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Goal? 

• Computing the asymptotic density of a b-
matching as the size of graphs tend to infinity 

– Can we compute other quantities in a similar way? 

• Sequences of sparse random graphs with a 
known local structure 

– Graphs that converge (in the local weak sense) 
towards Galton-Watson trees 

• Ex: Erdos-Renyi, configuration model 

 



Matchings 

• Graph G=(V,E) 

• Matching= subset of edges E’ such that each 
vertex is adjacent to at most one element in E’ 

studied by Zdeborova and Mézard (2006) 

Bordenave, Lelarge, Salez (2011)  



b-matchings 

• Capacity constraint bv at vertex v 

• Each edge may be used more than once 

• Total usage of edges adjacent to v must not exceed bv 
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b-matchings 

• Capacity constraint bv at vertex v 

• Each edge may be used more than once 

• Total usage of edges adjacent to v must not exceed bv 
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An application: distributed content 
distribution system 

requests 

for 

contents 

remaining 
requests 

central server 

users small, distributed storage 



Distributed content distribution 
system 

• n contents, m servers 

• Contents stored by each 
server determined 
independently (but not 
uniformly) 

• Number of requests and 
number of replicas for each 
content jointly determined 

•   
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What fraction of the requests can be served? 
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Greedy algorithm on trees for finding a 
maximum b-matching 
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Greedy algorithm on trees 
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Greedy algorithm on trees 
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Greedy algorithm on trees 
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Greedy algorithm on trees 
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Greedy algorithm on trees 
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Message-passing version: 
 BP at 0 temperature 
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BP at 0 temperature: 
initial messages 



BP at 0 temperature: 
after 1 iteration 
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BP at 0 temperature: 
keep iterating… 
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BP at 0 temperature: 
fixed-point 
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Problem solved? 

• On trees, can recover the size of a maximum 
b-matching from I* 

• However, we are interested in sequences of 
graphs that are asymptotically tree-like 

– Message passing may not converge on those 

– Possibly many fixed-points on an infinite tree 

• Some of them will not yield a maximum b-matching… 
 

• BP at positive temperature T and then T0 
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BP at positive temperature 

• Gibbs measure on set of b-matchings 
 

 

 

• At positive temperature, BP messages are 
distributions over the integers 

– Initialization: 

– BP update:  

 
 

                            where C is a normalization factor 
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BP estimate 

• Define   =BP estimate of total usage of 
edges adjacent to v, where mλ fixed-point of 
BP at temperature λ 

 

 

 

 
 

•          when G is a finite tree 
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Global plan 
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BP on infinite tree finite graphs 



At the end…an ugly formula 
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At the end…an ugly formula 

where 
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Convergence of BP at T>0 

• Does BP converge? 

– matching case: messages are distributions on {0,1} 
 can be encoded by one real number 

• Negative dependence (Pemantle)  BP update 
operator non-increasing (Salez)  adjacent sequences 
 […]  unique fixed-point 

• Is           non-increasing? 

– For general messages and st-order, no! 

– Restrict to log-concave distributions 

     non-increasing in 

• Totally Positive functions (Karlin)    non-
increasing for lr-order  […]  unique fixed-point 
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Merci! 

Questions? 



Applications: cuckoo hashing  
Introduced by Pagh & Rodler, ESA’01 

 – m balls and n bins (mapping of objects and keys) 

– Each ball is proposed 2 bins at random 

– How large can m be such that it is possible to put 
each ball into one of its proposed bin, with no 
collisions allowed? 

• Generalizations: 

– More choices per ball  still a matching problem 

– Larger bin capacity  b>1 on one side 

– Batches of balls with same choices  b>1 on both 
           sides  edges may be used multiple times! 



• Limit of        as λ is the uniform law over 
the set of maximum b-matchings 
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Monotonicity as T0 



• Unicity of BP fixed-point at T>0 

• Gn converges locally weakly to G 

• G is a tree, hence BP estimate is correct 
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•   

• Dv continuous 
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• Uniform control in n 

• Entropy term in the free energy becomes 
negligeable as T0 
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Convexity argument 



Non-increasing operator? 

Ex: bv=3,     , 

 

 and 

 

 

 

 no monotonicity for general messages  
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