Pseudorandom Objects and Generators

Journées ALEA 2012
Lecture 2: Pseudorandomness in Algorithms and Complexity

David Xiao
LIAFA
CNRS, Université Paris 7

Example: Polynomial Identity Testing

- Given multi-variate polynomial $p \in Z\left[x_{1} \ldots x_{m}\right]$, decide if $p \neq 0$
- Ex. $p=\left(3 x_{1}-4 x_{2}\right)^{7}\left(45 x_{1}^{3} x_{2}-4 x_{1} x_{3}^{2}-x_{1} x_{3}\right)^{2}+\left(4 x_{1}^{2} x_{2}-x_{2}^{3} x_{3}\right)^{5}$
- Brute force takes exponential time in degree
- Randomized algorithm:
- Let $d=\operatorname{degree}(p)$
- Pick $z_{1} \ldots z_{m}$ each randomly from [q] = \{1, ..., 100d $\}$
- Output 1 if $p\left(z_{1}, \ldots, z_{m}\right) \neq 0$
- Output 0 if $p\left(z_{1}, \ldots, z_{m}\right)=0$
- Clearly algorithm outputs 0 if $p \equiv 0$
- Theorem [Schwartz-Zippel'79]:
if $p \neq 0$ then $\operatorname{Pr}\left[p\left(z_{1} \ldots z_{m}\right)=0\right] \leq d / 100 d=1 / 100$
- We don't know how to derandomize!

Eliminating or Reducing Randomness

- Using randomness in algorithms ask the physicists
- How to votain randamness? (or the philosophers)
- How to save on randomness?
- How to purify non-uniform randomness?
- Does randomness fundamentally accelerate computation?
- Pseudorandomness: use little or no randomness but behaves indistinguishable from random

Pseudorandomness in Algorithms

Randomness

- $U_{n}=$ uniform distribution over $\{0,1\}^{n}$
- Each string has same probability mass = $1 / 2^{n}$
- Can approximate other distributions: e.g. uniform over F_{q}, Gauss(0,1), etc.

Using Randomness: Algorithms

- Problem: deciding language $L:\{0,1\}^{*}$-> $\{0,1\}$
- Randomized algorithm A deciding L :
- Take input x, random bits r drawn from U_{m}
- Perform some precise deterministic operations (depending on x, r)
- $\operatorname{Pr}[A(x ; r)=L(x)] \geq 2 / 3$ for all x
- Efficiency: perform at most n^{c} operations where $n=|x|$ ("polynomial time")
- Also measure number of bits used, i.e. $|r|=m$

Randomness in Algorithms

- Treat random bits as expensive resource
- Example: error reduction
- For all inputs $x, \operatorname{Pr}\left[A\left(x ; U_{m}\right)\right.$ errs $] \leq 1 / 3$
- Chernoff-Hoeffding: majority of k independent repetitions of A has error $2^{-\Omega(k)}$
- If each execution costs m random bits, k executions cost km random bits
- Can we do better?

Expander graphs

- Recall from yesterday

Spectral expander: G is (N, D, λ) expander if:

- G is D-regular, $|V|=N$
- Let $M=$ adjacency matrix of G
- $M_{i j}=1 / D$ if $(i, j) \in G, 0$ else
- Eigenvalues of M in $[-1,1]$
- Max eigenvalue $=1$
- $\lambda \geq$ all other eigenvalues of M in absolute value
- Expander mixing lemma: For all $\mathrm{S}, \mathrm{T} \subseteq \mathrm{G}$: $||E(S, T)|-|S|| T|D / N| \leq \lambda D \quad \sqrt{ }(|S||T|)$
- $E(S, T)=$ edges between S and T in G
- $|S||T| D / N=$ expected \# edges in random D-regular graph

Using Expander Graphs

- Theorem [Cohen-Wigderson'89]: can efficiently reduce error of A to $1 / n^{c}$ without any additional randomness
- Suppose we have ($2 m, D=$ poly $(n), \lambda=1 /\left(12 n^{c}\right)$) expander graph
- Each vertex corresponds to string in $\{0,1\}^{m}$
- New algorithm:
- Use m random bits to pick vertex r
- In expander, calculate neighbors $\left\{r_{1} \ldots r_{0}\right\}=N(r)$
- Output majority of $A\left(x ; r_{1}\right) \ldots A\left(x ; r_{D}\right)$
- Claim: new algorithm has error $1 / n^{c}$

Exponentially small

 error- Use O (1) constant expander graph
- Take random walk, let $r_{1} \ldots r_{k}$ be visited vertices
- Output majority of $A\left(x ; r_{1}\right) \ldots A\left(x ; r_{k}\right)$
- Costs m + O(k)
- From Expander Chernoff Bound:
$\operatorname{Pr}\left[\operatorname{Maj}\left(A\left(x ; r_{1}\right) \ldots A\left(x ; r_{k}\right)\right)\right.$ errs $] \leq 2^{-(1-\lambda) k}$
(Good expander \Rightarrow w.h.p. fraction of bad steps in walk $\leq|B| / n=1 / 3$)

Imperfect Randomness

- Analyze algorithms assuming uniform random bits
- Natural sources unlikely to be uniform:
- Current time?
- Mouse gestures?
- Quantum phenomena?
- All have dependencies, noise, etc.
- How to purify?
- Ad hoc: linear feedback shift registers
- Better: randomness extractors

Useful random sources

- What kinds of random sources are useful?
- Must have sufficient entropy
- Use min-entropy

$$
H_{\infty}(X)=\min _{x} \log (1 / \operatorname{Pr}[X=X])
$$

- $H_{\infty}(X) \geq k \quad \forall x, \operatorname{Pr}[X=x] \leq 2^{-k}$
- Build deterministic extractor?
$f:\{0,1\}^{n} \rightarrow\{0,1\}$, s.t. for all X over $\{0,1\}^{n}$ with $H_{\infty}(X) \geq n-1$, $f(X)=$ uniform bit
- f cannot exist: $\left|f^{-1}(0)\right|$ or $\left|f^{-1}(1)\right|$ must be larger than 2^{n-1}.

For X uniform over larger preimage, $f(X)$ constant

Randomness

Extractors

- Allow for (small) collection of functions
- k-extractor: family $f_{y}:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, y \in\{0,1\}^{d}$
- For all X with $H_{\infty}(X) \geq k, f u a l(X) \approx U_{m}$
- For fixed k and n, want minimal d and maximal m
- Where does seed come from?
- When $d=O(\log n)$, can eliminate by enumeration

Building Extractors

- Example of explicit k-extractor (for $k=0.99 n, d=O(\log n)$) [Zuc'06]:
- Fix $\left(2^{m}, D, \lambda\right)$ expander
- $n=m+m \log D$
- Each $w \in\{0,1\}^{n}$ determines random walk of length $m+1$ in expander
- $f_{i}:\{0,1\}^{n}->\{0,1\}^{m}, i \in\{1 \ldots m+1\}$ given by $f_{i}(w)=i^{\prime t h}$ vertex visited in walk w
- (Still useful despite large k)
- Other constructions based on error-correcting codes, etc.
- Can build explicit optimal extractors (up to multiplicative factors) [Lu-Reingold-Vadhan-Wigderson'03, Guruswami-Umans-Vadhan'06]

Is Randomness Powerful?

- So far: possible to save on randomness
- Question: possible to eliminate randomness?
- Natural strategy: take majority of $A(x ; r)$ for all r - Exponential time
- Enumerate over poly-size set of random bits that are indistinguishable for efficient algorithms

Pseudorandom

Generators

- Pseudorandom generator:
$G:\{0,1\}^{0(\log m)} \rightarrow\{0,1\}^{m}$ computable in time poly(m)
For all efficient algorithms D,
$\operatorname{Pr}\left[D\left(G\left(U_{O(\log m)}\right)\right)=1\right] \approx \operatorname{Pr}\left[D\left(U_{m}\right)=1\right]$
- Derandomization: run algorithm with $G(s)$ for all $s \in\{0,1\}^{\circ}(\log m)$, output majority

Simple(?) Case: Fooling Linear Functions

- ε-biased generator:
$G:\{0,1\}^{\circ(\log m)} \rightarrow\{0,1\}^{m}$ computable in time poly(m)
For all non-zero linear functions $f:\{0,1\}^{m} \rightarrow\{0,1\}$,
$\left|\operatorname{Pr}\left[f\left(G\left(U_{O(\log m)}\right)\right)=1\right]-1 / 2\right| \leq \varepsilon$
- More or less equivalent to linear codes
- From yesterday we know explicit constructions
- For more general classes of functions, only know conditional constructions
- Assume existence of hard functions

Hardness vs. Randomness

- Suppose $\mathrm{f}:\{0,1\}^{\dagger}$-> $\{0,1\}$ hard to compute on average: For all efficient algorithms C, $\operatorname{Pr}_{s<-u}[\mathrm{f}(\mathrm{s})=C(\mathrm{~s})] \approx 1 / 2$
- g stretching 1 bit: $\mathrm{g}(\mathrm{s})=(\mathrm{s}, \mathrm{f}(\mathrm{s}))$
- Proposition: $g\left(U_{t}\right)$ indistinguishable by any efficient algorithm from U_{t+1}
- Problems: stretches only 1 bit, g hard-to-compute

Nisan-Wigderson Generator

- Theorem [NW'88]: given $f:\{0,1\}^{\dagger} \rightarrow\{0,1\}$ sufficiently hard but computable in exponential time, can build PRG G: \{0,1\}${ }^{\mathrm{K} \log m}->\{0,1\}^{m}$

- Efficiency: f computable in $2^{\dagger}=$ poly (m) time
- Pseudorandomness:
similar to analysis of g , use almostindependence of bits

Combinatorial design:

- $S_{1} \ldots S_{m} \subseteq\{1 \ldots \mathrm{~K} \log \mathrm{~m}\}$
- $\left|S_{i}\right|=t=\sqrt{ } K \log m$
- Subsets are "almost disjoint": $\left|S_{i} \cap S_{j}\right| \leq \log m$
- Efficiently constructible
$\{0,1\}^{\mathrm{m}} \mathrm{C111111111111111111111111111111}$

$$
G(x)_{i}=f\left(x| | s i l_{i}\right)
$$

More about PRG's

- PRG's useful in cryptography [Blum-Micali'82]
- Unconditional PRG's against weaker classes of algorithms:
- Space-bounded algorithms [Nisan'90]
- Constant-depth circuits [Ajtai-Wigderson'85, Braverman'09]
- Linear functions [Naor-Naor'90]
- etc...

Fin

