle.



Scope of our results

We will consider two families of initial measures :

I Ber the Bernoulli measures satisfying p+ = p− 6= 0 (simple case);

I HM the hidden transitive, aperiodic Markov measures satisfying:
I µ([+]) = µ([−]);
I

∑
k≥0

E(π0µ · πkµ) > 0 (asymptotic variance).

→

Factor Φ : ��→ � ��→ �
��
��

→ �.

Then we have Φ : Ber → HM.
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Entry times

Entry times
Let v− < v+ ∈ Z and a ∈ AZ. If v− 6= 0, we de�ne:

T−n (a) = min{k ∈ N | F k+n(a)[0,|v−|−1] contains a particle − 1}

respectively T+
n (a). This is the entry time of a into the set

{b ∈ AZ | b[0,|v−|−1] contains a particle −1} after time n at position 0.

T
−
n (a)

n

a
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State of the art

Theorem (Denunzio, Formenti, Kurka, 2011)
Consider the (−1, 0)-gliders automaton with an initial Bernoulli measure
of parameters p+ = p− = 1/2. Then:

P
(
T−n (a)

n
≤ x

)
−→
n→∞

2

π
arctan

√
2x .

I Purely combinatorial approach.
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Conjecture (op.cit.)
If instead we have µ ∈ Ber ,
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Entry times

Theorem 1

I (v−, v+)-gliders automaton with v− ∈ Z−, v+ ∈ Z+.

I Initial measure in HM
Then for almost all initial con�guration a,

P
(
T−n (a)

n
≤ x

)
−→
n→∞

2

π
arctan

(√
−v−x

v+ − v− + v+x

)
and symmetrically for T+

n .

Remarks

I Independent of µ([+]), µ([−]).

I This disproves the conjecture.



Quantitative approach

For a ∈ AZ, we de�ne the process Ma that:

I goes up when it meets a +;

I goes down when it meets a �.
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Quantitative approach

Fn(a)0 = +⇔ Ma on [−n, n] admits a minimum in − n.

and symmetrically for −.
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Quantitative approach

Using scale invariance, we approximate the process by a Brownian

motion.



Density of particles

Densities
For a con�guration a ∈ AZ, the density of particles - (resp. +) is:

d−(a) = lim sup
n→∞

#{i ∈ [−n, n] | ai = −}
2n + 1

Theorem 2
For an initial measure µ, we have:

I If µ ∈ Ber :

For almost all a, d−(F n(a)) = Θ
(
n−

1

2

)
I If µ ∈ HM:

For almost all a,∀ε > 0, d−(F n(a)) = O
(
n−

1

4
+ε
)

and similarly for d+.



Rate of convergence

Theorem 3
Consider any (v−, v+)-gliders automaton with v− < v+.

I µ ∈ HM the initial measure,

I λ the limit measure (weighing only the particleless con�guration),

I d be the Lévy-Prohorov distance de�ned earlier.

Then:
∀ε > 0, d(F nµ, λ) = O

(
n−

1

8
+ε
)

If furthermore µ ∈ Ber , we have:

d(F nµ, λ) = Ω
(
n−

1

2

)



Perspectives

I With the same approach, better understanding of the limit diagram.

I Extending this kind of results to more particles and di�erent
interactions, and eventually to whole classes of automata (e.g.
captive automata)


