Le pseudo-aléa: objets et génération. Exercises

David Xiao dxiao@liafa.jussieu.fr
CNRS, LIAFA, Université Paris Didérot - Paris 7

March 7, 2012

1 Graphs and their spectra

Let $G=(V, E)$ be an undirected D-regular graph of size $n=|V|$ and let its normalized adjacency matrix be M, defined as $M_{i, j}=e(i, j) / D$ where $e(i, j)$ is the number of edges in G between vertices i and j (allowing for multiple edges). Let $\lambda_{1}, \ldots, \lambda_{n}$ denote the eigenvalues of M and let us suppose they are ordered so that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|$. Let v_{1}, \ldots, v_{n} be the corresponding orthonormal eigenvectors.

1. Show that the eigenvalues of M lie in the interval $[-1,1]$. Show that the uniform vector $u=$ $\left(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right)$ is an eigenvector of M with eigenvalue 1 .
2. Show that if G has at least k connected components, then G has eigenvalue 1 with multiplicity at least k. (Stronger statement: In fact, the converse holds as well, and therefore the number of connected components equals the multiplicity of 1 , but we will not prove this now.)
3. Let G^{k} denote the graph on the same vertex set V as G and where for all $i, j \in V$ the number of edges between i and j in G^{k} is the number of paths of length k between i, j in the original graph G (allowing for multiple edges between the same pair of points). Show that λ is an eigenvalue of G iff λ^{k} is an eigenvalue of G^{k}.
4. Show that if G is connected and bipartite then it has an eigenvalue of -1 . (You may use the stronger statement of Item 2.)

2 Expander walk sampling and randomness-efficient error reduction

1. Fix G a (n, D, λ) expander. Fix any set $B \subseteq[n]$. Let $W=\left(W_{0}, \ldots, W_{k}\right)$ denote the steps of a random walk in G defined by picking $W_{0} \leftarrow_{\mathrm{R}}[n]$ and letting W_{i} be a random neighbor of W_{i-1} for all $i \geq 1$. Let $\beta=|B| / n$ be the density of B in $[n]$. Prove the following:
(a) Define the diagonal matrix P where the i 'th diagonal is 1 if $i \in B$ and 0 otherwise. Prove that $\|P M\| \leq(\sqrt{\beta}+\lambda)$ (where $\|\cdot\|$ is the operator norm, i.e. $\|A\|=\max _{x \in \mathbb{R}^{n}}\|A x\|_{2} /\|x\|_{2}$).
(b) Let u denote the vector of the uniform distribution, $u=(1 / n, \ldots, 1 / n)^{T}$. Show that:

$$
\begin{equation*}
\operatorname{Pr}\left[W_{1}, \ldots, W_{k} \in B\right]=\left|(P M)^{k} u\right|_{1} \tag{2.1}
\end{equation*}
$$

(Notice we start from W_{1}, not W_{0}. This is a technicality that will simplify calculations later.)
(c) Conclude that

$$
\begin{equation*}
\operatorname{Pr}\left[W_{1}, \ldots, W_{k} \in B\right] \leq(\sqrt{\beta}+\lambda)^{k} \tag{2.2}
\end{equation*}
$$

2. Fix a language L and an efficient algorithm A, such that for all $x \in\{0,1\}^{n}, A$ uses $m=\operatorname{poly}(n)$ random bits and satisfies:

$$
\begin{aligned}
& \forall x \in L, \operatorname{Pr}\left[A\left(x ; U_{m}\right)=1\right] \geq 8 / 9 \\
& \forall x \notin L, \operatorname{Pr}\left[A\left(x ; U_{m}\right)=1\right]=0
\end{aligned}
$$

Namely, A is an efficient algorithm deciding L with one-sided error (only on positive instances). Suppose there exists a $\left(2^{m}, D, \lambda\right)$ expander with $D=O(1)$ and $\lambda<1 / 6$.
For any k, construct an efficient algorithm A^{\prime} that uses $m^{\prime}=m+O(k)$ random bits such that $\forall x \in L, \operatorname{Pr}\left[A\left(x ; U_{m^{\prime}}\right)=1\right] \geq 1-2^{-k}$ and $\forall x \notin L, \operatorname{Pr}\left[A^{\prime}\left(x ; U_{m^{\prime}}\right)=1\right]=0$
3. Fix a language L and an efficient algorithm A, such that for all $x \in\{0,1\}^{n}, A$ uses $m=\operatorname{poly}(n)$ random bits and satisfies:

$$
\forall x \in\{0,1\}^{n}, \operatorname{Pr}\left[A\left(x ; U_{m}\right)=L(x)\right] \geq 1-2^{-10}
$$

Namely, A is an efficient algorithm deciding L with two-sided error. Suppose there exists a $\left(2^{m}, D, \lambda\right)$ expander with $D=O(1)$ and $\lambda<2^{-5}$.
For any k, construct an efficient algorithm A^{\prime} that uses $m^{\prime}=m+O(k)$ random bits such that

$$
\forall x \in\{0,1\}^{n}, \operatorname{Pr}\left[A\left(x ; U_{m^{\prime}}\right)=L(x)\right] \geq 1-2^{-k}
$$

Hint: define A^{\prime} using the majority of k samples taken by an expander walk, and to analyze the probability that A^{\prime} errs, take a union bound over all possible subsets of steps of the walk $S \subseteq[k]$ with size $|S| \geq k / 2$. Then, using a generalization of Equation 2.1, bound the probability that the steps of the walk in S are bad.

3 Binary error-correcting codes and ε-biased generators

Recall that we can naturally identify $\{0,1\}^{n}$ with the vector space $G F(2)^{n}$. Recall the following definitions:

Definition 3.1. $\mathcal{C} \subseteq\{0,1\}^{n}$ is a $[n, k, d]$ linear code if \mathcal{C} is a linear subspace of $\{0,1\}^{n}$ with dimension k, and if for all distinct $x, y \in \mathcal{C}$ it holds that $|x-y|_{H} \geq d$ where $|\cdot|_{H}$ denotes the Hamming weight (number of non-zero entries) of a vector.
Definition 3.2. $G:\{0,1\}^{s} \rightarrow\{0,1\}^{k}$ is an ε-biased generator if for all linear functions $f:\{0,1\}^{k} \rightarrow$ $\{0,1\}$, it holds that

$$
\left|\operatorname{Pr}\left[f\left(G\left(U_{s}\right)\right)=1\right]-\frac{1}{2}\right| \leq \varepsilon
$$

Prove the following:

1. Given an ε-biased generator $G:\{0,1\}^{s} \rightarrow\{0,1\}^{k}$, one can construct a $\left[2^{s}, k, 2^{s}\left(\frac{1}{2}-\varepsilon\right)\right]$ linear code.
2. Is it possible to do the reverse, i.e. given \mathcal{C} a $\left[n, k, n\left(\frac{1}{2}-\varepsilon\right)\right]$ linear code to construct an ε-biased generator? If so, give a construction. If not, explain why not.

4 Efficient constructions of combinatorial designs

Show that for any constant $K>0$, one can find in time poly (m) a family of sets $S_{1}, \ldots, S_{m} \subseteq[9 K \log m]$ with the following properties:

1. For all $i \in[m],\left|S_{i}\right|=\sqrt{K} \log m$.
2. For all $i \neq j \in[m],\left|S_{i} \cap S_{j}\right| \leq \log m$.

Hint: greedily build the family S_{1}, \ldots, S_{m} one-by-one, and at each time $i<m$ prove that there exists a suitable S_{i+1} by using a probabilistic argument and the following version of the Hoeffding bound.
Lemma 4.1. Fix any $T \subseteq[n]$. Suppose S is drawn as a random subset of size s out of $[n]=\{1, \ldots, n\}$. Then for all $\delta>0$ the following holds:

$$
\operatorname{Pr}\left[|S \cap T|>(1+\delta) \frac{|T|}{n}\right] \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{s|T| / n}
$$

