Size of maximum b-matchings in sparse random graphs

Mathieu Leconte

Joint work with Marc Lelarge and
Laurent Massoulié

Goal?

- Computing the asymptotic density of a bmatching as the size of graphs tend to infinity
- Can we compute other quantities in a similar way?
- Sequences of sparse random graphs with a known local structure
- Graphs that converge (in the local weak sense) towards Galton-Watson trees
- Ex: Erdos-Renyi, configuration model

Matchings

- Graph $G=(V, E)$
- Matching= subset of edges E^{\prime} such that each vertex is adjacent to at most one element in E^{\prime}

studied by Zdeborova and Mézard (2006) Bordenave, Lelarge, Salez (2011)

b-matchings

- Capacity constraint b_{v} at vertex v
- Each edge may be used more than once
- Total usage of edges adjacent to v must not exceed b_{v}

b-matchings

- Capacity constraint b_{v} at vertex v
- Each edge may be used more than once
- Total usage of edges adjacent to v must not exceed b_{v}

An application: distributed content distribution system

Distributed content distribution

 system- n contents, m servers
- Contents stored by each server determined independently (but not uniformly)
- Number of requests and number of replicas for each content jointly determined
- $n \rightarrow \infty, n / m \rightarrow \beta$

servers
contents

What fraction of the requests can be served?

Distributed content distribution

 system

Greedy algorithm on trees for finding a maximum b-matching

Greedy algorithm on trees

Message-passing version: BP at 0 temperature

$$
\boldsymbol{I}_{v \rightarrow u}^{t+1}=\left(b_{v}-\sum_{w \in \partial v \backslash u} \boldsymbol{I}_{w \rightarrow v}^{t}\right)^{+}=\mathrm{P}_{v \rightarrow u}\left(\boldsymbol{I}^{t}\right)
$$

BP at 0 temperature: initial messages

BP at 0 temperature: after 1 iteration

BP at 0 temperature: keep iterating...

$$
I_{2}=P_{G}\left(I_{1}\right)
$$

BP at 0 temperature:
 fixed-point

Problem solved?

- On trees, can recover the size of a maximum b-matching from I^{*}
- However, we are interested in sequences of graphs that are asymptotically tree-like
- Message passing may not converge on those
- Possibly many fixed-points on an infinite tree
- Some of them will not yield a maximum b-matching...
- BP at positive temperature T and then $\mathrm{T} \rightarrow 0$

BP at positive temperature

- Gibbs measure on set of b-matchings

$$
\mu_{G}^{\lambda}(\sigma)=\frac{1}{Z_{G}(\lambda)} \lambda^{\sum_{e} \sigma_{e}} \prod_{v \in V} 1\left(\sum_{e \sim v} \sigma_{e}\right)
$$

- At positive temperature, BP messages are distributions over the integers
- Initialization: $\quad m_{v \rightarrow u}^{(0)}=(1,0, \ldots)$
- BP update:

$$
\left.m_{v \rightarrow u}^{(k+1)}(x)=\mathrm{R}_{v \rightarrow u}^{\lambda} \boldsymbol{m}^{(k)}\right](x)
$$

$$
\mathrm{R}_{v \rightarrow u}^{\lambda}[\boldsymbol{m}](x)=C \lambda^{x} \sum_{\sigma \in \mathbb{N}^{v i w}, \mid \sigma \leq \leq b_{v}-x} \prod_{w \in \partial v \backslash u} m_{w \rightarrow v}\left(\sigma_{v w}\right)
$$

BP estimate

- Define $\mathrm{D}_{v}\left(\boldsymbol{m}^{\lambda}\right)=\mathrm{BP}$ estimate of total usage of edges adjacent to v, where \boldsymbol{m}^{λ} fixed-point of $B P$ at temperature λ

$$
\mathrm{D}_{v}\left(\boldsymbol{m}^{\lambda}\right)=\frac{\sum_{\sigma \in \mathbb{N}^{v i v}, \mid \sigma \leq b_{v}}|\boldsymbol{\sigma}| \prod_{u \in \delta v} m_{u \rightarrow v}^{\lambda}\left(\sigma_{u v}\right)}{\sum_{\sigma \in \mathbb{N}^{v},|\sigma| b_{v}} \prod_{u \in \delta v} m_{u \rightarrow v}^{\lambda}\left(\sigma_{u v}\right)}
$$

- $\mathrm{D}_{v}\left(\boldsymbol{m}^{\lambda}\right)=\mu_{G}^{\lambda}\left(\sum_{e \sim v} \sigma_{e}\right)$ when G is a finite tree

Global plan

$$
\begin{aligned}
& \frac{1}{\left|V_{n}\right|} \sum_{v} \mu_{G_{n}}^{\lambda}\left(\sum_{e \sim v} \sigma_{e}\right) \xrightarrow{\mathrm{n} \rightarrow \infty} \mathrm{E}\left[\mathrm{D}_{v}\left(\boldsymbol{m}^{\lambda}\right)\right] \\
& \lambda \rightarrow \infty{ }^{\lambda} \downarrow_{\lambda \rightarrow \infty} \\
& 2 M_{n} /\left|V_{n}\right| \xrightarrow{\mathrm{n} \rightarrow \infty} \mathrm{E}\left[\mathrm{D}_{v}\left(\boldsymbol{m}^{\infty}\right)\right]
\end{aligned}
$$

Global plan

finite graphs
BP on infinite tree

At the end...an ugly formula

$$
\lim _{n \rightarrow \infty} \frac{2 M_{n}}{\left|V_{n}\right|}=\inf _{q=\operatorname{gog}(q)} \mathrm{F}(q)
$$

where $\mathrm{F}(q)=\mathrm{E}\left[b_{v} 1(|\partial v|>0)+b_{v} \wedge \sum_{i=1}^{|\partial v|} Y_{i}\right.$

$$
\left.-b_{v} \wedge \sum_{i=1}^{|\partial v|}\left(b_{v}-\sum_{j \neq i} X_{i}\right)^{+}\right]
$$

$$
X_{i} \sim q \text { and } Y_{i} \sim \mathrm{E}\left[\mathrm{P}_{v \rightarrow u}(\boldsymbol{X})\right] \sim g(q)
$$

At the end...an ugly formula

$$
\lim _{n \rightarrow \infty} \frac{2 M_{n}}{\left|V_{n}\right|}=\inf _{\llbracket=\operatorname{sog}(q)} \mathrm{F}(q)
$$

capacity constraint + incoming messages
where $\mathrm{F}(q)=\mathrm{E}\left[\mid b_{v} \mathrm{l}(|\partial v|>0)+b_{v} \wedge \sum_{i=1}^{|\partial v|} Y_{i}\right.$

$$
\left.\left.-b_{v} \wedge \sum_{i=1}^{|\partial v|}\left(b_{v}-\sum_{j \neq i} X_{i}\right)^{+}\right]\right]
$$

$X_{i} \sim q$ and $Y_{i} \sim \mathrm{E}\left[\mathrm{P}_{v \rightarrow u}(\boldsymbol{X})\right] \sim g(q)^{- \text {outgoing messages }}$

Convergence of BP at $\mathrm{T}>0$

- Does BP converge?
- matching case: messages are distributions on $\{0,1\}$
\rightarrow can be encoded by one real number
- Negative dependence (Pemantle) \Rightarrow BP update operator non-increasing (Salez) \Rightarrow adjacent sequences $\Rightarrow[. ..] \Rightarrow$ unique fixed-point
- Is $\mathrm{R}_{v \rightarrow u}^{\lambda}$ non-increasing?
- For general messages and st-order, no!
- Restrict to log-concave distributions
$\rightarrow m_{v \rightarrow u}(x) / m_{v \rightarrow u}(x-1)$ non-increasing in $x \in \mathrm{~N}^{*}$
- Totally Positive functions (Karlin) $\Rightarrow \mathrm{R}_{v \rightarrow u}^{\lambda}$ nonincreasing for $I r$-order $\Rightarrow[\ldots] \Rightarrow$ unique fixed-point

Merci!

Questions?

Applications: cuckoo hashing Introduced by Pagh \& Rodler, ESA’01

$-m$ balls and n bins (mapping of objects and keys)

- Each ball is proposed 2 bins at random
- How large can m be such that it is possible to put each ball into one of its proposed bin, with no collisions allowed?
- Generalizations:
- More choices per ball \rightarrow still a matching problem
- Larger bin capacity $\rightarrow b>1$ on one side
- Batches of balls with same choices $\rightarrow b>1$ on both sides \Rightarrow edges may be used multiple times!

Monotonicity as $\mathrm{T} \rightarrow 0$

$$
\begin{aligned}
& \frac{1}{\left|V_{n}\right|} \sum_{v} \mu_{G_{n}}^{\lambda}\left(\sum_{e \sim v} \sigma_{e}\right) \xrightarrow{\mathrm{n} \rightarrow \infty} \mathrm{E}\left[\mathrm{D}_{v}\left(\boldsymbol{m}^{\lambda}\right)\right] \\
& \underset{\lambda \rightarrow \infty}{\downarrow} \underset{2 M_{n} /\left|V_{n}\right|}{ } \xrightarrow{n \rightarrow \infty} \underset{\lambda \rightarrow \infty}{ } \mathrm{E}\left[\mathrm{D}_{v}\left(\boldsymbol{m}^{\infty}\right)\right]
\end{aligned}
$$

- Limit of $\mu_{G_{n}}^{\lambda}$ as $\lambda \rightarrow \infty$ is the uniform law over the set of maximum b -matchings

Correlation decay at $\mathrm{T}>0$

$$
\begin{aligned}
& \frac{1}{\left|V_{n}\right|} \sum_{v} \mu_{G_{n}}^{\lambda}\left(\sum_{e \sim v} \sigma_{e}\right) \xrightarrow{\mathrm{n} \rightarrow \infty} \mathrm{E}\left[\mathrm{D}_{v}\left(\boldsymbol{m}^{\lambda}\right)\right] \\
& \lambda \rightarrow \infty \downarrow \downarrow{ }^{\lambda \rightarrow \infty} \\
& 2 M_{n} /\left|V_{n}\right| \xrightarrow{\mathrm{n} \rightarrow \infty} \mathrm{E}\left[\mathrm{D}_{v}\left(\boldsymbol{m}^{\infty}\right)\right]
\end{aligned}
$$

- Unicity of BP fixed-point at $\mathrm{T}>0$
- G_{n} converges locally weakly to G
- G is a tree, hence BP estimate is correct

Monotonicity + continuity

$$
\begin{aligned}
& \frac{1}{\left|V_{n}\right|} \sum_{v} \mu_{G_{n}}^{\lambda}\left(\sum_{e \sim v} \sigma_{e}\right) \xrightarrow{\mathrm{n} \rightarrow \infty} \mathrm{E}\left[\mathrm{D}_{v}\left(\boldsymbol{m}^{\lambda}\right)\right] \\
& \lambda \rightarrow \infty \downarrow \downarrow_{\lambda \rightarrow \infty} \\
& 2 M_{n} /\left|V_{n}\right| \longrightarrow \mathrm{n}\left[\mathrm{D}_{v}\left(\boldsymbol{m}^{\infty}\right)\right]
\end{aligned}
$$

- $\boldsymbol{m}^{\infty}=\lim \uparrow_{\lambda \rightarrow \infty} \boldsymbol{m}^{\lambda}$
- D_{v} continuous

Convexity argument

$$
\begin{aligned}
& \frac{1}{\left|V_{n}\right|} \sum_{v} \mu_{G_{n}}^{\lambda}\left(\sum_{e \sim v} \sigma_{e}\right) \xrightarrow{\mathrm{n} \rightarrow \infty} \mathrm{E}\left[\mathrm{D}_{v}\left(\boldsymbol{m}^{\lambda}\right)\right] \\
& \downarrow \rightarrow \infty \\
& \downarrow \\
& \\
& 2 M_{n} /\left|V_{n}\right| \begin{array}{l}
\mathrm{n} \rightarrow \infty \\
\lambda \rightarrow \infty
\end{array} \\
& \\
& \mathrm{E}\left[\mathrm{D}_{v}\left(\boldsymbol{m}^{\infty}\right)\right]
\end{aligned}
$$

- Uniform control in n
- Entropy term in the free energy becomes negligeable as $\mathrm{T} \rightarrow 0$

Non-increasing operator?

> Ex: $b_{v}=3, \partial v=\left\{u_{1}, u_{2}, u_{3}\right\}, m_{u_{1} \rightarrow v}=\left(\frac{1}{2}, \frac{1}{2}, 0,0\right)=m_{u_{1} \rightarrow v}^{\prime}$
> \quad and $m_{u_{2} \rightarrow v}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{3}, \frac{1}{6}\right)<_{s t} m_{u_{2} \rightarrow v}^{\prime}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{6}, \frac{1}{3}\right)$
> $\mathrm{R}_{v \rightarrow u_{3}}^{1}[\boldsymbol{m}]=\frac{12}{25}\left(\frac{11}{12}, \frac{8}{12}, \frac{3}{8}, \frac{1}{8}\right)<_{s t} \mathrm{R}_{v \rightarrow u_{3}}^{1}\left[\boldsymbol{m}^{\prime}\right]=\frac{12}{23}\left(\frac{10}{12}, \frac{7}{12}, \frac{3}{8}, \frac{1}{8}\right)$
\Rightarrow no monotonicity for general messages

