Pseudorandom Objects and Generators

Journées ALEA 2012 Lecture 2: Pseudorandomness in Algorithms and Complexity

David Xiao

CNRS, Université Paris 7

Example: Polynomial Identity Testing

• Given multi-variate polynomial $p \in Z[x_1 \dots x_m]$, decide if $p \neq 0$

- Ex. p = $(3x_1 4x_2)^7 (45x_1^3x_2 4x_1x_3^2 x_1x_3)^2 + (4x_1^2x_2 x_2^3x_3)^5$
- Brute force takes exponential time in degree
- Randomized algorithm:
 - Let d = degree(p)
 - Pick $z_1 \dots z_m$ each randomly from $[q] = \{1, \dots, 100d\}$
 - Output 1 if $p(z_1, ..., z_m) \neq 0$
 - Output 0 if $p(z_1, ..., z_m) = 0$
- Clearly algorithm outputs 0 if p = 0
- Theorem [Schwartz-Zippel'79]:
 if p ≠ 0 then Pr_z[p(z₁ ... z_m) = 0] ≤ d/100d = 1/100
- We don't know how to derandomize!

Eliminating or Reducing Randomness

- Using randomness in algorithms
 - How to obtain randomness?

ask the physicists (or the philosophers)

- How to save on randomness?
- How to purify non-uniform randomness?
- Does randomness fundamentally accelerate computation?
- Pseudorandomness: use little or no randomness but behaves indistinguishable from random

Pseudorandomness in Algorithms

Randomness

• $U_n = uniform distribution over {0, 1}ⁿ$

- Each string has same probability mass = 1/2ⁿ
- Can approximate other distributions: e.g. uniform over F_q, Gauss(0, 1), etc.

Using Randomness: Algorithms

- Problem: deciding language L : {0,1}* -> {0, 1}
- Randomized algorithm A deciding L:
 - Take input x, random bits r drawn from U_m
 - Perform some precise deterministic operations (depending on x, r)
 - $\Pr[A(x; r) = L(x)] \ge 2/3$ for all x
- Efficiency: perform at most n^c operations where n = |x| ("polynomial time")
- Also measure number of bits used, i.e. |r| = m

→ 0 or 1

- Can reduce error by taking majority of running algorithm with independent randomness
- Analyze using uniform randomness

Randomness in Algorithms

- Treat random bits as expensive resource
- Example: error reduction
 - For all inputs x, Pr[A(x; U_m) errs] ≤ 1/3
 - Chernoff-Hoeffding: majority of k independent repetitions of A has error 2^{-Ω(k)}
 - If each execution costs m random bits, k executions cost km random bits
 - Can we do better?

Expander graphs

Spectral expander: G is (N, D, λ)expander if:

- G is D-regular, |V| = N
- Let M = adjacency matrix of G
 - $M_{ij} = 1/D$ if $(i, j) \in G$, 0 else
 - Eigenvalues of M in [-1, 1]
 - Max eigenvalue = 1
- λ ≥ all other eigenvalues of M in absolute value
- Expander mixing lemma: For all S, T ⊆ G:
 | |E(S, T)| |S| |T| D/N| ≤ λD √(|S| |T|)
- E(S, T) = edges between S and T in G
- |S| |T| D/N = expected # edges in random D-regular graph

Using Expander Graphs

{0, 1}^m

- Theorem [Cohen-Wigderson'89]: can efficiently reduce error of A to 1/n^c without any additional randomness
 - Suppose we have $(2^m, D = poly(n), \lambda = 1/(12n^c))$ expander graph
 - Each vertex corresponds to string in {0, 1}^m
 - New algorithm:
 - Use m random bits to pick vertex r
 - In expander, calculate neighbors $\{r_1 \dots r_D\} = N(r)$
 - Output majority of A(x; r₁) ... A(x; r_D)
 - Claim: new algorithm has error 1/n^c

Exponentially small error

- Use O(1) constant expander graph
- Take random walk, let r₁ ... r_k be visited vertices
- Output majority of A(x; r1) ... A(x; rk)
- Costs m + O(k)
- From Expander Chernoff Bound:
 Pr[Maj(A(x; r₁) ... A(x; r_k)) errs] ≤ 2^{-(1-λ) k}
 (Good expander => w.h.p. fraction of bad steps in walk ≤ |B|/n = 1/3)

Imperfect Randomness

- Analyze algorithms assuming uniform random bits
- Natural sources unlikely to be uniform:
 - Current time?
 - Mouse gestures?
 - Quantum phenomena?
- All have dependencies, noise, etc.
- How to purify?
 - Ad hoc: linear feedback shift registers
 - Better: randomness extractors

Useful random sources

Must have sufficient entropy

- Use min-entropy $H_{\infty}(X) = min_{x} log (1/Pr[X = x])$
- $H_{\infty}(X) \ge k$ <=> $\forall x, \Pr[X = x] \le 2^{-k}$
- Build deterministic extractor?
 f: {0,1}ⁿ → {0,1}, s.t. for all × over {0,1}ⁿ with H_∞(×) ≥ n-1,
 f(×) = uniform bit
 - f cannot exist: |f⁻¹(0)| or |f⁻¹(1)| must be larger than 2ⁿ⁻¹.
 For X uniform over larger preimage, f(X) constant

Randomness Extractors

Building Extractors

- Example of explicit k-extractor (for k = 0.99n, d = O(log n)) [Zuc'06]:
 - Fix $(2^m, D, \lambda)$ expander
 - $n = m + m \log D$
 - Each w ∈ {0,1}ⁿ determines random walk of length m+1 in expander
 - f_i: {0,1}ⁿ → {0,1}^m, i ∈ {1 ... m+1} given by
 f_i(w) = i'th vertex visited in walk w
 - (Still useful despite large k)
- Other constructions based on error-correcting codes, etc.
- Can build explicit optimal extractors (up to multiplicative factors) [Lu-Reingold-Vadhan-Wigderson'03, Guruswami-Umans-Vadhan'06]

Is Randomness Powerful?

- So far: possible to save on randomness
- Question: possible to eliminate randomness?
- Natural strategy: take majority of A(x; r) for all r
 - Exponential time
- Enumerate over poly-size set of random bits that are indistinguishable for efficient algorithms

Pseudorandom Generators

- Pseudorandom generator:
 G: {0, 1}^{O(log m)} -> {0, 1}^m computable in time poly(m)
 For all efficient algorithms D,
 Pr[D(G(U_{O(log m}))) = 1] ≈ Pr[D(U_m) = 1]

Derandomization: run algorithm with G(s) for all s ∈ {0,1}^{O(log m)}, output majority

Simple(?) Case: Fooling Linear Functions

- ε-biased generator:
 - G : {0, 1}^{O(log m)} -> {0, 1}^m computable in time poly(m) For all non-zero linear functions f : {0,1}^m -> {0,1}, | Pr[f(G(U_{O(log m)})) = 1] - 1/2 | $\leq \epsilon$

More or less equivalent to linear codes

- From yesterday we know explicit constructions
- For more general classes of functions, only know conditional constructions
 - Assume existence of hard functions

Hardness vs. Randomness

- Suppose f : {0,1}[†] -> {0, 1} hard to compute on average: For all efficient algorithms C, Pr_{s<-Ut}[f(s) = C(s)] ≈ 1/2
- g stretching 1 bit: g(s) = (s, f(s))
- Proposition: g(Ut) indistinguishable by any efficient algorithm from Ut+1

Problems: stretches only 1 bit, g hard-to-compute

More about PRG's

PRG's useful in cryptography [Blum-Micali'82]

• Unconditional PRG's against weaker classes of algorithms:

- Space-bounded algorithms [Nisan'90]
- Constant-depth circuits [Ajtai-Wigderson'85, Braverman'09]
- Linear functions [Naor-Naor'90]
- etc...

