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1 Graphs and their spectra

Let G = (V, E) be an undirected D-regular graph of size n = |V | and let its normalized adjacency matrix
be M , defined as Mi,j = e(i, j)/D where e(i, j) is the number of edges in G between vertices i and j
(allowing for multiple edges). Let λ1, . . . , λn denote the eigenvalues of M and let us suppose they are
ordered so that |λ1| ≥ |λ2| ≥ . . . ≥ |λn|. Let v1, . . . , vn be the corresponding orthonormal eigenvectors.

1. Show that the eigenvalues of M lie in the interval [−1, 1]. Show that the uniform vector u =
( 1√

n
, . . . , 1√

n
) is an eigenvector of M with eigenvalue 1.

2. Show that if G has at least k connected components, then G has eigenvalue 1 with multiplicity
at least k. (Stronger statement: In fact, the converse holds as well, and therefore the number of
connected components equals the multiplicity of 1, but we will not prove this now.)

3. Let Gk denote the graph on the same vertex set V as G and where for all i, j ∈ V the number of
edges between i and j in Gk is the number of paths of length k between i, j in the original graph
G (allowing for multiple edges between the same pair of points). Show that λ is an eigenvalue of G
iff λk is an eigenvalue of Gk.

4. Show that if G is connected and bipartite then it has an eigenvalue of −1. (You may use the
stronger statement of Item 2.)

2 Expander walk sampling and randomness-efficient error reduction

1. Fix G a (n, D, λ) expander. Fix any set B ⊆ [n]. Let W = (W0, . . . , Wk) denote the steps of a
random walk in G defined by picking W0 ←R [n] and letting Wi be a random neighbor of Wi−1 for
all i ≥ 1. Let β = |B|/n be the density of B in [n]. Prove the following:

(a) Define the diagonal matrix P where the i’th diagonal is 1 if i ∈ B and 0 otherwise. Prove that
‖PM‖ ≤ (

√
β + λ) (where ‖ · ‖ is the operator norm, i.e. ‖A‖ = maxx∈Rn ‖Ax‖2/‖x‖2).

(b) Let u denote the vector of the uniform distribution, u = (1/n, . . . , 1/n)T . Show that:

Pr[W1, . . . , Wk ∈ B] = |(PM)ku|1 (2.1)

(Notice we start from W1, not W0. This is a technicality that will simplify calculations later.)
(c) Conclude that

Pr[W1, . . . , Wk ∈ B] ≤ (
√

β + λ)k (2.2)

2. Fix a language L and an efficient algorithm A, such that for all x ∈ {0, 1}n, A uses m = poly(n)
random bits and satisfies:

∀x ∈ L, Pr[A(x; Um) = 1] ≥ 8/9

∀x /∈ L, Pr[A(x; Um) = 1] = 0
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Namely, A is an efficient algorithm deciding L with one-sided error (only on positive instances).
Suppose there exists a (2m, D, λ) expander with D = O(1) and λ < 1/6.
For any k, construct an efficient algorithm A′ that uses m′ = m + O(k) random bits such that
∀x ∈ L, Pr[A(x; Um′) = 1] ≥ 1 − 2−k and ∀x /∈ L, Pr[A′(x; Um′) = 1] = 0

3. Fix a language L and an efficient algorithm A, such that for all x ∈ {0, 1}n, A uses m = poly(n)
random bits and satisfies:

∀x ∈ {0, 1}n, Pr[A(x; Um) = L(x)] ≥ 1 − 2−10

Namely, A is an efficient algorithm deciding L with two-sided error. Suppose there exists a (2m, D, λ)
expander with D = O(1) and λ < 2−5.
For any k, construct an efficient algorithm A′ that uses m′ = m + O(k) random bits such that

∀x ∈ {0, 1}n, Pr[A(x; Um′) = L(x)] ≥ 1 − 2−k

Hint: define A′ using the majority of k samples taken by an expander walk, and to analyze the
probability that A′ errs, take a union bound over all possible subsets of steps of the walk S ⊆ [k]
with size |S| ≥ k/2. Then, using a generalization of Equation 2.1, bound the probability that the
steps of the walk in S are bad.

3 Binary error-correcting codes and ε-biased generators

Recall that we can naturally identify {0, 1}n with the vector space GF (2)n. Recall the following defini-
tions:

Definition 3.1. C ⊆ {0, 1}n is a [n, k, d] linear code if C is a linear subspace of {0, 1}n with dimension
k, and if for all distinct x, y ∈ C it holds that |x − y|H ≥ d where | · |H denotes the Hamming weight
(number of non-zero entries) of a vector.

Definition 3.2. G : {0, 1}s → {0, 1}k is an ε-biased generator if for all linear functions f : {0, 1}k →
{0, 1}, it holds that

|Pr[f(G(Us)) = 1] − 1

2
| ≤ ε

Prove the following:

1. Given an ε-biased generator G : {0, 1}s → {0, 1}k, one can construct a [2s, k, 2s(1

2
− ε)] linear code.

2. Is it possible to do the reverse, i.e. given C a [n, k, n(1

2
− ε)] linear code to construct an ε-biased

generator? If so, give a construction. If not, explain why not.

4 Efficient constructions of combinatorial designs

Show that for any constant K > 0, one can find in time poly(m) a family of sets S1, . . . , Sm ⊆ [9K log m]
with the following properties:

1. For all i ∈ [m], |Si| =
√

K log m.
2. For all i 6= j ∈ [m], |Si ∩ Sj | ≤ log m.

Hint: greedily build the family S1, . . . , Sm one-by-one, and at each time i < m prove that there exists a
suitable Si+1 by using a probabilistic argument and the following version of the Hoeffding bound.

Lemma 4.1. Fix any T ⊆ [n]. Suppose S is drawn as a random subset of size s out of [n] = {1, . . . , n}.
Then for all δ > 0 the following holds:

Pr
[

|S ∩ T | > (1 + δ) |T |
n

]

≤
(

eδ

(1 + δ)1+δ

)s|T |/n
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