Le pseudo-aléa: objets et génération. Exercises

David Xiao <dxiao@liafa.jussieu.fr> CNRS, LIAFA, Université Paris Didérot - Paris 7

March 7, 2012

1 Graphs and their spectra

Let G = (V, E) be an undirected *D*-regular graph of size n = |V| and let its normalized adjacency matrix be *M*, defined as $M_{i,j} = e(i,j)/D$ where e(i,j) is the number of edges in *G* between vertices *i* and *j* (allowing for multiple edges). Let $\lambda_1, \ldots, \lambda_n$ denote the eigenvalues of *M* and let us suppose they are ordered so that $|\lambda_1| \ge |\lambda_2| \ge \ldots \ge |\lambda_n|$. Let v_1, \ldots, v_n be the corresponding orthonormal eigenvectors.

- 1. Show that the eigenvalues of M lie in the interval [-1,1]. Show that the uniform vector $u = (\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}})$ is an eigenvector of M with eigenvalue 1.
- 2. Show that if G has at least k connected components, then G has eigenvalue 1 with multiplicity at least k. (Stronger statement: In fact, the converse holds as well, and therefore the number of connected components equals the multiplicity of 1, but we will not prove this now.)
- 3. Let G^k denote the graph on the same vertex set V as G and where for all $i, j \in V$ the number of edges between i and j in G^k is the number of paths of length k between i, j in the original graph G (allowing for multiple edges between the same pair of points). Show that λ is an eigenvalue of G iff λ^k is an eigenvalue of G^k .
- 4. Show that if G is connected and bipartite then it has an eigenvalue of -1. (You may use the stronger statement of Item 2.)

2 Expander walk sampling and randomness-efficient error reduction

- 1. Fix G a (n, D, λ) expander. Fix any set $B \subseteq [n]$. Let $W = (W_0, \ldots, W_k)$ denote the steps of a random walk in G defined by picking $W_0 \leftarrow_{\mathbb{R}} [n]$ and letting W_i be a random neighbor of W_{i-1} for all $i \geq 1$. Let $\beta = |B|/n$ be the density of B in [n]. Prove the following:
 - (a) Define the diagonal matrix P where the *i*'th diagonal is 1 if $i \in B$ and 0 otherwise. Prove that $\|PM\| \leq (\sqrt{\beta} + \lambda)$ (where $\|\cdot\|$ is the operator norm, *i.e.* $\|A\| = \max_{x \in \mathbb{R}^n} \|Ax\|_2 / \|x\|_2$).
 - (b) Let u denote the vector of the uniform distribution, $u = (1/n, ..., 1/n)^T$. Show that:

$$\Pr[W_1, \dots, W_k \in B] = |(PM)^k u|_1 \tag{2.1}$$

(Notice we start from W_1 , not W_0 . This is a technicality that will simplify calculations later.) (c) Conclude that

$$\Pr[W_1, \dots, W_k \in B] \le (\sqrt{\beta} + \lambda)^k \tag{2.2}$$

2. Fix a language L and an efficient algorithm A, such that for all $x \in \{0,1\}^n$, A uses m = poly(n) random bits and satisfies:

$$\forall x \in L, \ \Pr[A(x; U_m) = 1] \ge 8/9$$

$$\forall x \notin L, \ \Pr[A(x; U_m) = 1] = 0$$

Namely, A is an efficient algorithm deciding L with one-sided error (only on positive instances). Suppose there exists a $(2^m, D, \lambda)$ expander with D = O(1) and $\lambda < 1/6$.

For any k, construct an efficient algorithm A' that uses m' = m + O(k) random bits such that $\forall x \in L$, $\Pr[A(x; U_{m'}) = 1] \ge 1 - 2^{-k}$ and $\forall x \notin L$, $\Pr[A'(x; U_{m'}) = 1] = 0$

3. Fix a language L and an efficient algorithm A, such that for all $x \in \{0,1\}^n$, A uses m = poly(n) random bits and satisfies:

$$\forall x \in \{0,1\}^n, \ \Pr[A(x;U_m) = L(x)] \ge 1 - 2^{-10}$$

Namely, A is an efficient algorithm deciding L with two-sided error. Suppose there exists a $(2^m, D, \lambda)$ expander with D = O(1) and $\lambda < 2^{-5}$.

For any k, construct an efficient algorithm A' that uses m' = m + O(k) random bits such that

$$\forall x \in \{0,1\}^n, \ \Pr[A(x;U_{m'}) = L(x)] \ge 1 - 2^{-k}$$

Hint: define A' using the majority of k samples taken by an expander walk, and to analyze the probability that A' errs, take a union bound over all possible subsets of steps of the walk $S \subseteq [k]$ with size $|S| \ge k/2$. Then, using a generalization of Equation 2.1, bound the probability that the steps of the walk in S are bad.

3 Binary error-correcting codes and ε -biased generators

Recall that we can naturally identify $\{0,1\}^n$ with the vector space $GF(2)^n$. Recall the following definitions:

Definition 3.1. $C \subseteq \{0,1\}^n$ is a [n,k,d] linear code if C is a linear subspace of $\{0,1\}^n$ with dimension k, and if for all distinct $x, y \in C$ it holds that $|x - y|_H \ge d$ where $|\cdot|_H$ denotes the Hamming weight (number of non-zero entries) of a vector.

Definition 3.2. $G: \{0,1\}^s \to \{0,1\}^k$ is an ε -biased generator if for all linear functions $f: \{0,1\}^k \to \{0,1\}$, it holds that

$$\left|\Pr[f(G(U_s)) = 1] - \frac{1}{2}\right| \le \varepsilon$$

Prove the following:

- 1. Given an ε -biased generator $G: \{0,1\}^s \to \{0,1\}^k$, one can construct a $[2^s, k, 2^s(\frac{1}{2} \varepsilon)]$ linear code.
- 2. Is it possible to do the reverse, *i.e.* given C a $[n, k, n(\frac{1}{2} \varepsilon)]$ linear code to construct an ε -biased generator? If so, give a construction. If not, explain why not.

4 Efficient constructions of combinatorial designs

Show that for any constant K > 0, one can find in time poly(m) a family of sets $S_1, \ldots, S_m \subseteq [9K \log m]$ with the following properties:

- 1. For all $i \in [m]$, $|S_i| = \sqrt{K} \log m$.
- 2. For all $i \neq j \in [m]$, $|S_i \cap S_j| \leq \log m$.

Hint: greedily build the family S_1, \ldots, S_m one-by-one, and at each time i < m prove that there exists a suitable S_{i+1} by using a probabilistic argument and the following version of the Hoeffding bound.

Lemma 4.1. Fix any $T \subseteq [n]$. Suppose S is drawn as a random subset of size s out of $[n] = \{1, \ldots, n\}$. Then for all $\delta > 0$ the following holds:

$$\Pr\left[|S \cap T| > (1+\delta)\frac{|T|}{n}\right] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{s|T|/n}$$