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Introduction : Social Networks and Epidemics

Game-theoretic contagion model on a given graph G = (V ,E ),
with parameter q ∈ (0, 1/2) :

Two possible choices : (↔ susceptible) or (↔ infected)

Initially : all use , except one who uses

Possible switch → , but no switch 6→

Situation Payoff (for both users)

q

1− q > q

0

Total payoff
= sum of payoffs from

all your neighbors

Switch from to ⇔ |Neighbors using Skype|
|Neighbors| > q.
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Introduction : Social Networks and Epidemics

Infinite deterministic graph G = (V ,E )

Parameter q varies :
q small ⇒ CASCADE

q higher ⇒ NO cascade

More precisely :
q1 ≥ q2, cascade for q1 ⇒ cascade for q2

Contagion threshold q(G)
c := sup

{
q
∣∣CASCADE in G for parameter q

}
threshold q(G )

c

q
NO cascadeCASCADE
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Introduction : Social Networks and Epidemics

Switch from to ⇔ |Neighbors using Skype|
|Neighbors| > q

Example : G = d -regular tree

q ≥ 1/d ⇒ NO cascade
q < 1/d ⇒ CASCADE

⇒ q(G)
c = 1/d
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Introduction : Social Networks and Epidemics

Define a model of finite random graphs (whose size tends to infinity)

having (asymptotically) the observed properties :
I scale-free networks ⇔ power law degree distribution

i.e. there exists τ > 0 such that, for all k ≥ 0, pk ∝ k−τ

(small number of nodes having a large number of edges)

I networks with clustering
(“The friends of my friends are my friends”, Newman, ’03)

tractable
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Introduction : Social Networks and Epidemics

Epidemic models on finite random graphs :

Final nb of infected nodes negligeable or not / population size ?

Gn = random graph of size n
Sn = final size of the epidemic in Gn

CASCADE if Sn =
n→∞

Θp(n),

NO cascade if Sn =
n→∞

op(n).
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Introduction : Social Networks and Epidemics

Epidemic models on finite random graphs :

Final nb of infected nodes negligeable or not / population size ?

CONTAGION MODEL DIFFUSION MODEL
Ref. Morris, Watts Bond percolation
Para- A vertex is infected ⇔ π = probability that an edge
-meter fraction of infected neighbors > q transmits the epidemic

1
3 ≤ q
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3 > q
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π
f f

1− π

Thm threshold qc

q
NO cascadeCASCADE

threshold πc

CASCADE
π

NO cascade

Effect of clustering on these thresholds and on the cascade size
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Random Graph Model

(i) Start from a uniform graph with given vertex degrees
(ii) Add clustering

(i) Original graph (with given vertex degrees) :

n ∈ N, d = (di )
n
1 sequence of non-negative integers

(s.t. ∃ a graph with n vertices and degree sequence d ).

G (n,d ) = uniform random graph (among the graphs
with n vertices and degree sequence d ).

d1 = 3 d2 = 2 dn = 5

Ref. : (Lelarge,’11) for the study of contagion and diffusion models on
graphs with given vertex degrees
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Random Graph Model

(i) Start from a uniform graph with given vertex degrees
(ii) Add clustering

(i) Original graph (with given vertex degrees) :

n ∈ N, d = (di )
n
1 sequence of non-negative integers

(s.t. ∃ a graph with n vertices and degree sequence d ).

G (n,d ) = uniform random graph (among the graphs
with n vertices and degree sequence d ).

Condition : Assume there exists a probability distribution p = (pr )
∞
r=0 such that :

(i) ]{i : di = r}/n→ pr as n→∞, for every r ≥ 0

(ii) λ :=
∑

r rpr ∈ (0;∞)

(iii)
∑

i d
3
i = O(n)

Ref. : (Lelarge,’11) for the study of contagion and diffusion models on
graphs with given vertex degrees
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Random Graph Model

(ii) Clustering Coefficient of G = (V ,E ) :

C (G) := probability that two vertices share an edge together,
C (G) := knowing that they have a common neighbor

C (G) =
3× nb of triangles

nb of connected triples
=

∑
v Pv∑
v Nv

Pv := nb of pairs of neighbors of v sharing an edge together,
Nv := nb of pairs of neighbors of v : Nv = dv (dv − 1)/2.

Example : Nv = 3

v

Pv = 0
v

Pv = 2
v

Pv = 3
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Random Graph Model

Idea : Replace a vertex of degree r in G (n,d) by a clique of size r :

34 4

233

−→
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Random Graph Model

Idea : Replace a vertex of degree r in G (n,d) by a clique of size r .

Adding cliques randomly : Let γ ∈ [0, 1].
Each vertex is replaced by a clique with probability γ (independently
for all vertices).

−→

G̃ (n,d , γ) = resulting random graph (with additional cliques)
Similar model : (Trapman,’07), (Gleeson,’09)

Particular cases :
I γ = 0 ⇒ G̃ (n,d , γ) = G (n,d ),
I γ = 1 ⇒ all vertices in G (n,d ) have been replaced by cliques.

New asymptotic degree distribution p̃ = (p̃k)k≥0

Asymptotic clustering coefficient C > 0

Coupechoux - Lelarge (INRIA-ENS) Epidemics in Random Networks 8 March 2012 10 / 19



Epidemic Model (from Game Theory)
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Epidemic Model (from Game Theory)

Contagion model with parameter q :

At the beginning, one infected vertex (= the seed of the epidemic)
At each step, each vertex becomes infected if :

proportion of its infected neighbors > q

Heuristically...
The random graph G (n,d) converges locally to a random tree such that :

P (r − 1 children) = rpr/λ

q = 1
4

Infected nodes = those with degree < 1/q

Infinite tree (of infected nodes)
⇐⇒

∑
r<1/q

(r − 1)
rpr

λ
> 1
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Epidemic Model (from Game Theory)

qc := qc(p) = sup
{

q′ :
∑

r<1/q′(r − 1)
rpr

λ
> 1
}

Fixed q, P(n) = set of pivotal players in G̃ (n,d , γ) :

G0 = induced subgraph with vertices of degree < 1/q
Pivotal players = vertices in the largest connected component of G0

Theorem (CONTAGION THRESHOLD)

q < qc : |P(n)| = Θp(n)
Each pivotal player can trigger a global cascade.
q > qc : the size of the epidemic generated by a vertex u (chosen
uniformly at random) is negligeable : op(n).
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Epidemic Model (from Game Theory)

Contagion model with parameter q :

At the beginning, one infected vertex (= the seed of the epidemic)
At each step, each vertex becomes infected if :

proportion of its infected neighbors > q = 1
4

INITIAL GRAPH GRAPH WITH CLIQUES
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Epidemic Model (from Game Theory)

Contagion model with parameter q :

At the beginning, one infected vertex (= the seed of the epidemic)
At each step, each vertex becomes infected if :

proportion of its infected neighbors > q = 1
4

INITIAL GRAPH GRAPH WITH CLIQUES

=⇒ Clustering decreases the cascade size.
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Epidemic Model (from Game Theory)

Contagion Threshold (qc) vs Mean Degree

Graphs with the SAME asymptotic degree distribution :
p̃k ∝ k−τe−k/50

— Graph with clustering (cliques)
— Graph with no clustering
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Epidemic Model (from Game Theory)

Effect of Clustering on the Contagion Threshold

Asymptotic degree distribution :
p̃k ∝ k−τe−k/50

— Graph with maximal clustering coefficient
— Graph with no clustering

Mean degree λ̃ ≈ 1.65

No Cascade

Cascade

Coupechoux - Lelarge (INRIA-ENS) Epidemics in Random Networks 8 March 2012 15 / 19



Epidemic Model (from Game Theory)

Effect of Clustering on the Contagion Threshold

Asymptotic degree distribution :
p̃k ∝ k−τe−k/50

— Graph with maximal clustering coefficient
— Graph with no clustering

Mean degree λ̃ ≈ 46

No Cascade

Cascade
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Epidemic Model (from Game Theory)

Effect of Clustering on the Contagion Threshold

Asymptotic degree distribution :
p̃k ∝ k−τe−k/50

— Graph with maximal clustering coefficient
— Graph with no clustering

Mean degree λ̃ ≈ 3.22

Cascade

No Cascade
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Epidemic Model (from Game Theory)

Effect of Clustering on the Cascade Size

Fraction of infected neighbors needed
to become infected :

q = 0.15 (fixed)

p̃r = 0.2r+0.8
0.2λ+0.8

e−λλr

r !

C = 0

· · · Pivotal players in the graph with no clustering

— Cascade size in the graph with no clustering
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Fraction of infected neighbors needed
to become infected :

q = 0.15 (fixed)

p̃r = 0.2r+0.8
0.2λ+0.8

e−λλr

r !

C = 0.2λ
0.2λ+1.2 > 0

· · · Pivotal players in the graph with positive clustering

— Cascade size in the graph with positive clustering

Coupechoux - Lelarge (INRIA-ENS) Epidemics in Random Networks 8 March 2012 16 / 19
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Epidemic Model (from Game Theory)

Effect of Clustering on the Cascade Size

Asymptotic degree distribution : p̃k ∝ k−τe−k/50
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Epidemic Model (from Game Theory)

Conclusion
Model of random graphs with a given degree distribution, and a
tunable clustering coefficient

Effect of clustering on the contagion model :
I Clustering decreases the contagion threshold for low values of the mean

degree, while the opposite happens in the high values regime
I Clustering decreases the cascade size (when a cascade is possible)

For the following questions, see our paper on arXiv :1202.4974 :
I Effect of clustering on the diffusion model (bond percolation)
I Positive proportion of the population initially infected

Thanks for your attention !
If you liked the presentation, I am looking for a post-doc position

for September 2012...
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Epidemic Model (from Game Theory)
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