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Goal?

 Computing the asymptotic density of a b-
matching as the size of graphs tend to infinity

— Can we compute other quantities in a similar way?
* Sequences of sparse random graphs with a
known local structure

— Graphs that converge (in the local weak sense)
towards Galton-Watson trees

* Ex: Erdos-Renyi, configuration model



Matchings

* Graph G=(V,E)

* Matching= subset of edges E’ such that each
vertex is adjacent to at most one element in £

NN

studied by Zdeborova and Mézard (2006)
Bordenave, Lelarge, Salez (2011)




b-matchings

* Capacity constraint b, at vertex v
e Each edge may be used more than once
* Total usage of edges adjacent to v must not exceed b,
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An application: distributed content
distribution system
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Distributed content distribution
system

n contents, m servers

Contents stored by each
server determined
independently (but not
uniformly)
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Number of requests and
number of replicas for each
content jointly determined

n—oo,n/m-— f contents

servers

What fraction of the requests can be served?



Distributed content distribution
system
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Greedy algorithm on trees for finding a
maximum b-matching
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Greedy algorithm on trees




Message-passing version:
BP at O temperature
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BP at O temperature:
initial messages
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BP at O temperature:
after 1 iteration




BP at O temperature:
keep iterating...




BP at O temperature:
fixed-point

1,=P. (I,)=P.(I;) = I'=,



Problem solved?

* On trees, can recover the size of a maximum
b-matching from I’

* However, we are interested in sequences of
graphs that are asymptotically tree-like

— Message passing may not converge on those

— Possibly many fixed-points on an infinite tree

* Some of them will not yield a maximum b-matching...

* BP at positive temperature T and then T—0



BP at positive temperature

* Gibbs measure on set of b-matchings

u(o)= izeae Hl(Ze " e)
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* At positive temperature, BP messages are
distributions over the integers

— Initialization: \(,_)m (1 O
— BP update: m(k+l) kx
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where Cis a normalization factor



BP estimate

* Define Dv(mﬂ) =BP estimate of total usage of
edges adjacent to v, where m” fixed-point of
BP at temperature A
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Global plan
1 2 N—>00 4
v,| ZV Hg, [Ze..v o e) > E[Dv [m )]

A—>00 A—>0

2M,, N, ——>E[D,(m")




Global plan
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finite graphs BP on infinite tree



At the end...an ugly formula
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where F(q)= E|b (](3V‘>O)+b /\ZY
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X, ~q and Y, ~E[P,_ (X)]~ g(a)



At the end...an ugly formula

two-step fixed-point

lim 2 inf F(
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where F(q)= E|[b (]8V‘>O)+b /\ZY

v

0,43, Z,N

X, ~q and Y, ~E[P,_, (X)]~ g(a)




Convergence of BP at T>0

* Does BP converge?

— matching case: messages are distributions on {0,1}
— can be encoded by one real number
* Negative dependence (Pemantle) = BP update

operator non-increasing (Salez) = adjacent sequences
= [...] = unique fixed-point

* IsR,_, non-increasing?
— For general messages and st-order, no!
— Restrict to log-concave distributions

—> mv%u(X)/mHu(X—l) non-increasing in Xe N’
 Totally Positive functions (Karlin) = R\/}_m non-

increasing for Ir-order = [...] = unique fixed-point



Merci!

Questions?



Applications: cuckoo hashing

Introduced by Pagh & Rodler, ESA'01

— m balls and n bins (mapping of objects and keys)

— Each

— How
each

nall is proposed 2 bins at random
arge can m be such that it is possible to put

pall into one of its proposed bin, with no

collisions allowed?

e Generalizations:

— More choices per ball — still a matching problem

— Larger bin capacity — b>1 on one side

— Batches of balls with same choices — b>1 on both

sides = edges may be used multiple times!



Monotonicity as T—0

LS (5 ) )
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* Limit of ,uén as A—o is the uniform law over
the set of maximum b-matchings




Correlation decay at T>0
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* Unicity of BP fixed-point at T>0
* G, converges locally weakly to G

e Gisatree, hence BP estimate is correct



Monotonicity + continuity

|V1n\ S (X, o) E[D, (m")

A—>00 l?\—)oo

MV, " Elp ()

A

e m*=limT, m
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* D, continuous



Convexity argument
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e Uniform control in n

* Entropy term in the free energy becomes
negligeable as T—>0



Non-increasing operator?

EX: bv=3, oV = {ul, u2 ’ ug} , M — (%1%1010j — rn'u1—>v

and m {1111} . _(uuj
w7 \4'4'3'6) 7 M 474763
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—> no monotonicity for general messages



