Impact of Clustering on Epidemics in Random Networks

Joint work with Marc Lelarge

INRIA-ENS

8 March 2012

Coupechoux - Lelarge (INRIA-ENS) Epidemics in Random Networks

1 Introduction : Social Networks and Epidemics

2 Random Graph Model

3 Epidemic Model (from Game Theory)

3

Outline

1 Introduction : Social Networks and Epidemics

2 Random Graph Model

3 Epidemic Model (from Game Theory)

э

Game-theoretic contagion model on a given graph G = (V, E), with parameter $q \in (0, 1/2)$:

Infinite deterministic graph G = (V, E)

Parameter q varies :

More precisely :

 $q_1 \geq q_2$, cascade for $q_1 \Rightarrow$ cascade for q_2

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Define a model of finite *random* graphs (whose size tends to infinity)

- having (asymptotically) the observed properties :
 - scale-free networks ⇔ power law degree distribution
 i.e. there exists τ > 0 such that, for all k ≥ 0, p_k ∝ k^{-τ}
 (small number of nodes having a large number of edges)
 - networks with *clustering*

("The friends of my friends are my friends", Newman, '03)

tractable

Epidemic models on finite random graphs :

Final nb of infected nodes negligeable or not / population size?

 G_n = random graph of size n S_n = final size of the epidemic in G_n

CASCADE if
$$S_n =_{n \to \infty} \Theta_p(n)$$
,
NO cascade if $S_n =_{n \to \infty} o_p(n)$.

э

Epidemic models on finite random graphs :

Final nb of infected nodes negligeable or not / population size?

Effect of clustering on these thresholds and on the cascade size

Outline

Introduction : Social Networks and Epidemics

2 Random Graph Model

3 Epidemic Model (from Game Theory)

(i) Start from a uniform graph with given vertex degrees (ii) Add clustering

(i) Original graph (with given vertex degrees) :

- n ∈ N, d = (d_i)ⁿ₁ sequence of non-negative integers (s.t. ∃ a graph with n vertices and degree sequence d).
- G(n, d) = uniform random graph (among the graphs with *n* vertices and degree sequence *d*).

Ref. : (Lelarge, '11) for the study of contagion and diffusion models on graphs with given vertex degrees

Coupechoux - Lelarge (INRIA-ENS)

Epidemics in Random Networks

(i) Start from a uniform graph with given vertex degrees (ii) Add clustering

(i) Original graph (with given vertex degrees) :

- n ∈ N, d = (d_i)ⁿ₁ sequence of non-negative integers (s.t. ∃ a graph with n vertices and degree sequence d).
- G(n, d) = uniform random graph (among the graphs with *n* vertices and degree sequence *d*).

Condition : Assume there exists a probability distribution $p = (p_r)_{r=0}^{\infty}$ such that :

(i)
$$\sharp\{i: d_i = r\}/n \to p_r \text{ as } n \to \infty$$
, for every $r \ge 0$
(ii) $\lambda := \sum_r rp_r \in (0; \infty)$
(iii) $\sum_i d_i^3 = O(n)$

Ref. : (Lelarge, '11) for the study of contagion and diffusion models on graphs with given vertex degrees

Coupechoux - Lelarge (INRIA-ENS)

Epidemics in Random Networks

8 March 2012 8 / 19

(ii) Clustering Coefficient of G = (V, E):

 $C^{(G)}$:= probability that two vertices share an edge together, knowing that they have a common neighbor

$$C^{(G)} = \frac{3 \times \text{nb of triangles}}{\text{nb of connected triples}} = \frac{\sum_{v} P_{v}}{\sum_{v} N_{v}}$$

 $P_v :=$ nb of pairs of neighbors of v sharing an edge together, $N_v :=$ nb of pairs of neighbors of $v : N_v = d_v(d_v - 1)/2$.

Example : $N_v = 3$

• Idea : Replace a vertex of degree r in G(n, d) by a clique of size r :

- Idea : Replace a vertex of degree r in G(n, d) by a clique of size r.
- Adding cliques randomly : Let $\gamma \in [0, 1]$. Each vertex is replaced by a clique with probability γ (independently for all vertices).

- $\tilde{G}(n, d, \gamma)$ = resulting random graph (with additional cliques) Similar model : (Trapman, '07), (Gleeson, '09)
- Particular cases :

$$\gamma = 0 \Rightarrow \tilde{G}(n, \boldsymbol{d}, \gamma) = G(n, \boldsymbol{d}),$$

- ▶ $\gamma = 1 \Rightarrow$ all vertices in G(n, d) have been replaced by cliques.
- New asymptotic degree distribution $ilde{oldsymbol{p}} = (ilde{
 ho}_k)_{k\geq 0}$
- Asymptotic clustering coefficient C > 0

10 / 19

Outline

Epidemic Model (from Game Theory) 3

< 17 ▶

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

proportion of its infected neighbors > q

Heuristically...

The random graph G(n, d) converges locally to a random tree such that :

$$\mathbb{P}\left(\mathit{r}-1 \; \mathsf{children}
ight) = \mathit{rp}_{\mathit{r}}/\lambda$$

 $q = \frac{1}{4}$

Infected nodes = those with degree < 1/q

Infinite tree (of infected nodes) $\iff \sum_{r < 1/q} (r-1) \frac{rp_r}{\lambda} > 1$

・ 同 ト ・ ヨ ト ・ ヨ ト

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

proportion of its infected neighbors > q

Heuristically...

The random graph G(n, d) converges locally to a random tree such that :

$$\mathbb{P}\left(\mathit{r}-1 \; \mathsf{children}
ight) = \mathit{rp}_{\mathit{r}}/\lambda$$

11 / 19

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

proportion of its infected neighbors > q

Heuristically...

The random graph G(n, d) converges locally to a random tree such that :

$$\mathbb{P}\left(\mathit{r}-1 \; \mathsf{children}
ight) = \mathit{rp}_{\mathit{r}}/\lambda$$

Infected nodes = those with degree < 1/q

11 / 19

(4 冊) (4 回) (4 回)

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

proportion of its infected neighbors > q

Heuristically...

The random graph G(n, d) converges locally to a random tree such that :

$$\mathbb{P}\left(\mathit{r}-1 \; \mathsf{children}
ight) = \mathit{rp}_{\mathit{r}}/\lambda$$

Infected nodes = those with degree < 1/q

Infinite tree (of infected nodes) $\iff \sum_{r < 1/q} (r-1) \frac{rp_r}{\lambda} > 1$

11 / 19

(4 冊) (4 回) (4 回)

$$q_c := q_c(\boldsymbol{p}) = \sup\left\{q': \sum_{r < 1/q'}(r-1)\frac{rp_r}{\lambda} > 1\right\}$$

Fixed q, $\mathcal{P}^{(n)} = \text{set of pivotal players in } \tilde{G}(n, d, \gamma)$:

- G_0 = induced subgraph with vertices of degree < 1/q
- Pivotal players = vertices in the largest connected component of G_0

Theorem (CONTAGION THRESHOLD)

- $q < q_c : |\mathcal{P}^{(n)}| = \Theta_p(n)$ Each pivotal player can trigger a global cascade.
- q > q_c : the size of the epidemic generated by a vertex u (chosen uniformly at random) is negligeable : o_p(n).

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

- At the beginning, one infected vertex (= the seed of the epidemic)
- At each step, each vertex becomes infected if :

proportion of its infected neighbors $> q = \frac{1}{4}$

 \implies Clustering decreases the cascade size.

Contagion Threshold (q_c) vs Mean Degree

Graphs with the SAME asymptotic degree distribution : $\tilde{p}_k \propto k^{-\tau} e^{-k/50}$


```
Coupechoux - Lelarge (INRIA-ENS) Epidemics in Random Networks
```

8 March 2012 14 / 19

Effect of Clustering on the Contagion Threshold

Asymptotic degree distribution : ${ ilde p}_k \propto k^{- au} e^{-k/50}$

Mean degree $\tilde{\lambda} pprox 1.65$

- Graph with maximal clustering coefficient

- Graph with no clustering

Effect of Clustering on the Contagion Threshold

Asymptotic degree distribution : $\tilde{p}_k \propto k^{- au} e^{-k/50}$

Mean degree $\tilde{\lambda} \approx$ 46

- Graph with maximal clustering coefficient

- Graph with no clustering

Effect of Clustering on the Contagion Threshold

Mean degree $\tilde{\lambda}\approx 3.22$

- Graph with maximal clustering coefficient

- Graph with no clustering

 \cdots Pivotal players in the graph with no clustering

- Cascade size in the graph with no clustering

16 / 19

··· Pivotal players in the graph with positive clustering

- Cascade size in the graph with positive clustering

- ··· Pivotal players in the graph with no clustering
- Cascade size in the graph with no clustering
- \cdots Pivotal players in the graph with positive clustering
- Cascade size in the graph with positive clustering

Asymptotic degree distribution : $ilde{
ho}_k \propto k^{- au} e^{-k/50}$

17 / 19

Conclusion

- Model of random graphs with a given degree distribution, and a tunable clustering coefficient
- Effect of clustering on the contagion model :
 - Clustering decreases the contagion threshold for low values of the mean degree, while the opposite happens in the high values regime
 - Clustering decreases the cascade size (when a cascade is possible)
- For the following questions, see our paper on arXiv :1202.4974 :
 - Effect of clustering on the diffusion model (bond percolation)
 - Positive proportion of the population initially infected

Conclusion

- Model of random graphs with a given degree distribution, and a tunable clustering coefficient
- Effect of clustering on the contagion model :
 - Clustering decreases the contagion threshold for low values of the mean degree, while the opposite happens in the high values regime
 - Clustering decreases the cascade size (when a cascade is possible)
- For the following questions, see our paper on arXiv :1202.4974 :
 - Effect of clustering on the diffusion model (bond percolation)
 - Positive proportion of the population initially infected

Thanks for your attention !

If you liked the presentation, I am looking for a post-doc position for September 2012...

イロト イポト イヨト イヨト

References

T. Britton, M. Deiifen, A. N. Lagerås, and M. Lindholm. Epidemics on random graphs with tunable clustering. J. Appl. Probab., 45(3) :743-756, 2008.

A. Hackett, S. Melnik, and J. P. Gleeson,

Cascades on a class of clustered random networks. Physical Review E, 83, 2011.

M. Lelarge.

Diffusion and cascading behavior in random networks. under revision for Games and Economic Behavior, arxiv/0805.3155, 2009.

M. E. J. Newman.

Properties of highly clustered networks. Phys. Rev. E, 68(2) :026121, Aug 2003.

P. Trapman.

On analytical approaches to epidemics on networks. Theoretical Population Biology, 71(2) :160-173, 2007.

D. J. Watts and S. H. Strogatz.

Collective dynamics of 'small-world' networks. Nature, 393(6684) :440-442, June 1998,

A (10) A (10) A (10)