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Cellular automata

» A a finite alphabet ;
» A” the set of configurations.

A cellular automaton (CA) is an action F : A% — A7 defined by a
local rule f : Al=""1 — A (for some r > 0).

Example with A = {l,0} and r =1 :
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Cellular automata

» A a finite alphabet ;
» A” the set of configurations.

A cellular automaton (CA) is an action F : A% — A7 defined by a
local rule f : Al=""1 — A (for some r > 0).

Example with A = {l,0} and r =1 :

Define the shift action as o(a); = aj_1.



Initial measure

We are considering the case where the initial configuration is chosen at
random.

» M, (A?): set of o-invariant probability measures;
» F extends to an action M, (A%) — M, (A%);
» For an initial measure 1, we consider the sequence F"pu.



Initial measure

We are considering the case where the initial configuration is chosen at
random.

» M, (A?): set of o-invariant probability measures;
» F extends to an action M, (A%) — M, (A%);
» For an initial measure 1, we consider the sequence F"pu.

Examples of initial measures:
» Bernoulli measures where each cell is drawn independently;
» Markov measures, which have finite memory;

» Hidden Markov (image of a Markov measure by a factor).



Limit measures, p-limit set

Asymptotic behaviour can be described by the persistent words,
whose probability to appear does not tend to 0 as t — oc.

p-limit set

The p-limit set A, (F) is the set of configurations containing only
persistent words.



Limit measures, p-limit set

Asymptotic behaviour can be described by the persistent words,
whose probability to appear does not tend to 0 as t — oc.

p-limit set

The p-limit set A, (F) is the set of configurations containing only
persistent words.

Alternatively, it can be described as the support of the adherence
values of the sequence (F"u) in the appropriate topology:

AZ: M, (A?):
Cantor distance Lévy-Prohorov distance
_ —min{|n|;upn#vn} _ ,U,([U]()) B V([U]O)
dc(u7 V) - |A‘ d(/’LJ V) - g* Alu‘

Product topology Weak-* convergence topology



Self-organization: qualitative approach

3-state cyclic CA

- A .A . A. =
One-sided captive such that f(ab)=f(ba)

4-state cyclic CA



Self-organization: qualitative approach

Theorem [H., Sablik, 2011]

Let F be a CA, u a o-ergodic measure. Define a "set of particles”
evolving at constant "speed” and such that any particle interaction is
"destructive”.

Then particles appearing in A, (F) all have the same speed.




Gliders automaton

Let A= {+,0,—} and v_ < v;.
The (v_, v4)-gliders automaton is the CA with two particles:
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Figure: v = —-1,vy =1

+ evolving at speed v, ;

— evolving at speed v_.



Gliders automaton

Let A= {+,0,—} and v_ < v;.
The (v_, v4)-gliders automaton is the CA with two particles:

+ evolving at speed v, ;

— evolving at speed v_.

II.I"

For any ergodic measure p with u([+]) = ). A\, contains no
particle.



Scope of our results

We will consider two families of initial measures :

» Ber the Bernoulli measures satisfying p. = p_ # 0 (simple case);
» HM the hidden transitive, aperiodic Markov measures satisfying:

> w([+]) = (=)

> > ksoE(mop - mip) > 0 (asymptotic variance).
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Then we have ¢ : Ber — HM.



Entry times

Entry times
Let v < vy € Zand a€ AZ. If v_ # 0, we define:

T, (a) =min{k e N | Fk+"(a)[07|vf|_1] contains a particle —1}

respectively T, (a). This is the entry time of a into the set
{bec A” | bo,|v_|—1) contains a particle —1} after time n at position 0.
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State of the art

Theorem (Denunzio, Formenti, Kurka, 2011)

Consider the (—1,0)-gliders automaton with an initial Bernoulli measure
of parameters py = p_ = 1/2. Then:

T
P (,,(a) < x> — 2 arctan v/ 2x.

n n—oo T

» Purely combinatorial approach.
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State of the art

Theorem (Denunzio, Formenti, Kurka, 2011)

Consider the (—1,0)-gliders automaton with an initial Bernoulli measure
of parameters py = p_ =1/2. Then:

n n—oo T

P (T"_(a) < x) — E arctan v/ 2x.

» Purely combinatorial approach.

Conjecture (op.cit.)
If instead we have i € Ber,

T 2
P ("(a) < x) — —arctan y/2px.

n n—oo T



Entry times

Theorem 1

» (v_, v, )-gliders automaton with v_ € Z7, v, € Z™.

» Initial measure in HM

Then for almost all initial configuration a,

<Tn(a) ) 2 < —v_x >
P <x | — —arctan _——
n n—oco T Vi — Vo +vgx

and symmetrically for T,

Remarks

» Independent of u([+]), u([-])-
» This disproves the conjecture.



Quantitative approach

For a € A%, we define the process M, that:
> goes up when it meets a +;

» goes down when it meets a —.
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Quantitative approach

—n

its a minimum in

Fn(a)o = + < M, on [—n, n] adm

and symmetrically for —.
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Quantitative approach
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Using scale invariance, we approximate the process by a Brownian
motion.



Density of particles

Densities
For a configuration a € A”, the density of particles - (resp. +) is:

#{i€[=nnl|ai=—}

d_(a) = II,?LSolip 1
Theorem 2
For an initial measure i, we have:
> If u € Ber:
For almost all a,d_(F"(a)) = © (n_%)
> If pe HM:

For almost all a,Ve > 0,d_(F"(a)) = O (n*%ﬁ)

and similarly for d, .



Rate of convergence

Theorem 3
Consider any (v_, v )-gliders automaton with v_ < v;.

> 1 € HM the initial measure,
> ) the limit measure (weighing only the particleless configuration),
» d be the Lévy-Prohorov distance defined earlier.

Then:
Ve >0, d(F"u,\) =0 (n_%“)

If furthermore 1 € Ber, we have:

d(F'u,\) =Q (n*%>



Perspectives

» With the same approach, better understanding of the limit diagram.

» Extending this kind of results to more particles and different
interactions, and eventually to whole classes of automata (e.g.
captive automata)




