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Plan

• Today: examples of pseudorandom 
objects

• Expander graphs

• Error-correcting codes

• Tomorrow: applications of pseudorandom 
objects to computer science



Why Pseudorandom 
Objects?

• Because random objects are interesting!

• Can show random objects have many interesting 
properties

• “Probabilistic method”: show existence of object 
satisfying some property

• Define probability distribution D

• Show Prx <- D[x does not satisfy property] << 1

• First used systematically in work of Erdös

• For example, proves existence of good expander graphs 
and good error-correcting codes



Pseudorandom objects

• Great, random objects have nice properties

• But: usually need explicit constructions

• Will see applications of expanders tomorrow

• Explicit: give algorithm for constructing size n 
object in time poly(n)



Expander Graphs



Expander graphs
• Expander graphs: highly connected and sparse graphs, e.g. |E| = O(|V|)

• Useful: algorithms, network design, coding theory, graph theory, 
topology, geometry, group theory, number theory...

• Many equivalent definitions
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• Def: for all sets S ⊆ V, where |S| ≤ |V|/2 
it holds that |N(S)| ≥ (3/2) |S|

• Thm [Pinsker’73]: random graphs are 
expander graphs



Expander graphs

Random walk 
converges quickly to 
uniform

• Expander graphs: highly connected and sparse graphs, e.g. |E| = O(|V|)

• Useful: algorithms, network design, coding theory, graph theory, 
topology, geometry, group theory, number theory...

• Many equivalent definitions



Defining Expanders

• Want family of (n, D, λ) graphs with n -> ∞, D constant, λ 
constant in [0, 1[

• Suppose G is (n, D, λ) expander, then:
• G has vertex expansion [Alon-Milman’85, Tanner’84]:

• For all S ⊆ V, |S| ≤ |V|/2, it holds that
|N(S)| ≥ 2/(λ2+1) |S|

Spectral expander: G is (n, D, λ)-
expander if:
• G is D-regular, |V| = n
• Let M = adjacency matrix of G

• Mij = 1/D if (i, j) ∈ G, 0 else

• Eigenvalues of M in [-1, 1]
• Max eigenvalue = 1

• λ ≥ all other eigenvalues of M in 
absolute value
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Defining Expanders

• Suppose G is (n, D, λ) expander, then:
• Expander Chernoff bound [Gillman’93]:

For any S ⊆ V, small |S| ≤ |V|/3
Pr[ majority of random walk of length t lies in S ] < 2-(1-λ)t

Spectral expander: G is (n, D, λ)-
expander if:
• G is D-regular, |V| = n
• Let M = adjacency matrix of G

• Mij = 1/D if (i, j) ∈ G, 0 else

• Eigenvalues of M in [-1, 1]
• Max eigenvalue = 1

• λ ≥ all other eigenvalues of M in 
absolute value

S



Defining Expanders

• Suppose G is (n, D, λ) expander, then:
• Expander mixing lemma [Alon-Chung’88]:

For all S, T ⊆ V,  | |E(S, T)| - |S| |T| D/n | ≤ λD√(|S| |T|)

Spectral expander: G is (n, D, λ)-
expander if:
• G is D-regular, |V| = n
• Let M = adjacency matrix of G

• Mij = 1/D if (i, j) ∈ G, 0 else

• Eigenvalues of M in [-1, 1]
• Max eigenvalue = 1

• λ ≥ all other eigenvalues of M in 
absolute value

S

T

edges between S and T
expected # edges between S 
and T in random D-regular 
graph

Proof...



Defining Expanders

• Building expander graphs?
• V = (ℤ/Nℤ)2         E:  (x, y) connected to:

    (x, y + 2x), (x, y + 2x + 1), (x, y - 2x), (x, y - 2x - 1)
    (x + 2y, y), (x + 2y + 1, y), (x - 2y, y), (x - 2y - 1, y)

• Theorem [Gabber-Galil’81]: above is (N2, 8, 0.89)-expander
• Theorem [Lubotzky-Philips-Sarnak’88, Margulis’88]: constructions of 

“Ramanujan graphs” where λ = (2/D)√(D-1) (optimal [Alon’86])
• Theorem [Reingold-Vadhan-Wigderson’01]: combinatorial constructions of 

expander graphs

Spectral expander: G is (n, D, λ)-
expander if:
• G is D-regular, |V| = n
• Let M = adjacency matrix of G

• Mij = 1/D if (i, j) ∈ G, 0 else

• Eigenvalues of M in [-1, 1]
• Max eigenvalue = 1

• λ ≥ all other eigenvalues of M in 
absolute value
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Error correcting 
codes



Error correcting codes

• Alice and Bob communicate over noisy channel
• Encode messages to handle errors
• [n, k, d] code:
• Codeword length n: bits transmitted across channel
• Message length k: bits before encoding
• Distance d = 2 * (maximum # of errors tolerated)

• Given n, maximize k and d

noise
hello hella

hello:hello:hello hella:hfllo:hecko
Not very good code



A geometric view

• Code: subset of {0,1}n, codeword length n
• Message length k = log(# codewords)
• Distance d = minimal distance between any two codewords
• Linear code: code forms subspace of {0,1}n ≃ GF(2)n

• Suffices to define basis of subspace v1 ... vk

{0,1}n

d



Gilbert-Varshamov 
Bound

• Theorem [G’52]: for all n and ε, random code is a 
[n, ε2n, n(1/2-ε)] code

• Theorem [V’57]: for all n and ε, random linear 
code is a [n, ε2n, n(1/2-ε)] linear code

• No known explicit codes with such good 
parameters

• Theorem [Alon-Goldreich-Håstad-Peralta’92]: for 
all ε and infinitely many n, can construct 
explicitly [n, 2ε √n, n(1/2-ε)] linear code

Proof...



Summary
• Pseudorandom objects: non-random objects that have some properties of 

random objects:
• Expander graphs: connectivity
• Error-correcting codes: large distance

• Common tools:
• Extremal combinatorics
• Linear Algebra
• Group theory, representation theory
• Finite fields, polynomials over finite fields

• Open questions: better constructions
• Combinatorial construction of optimal expanders?
• Binary linear codes matching Gilbert-Varshamov bound?

• Tomorrow: applications to computer science
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