Asymptotic behaviour of a simple cellular automaton: Use of scale invariance.

> Benjamin Hellouin de Menibus joint work with Mathieu Sablik

Laboratoire d'Analyse, Topologie et Probabilités Université d'Aix-Marseille

March 9, 2012

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- \blacktriangleright \mathcal{A} a finite alphabet ;
- $\mathcal{A}^{\mathbb{Z}}$ the set of **configurations**.

A cellular automaton (CA) is an action $F : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ defined by a local rule $f : \mathcal{A}^{[-r,r]} \to \mathcal{A}$ (for some r > 0).

Example with $\mathcal{A} = \{\blacksquare, \Box\}$ and r = 1 :

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

- \blacktriangleright \mathcal{A} a finite alphabet ;
- $\mathcal{A}^{\mathbb{Z}}$ the set of **configurations**.

A cellular automaton (CA) is an action $F : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ defined by a local rule $f : \mathcal{A}^{[-r,r]} \to \mathcal{A}$ (for some r > 0).

Example with $\mathcal{A} = \{\blacksquare, \Box\}$ and r = 1 :

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

- \blacktriangleright \mathcal{A} a finite alphabet ;
- $\mathcal{A}^{\mathbb{Z}}$ the set of **configurations**.

A cellular automaton (CA) is an action $F : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ defined by a local rule $f : \mathcal{A}^{[-r,r]} \to \mathcal{A}$ (for some r > 0).

Example with $\mathcal{A} = \{\blacksquare, \Box\}$ and r = 1 :

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

- \blacktriangleright \mathcal{A} a finite alphabet ;
- $\mathcal{A}^{\mathbb{Z}}$ the set of **configurations**.

A cellular automaton (CA) is an action $F : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ defined by a local rule $f : \mathcal{A}^{[-r,r]} \to \mathcal{A}$ (for some r > 0).

Example with $\mathcal{A} = \{\blacksquare, \Box\}$ and r = 1 :

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- \blacktriangleright \mathcal{A} a finite alphabet ;
- $\mathcal{A}^{\mathbb{Z}}$ the set of **configurations**.

A cellular automaton (CA) is an action $F : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ defined by a local rule $f : \mathcal{A}^{[-r,r]} \to \mathcal{A}$ (for some r > 0).

Example with $\mathcal{A} = \{\blacksquare, \Box\}$ and r = 1:

Define the **shift** action as $\sigma(a)_i = a_{i-1}$.

Initial measure

We are considering the case where the initial configuration is chosen at random.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$: set of σ -invariant probability measures;
- F extends to an action $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \to \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$;
- For an initial measure μ , we consider the sequence $F^n \mu$.

Initial measure

We are considering the case where the initial configuration is chosen at random.

- $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$: set of σ -invariant probability measures;
- F extends to an action $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \to \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$;
- For an initial measure μ , we consider the sequence $F^n\mu$.

Examples of initial measures:

- Bernoulli measures where each cell is drawn independently;
- Markov measures, which have finite memory;
- Hidden Markov (image of a Markov measure by a factor).

Limit measures, μ -limit set

Asymptotic behaviour can be described by the persistent words, whose probability to appear does not tend to 0 as $t \to \infty$.

μ -limit set

The μ -limit set $\Lambda_{\mu}(F)$ is the set of configurations containing only persistent words.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Limit measures, μ -limit set

Asymptotic behaviour can be described by the **persistent words**, whose probability to appear does not tend to 0 as $t \rightarrow \infty$.

μ -limit set

The μ -limit set $\Lambda_{\mu}(F)$ is the set of configurations containing only persistent words.

Alternatively, it can be described as the **support of the adherence** values of the sequence $(F^n \mu)$ in the appropriate topology:

$$\mathcal{A}^{\mathbb{Z}}$$
: $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$:

$$\begin{array}{ll} \text{Cantor distance} & \text{Lévy-Prohorov distance} \\ d_c(u,v) = |\mathcal{A}|^{-\min\{|n|; u_n \neq v_n\}} & d(\mu,\nu) = \sum_{u \in \mathcal{A}^*} \frac{\mu([u]_0) - \nu([u]_0)}{\mathcal{A}^{|u|}} \\ \text{Product topology} & \text{Weak-* convergence topology} \end{array}$$

Self-organization: qualitative approach

Self-organization: qualitative approach

Theorem [H., Sablik, 2011]

Let F be a CA, μ a σ -ergodic measure. Define a "set of particles" evolving at constant "speed" and such that any particle interaction is "destructive".

Then particles appearing in $\Lambda_{\mu}(F)$ all have the same speed.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Gliders automaton

Let $\mathcal{A} = \{+, 0, -\}$ and $v_- < v_+$. The (v_-, v_+) -gliders automaton is the CA with two particles: + evolving at speed v_+ ; - evolving at speed v_- .

Figure: $v_{-} = -1, v_{+} = 1$

ション ふゆ く は マ く ほ マ く し マ

Gliders automaton

Let $\mathcal{A} = \{+, 0, -\}$ and $v_- < v_+$. The (v_-, v_+) -gliders automaton is the CA with two particles: + evolving at speed v_+ ; - evolving at speed v_- .

For any ergodic measure μ with $\mu([+]) = \mu([-])$, Λ_{μ} contains no particle.

Scope of our results

We will consider two families of initial measures :

- Ber the Bernoulli measures satisfying $p_+ = p_- \neq 0$ (simple case);
- \blacktriangleright $\mathcal{H}\mathcal{M}$ the hidden transitive, aperiodic Markov measures satisfying:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

•
$$\mu([+]) = \mu([-]);$$

• $\sum_{k\geq 0} \mathbb{E}(\pi_0 \mu \cdot \pi_k \mu) > 0$ (asymptotic variance).

Scope of our results

We will consider two families of initial measures :

- Ber the Bernoulli measures satisfying $p_+ = p_- \neq 0$ (simple case);
- \mathcal{HM} the hidden transitive, aperiodic Markov measures satisfying:
 - $\mu([+]) = \mu([-]);$
 - $\sum_{k\geq 0} \mathbb{E}(\pi_0 \mu \cdot \pi_k \mu) > 0$ (asymptotic variance).

ション ふゆ く は マ く ほ マ く し マ

Then we have $\Phi : \mathcal{B}er \to \mathcal{HM}$.

Entry times

Entry times

Let $v_- < v_+ \in \mathbb{Z}$ and $a \in \mathcal{A}^{\mathbb{Z}}$. If $v_- \neq 0$, we define:

$${\mathcal T}^-_n(a) = \min\{k \in {\mathbb N} \mid F^{k+n}(a)_{[0,|v_-|-1]} \text{ contains a particle } -1\}$$

respectively $T_n^+(a)$. This is the **entry time** of *a* into the set $\{b \in \mathcal{A}^{\mathbb{Z}} \mid b_{[0,|\nu_-|-1]} \text{ contains a particle } -1\}$ after time *n* at position 0.

Entry times

Entry times

Let $v_- < v_+ \in \mathbb{Z}$ and $a \in \mathcal{A}^{\mathbb{Z}}$. If $v_- \neq 0$, we define:

$${\mathcal T}^-_n(a) = \min\{k \in {\mathbb N} \mid F^{k+n}(a)_{[0,|v_-|-1]} \text{ contains a particle } -1\}$$

respectively $T_n^+(a)$. This is the **entry time** of a into the set $\{b \in \mathcal{A}^{\mathbb{Z}} \mid b_{[0,|\nu_-|-1]} \text{ contains a particle } -1\}$ after time n at position 0.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

State of the art

Theorem (Denunzio, Formenti, Kurka, 2011)

Consider the (-1, 0)-gliders automaton with an initial Bernoulli measure of parameters $p_+ = p_- = 1/2$. Then:

$$\mathbb{P}\left(\frac{T_n^-(\mathsf{a})}{n} \le x\right) \xrightarrow[n \to \infty]{} \frac{2}{\pi} \arctan \sqrt{2x}.$$

Purely combinatorial approach.

State of the art

Theorem (Denunzio, Formenti, Kurka, 2011)

Consider the (-1, 0)-gliders automaton with an initial Bernoulli measure of parameters $p_+ = p_- = 1/2$. Then:

$$\mathbb{P}\left(\frac{T_n^-(a)}{n} \le x\right) \xrightarrow[n \to \infty]{} \frac{2}{\pi} \arctan \sqrt{2x}.$$

Purely combinatorial approach.

Conjecture (op.cit.)

If instead we have $\mu \in \mathcal{B}\mathit{er}$,

$$\mathbb{P}\left(\frac{T_n^-(a)}{n} \le x\right) \xrightarrow[n \to \infty]{} \frac{2}{\pi} \arctan \sqrt{2px}.$$

ション ふゆ アメリア メリア しょうくの

Entry times

Theorem 1

- ▶ (v_-, v_+) -gliders automaton with $v_- \in \mathbb{Z}^-, v_+ \in \mathbb{Z}^+$.
- \blacktriangleright Initial measure in \mathcal{HM}

Then for almost all initial configuration a,

$$\mathbb{P}\left(\frac{T_n^-(a)}{n} \le x\right) \xrightarrow[n \to \infty]{} \frac{2}{\pi} \arctan\left(\sqrt{\frac{-\nu_- x}{\nu_+ - \nu_- + \nu_+ x}}\right)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

and symmetrically for T_n^+ .

Remarks

- ▶ Independent of $\mu([+]), \mu([-]).$
- > This **disproves** the conjecture.

For $a \in \mathcal{A}^{\mathbb{Z}}$, we define the process M_a that:

- ▶ goes up when it meets a +;
- ▶ goes down when it meets a -.

For $a \in \mathcal{A}^{\mathbb{Z}}$, we define the process M_a that:

- ▶ goes up when it meets a +;
- ▶ goes down when it meets a -.

・ロト ・ 戸 ・ ・ ヨ ・ ・

э

 $F_n(a)_0 = + \Leftrightarrow M_a$ on [-n, n] admits a **minimum** in -n. and symmetrically for -.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Using scale invariance, we approximate the process by a $\ensuremath{\textbf{Brownian}}$ $\ensuremath{\textbf{motion}}.$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Density of particles

Densities

For a configuration $a \in \mathcal{A}^{\mathbb{Z}}$, the **density of particles** - (resp. +) is:

$$d_{-}(a) = \limsup_{n \to \infty} \frac{\#\{i \in [-n, n] \mid a_i = -\}}{2n+1}$$

Theorem 2

For an initial measure μ , we have:

• If $\mu \in \mathcal{B}er$:

For almost all
$$a, d_-({{\mathsf F}}^n(a)) = \Theta\left(n^{-rac{1}{2}}
ight)$$

• If $\mu \in \mathcal{HM}$:

For almost all
$$a, orall arepsilon > 0, d_-({F}^n(a)) = O\left(n^{-rac{1}{4}+arepsilon}
ight)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

and similarly for d_+ .

Rate of convergence

Theorem 3

Consider any (v_-, v_+) -gliders automaton with $v_- < v_+$.

• $\mu \in \mathcal{HM}$ the initial measure,

 \blacktriangleright λ the limit measure (weighing only the particleless configuration),

► *d* be the Lévy-Prohorov distance defined earlier.

Then:

$$\forall \varepsilon > 0, \ d(F^n \mu, \lambda) = O\left(n^{-\frac{1}{8}+\varepsilon}\right)$$

If furthermore $\mu \in \mathcal{B}er$, we have:

$$d(F^n\mu,\lambda)=\Omega\left(n^{-\frac{1}{2}}\right)$$

ション ふゆ アメリア メリア しょうくの

Perspectives

- ▶ With the same approach, better understanding of the limit diagram.
- Extending this kind of results to more particles and different interactions, and eventually to whole classes of automata (e.g. captive automata)

