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ABSTRACT. Categorification of a mathematical structure often identifies a
common abstraction that connects formerly unrelated structures and offers
a bridge between disparate disciplines. In the case of de Paiva’s Dialectica
categories, we find that a specialization of the categorification of Goédel’s Di-
alectica construction to partial orders produces (functorial) embeddings of
Heyting algebras into residuated lattices that appear to have been overlooked.
For the non-categorical audience, we present this specialization and take care
to reproduce the original proofs in the algebraic setting. Along the way, we
prove new results about the specialization and use it to better understand the
linear logics associated to and properties of the original Dialectica categories.

1. INTRODUCTION

The Dialectica categories of Valeria de Paiva [deP91] generalize the translation
of Intuitionistic Heyting Arithmetic into Gédel’s System T. Godel’s original intent
was to provide a relative consistency proof of Peano arithmetic. One of the original
motivations for de Paiva’s categorification was to extract from the interpretation its
categorical structure, which then provided one of the first non-collapsed categorical
models of linear logic.

Let C be a category with finite limits. The Dialectica Category D(C) associ-
ated to C, has as objects triples consisting of a pair of objects U, X € Ob(C) and
a monomorphism a: A — U x X. We write such an object as («, U, X).

A morphism from (a,U, X) to (8,V,Y) consists of a pair of morphisms of C,
(f,F), f[:U—=V,F:UxY — X such that a non-trivial condition is satisfied:
pulling « back along (1, F) and 8 along f x A, the first subobject is smaller than
the second as in the following diagram

7 }mm*w }
y

-1
BB mE) (1)

© e

B—" L, vxy

In the category Set, we can identify subobjects with subsets, and the pullback as
the preimage operation. Then the condition becomes: (f, F): a — /3 is a morphism
iff whenever (u, F'(u,y)) € a, then (f(u),y) € B. That is,

(1, F)"Ha) < (f x Y)7H(B).
Composition of morphisms is defined in Dialectica categories, and it is shown
that D(C) is a category. If C is Cartesian closed (with well-behaved coproducts),

then D(C) has sufficient structure, so that the associated logic satisfies all the rules
1
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of ILL . This is no easy task, especially since to capture the proof theory of ILL
in D(C), the additional operations on D(C) need to be natural.

Since Dialectica categories have strong connections to logic and not every logician
is a categorical one, an original motivation for this note was to provide a more gentle
introduction to Dialectica categories via small models. Just as it is helpful to learn
about the finite cyclic groups, dihedral groups, the quaternions, etc. when first
learning group theory, we ask: Are there compelling finite Dialectica categories
that can improve our intuitions?

The Dialectica construction D(C) requires a category C with at least finite limits,
and a category with products and two parallel morphisms necessarily has infinitely
many objects and so, we consider partial-order categories, i.e. those where there
is at most one morphism between objects, and isomorphic objects are identified.
When C is a poset, the additional operations defined on D(C) remain compelling,
and we no longer need to concern ourselves with the naturality of such operations,
since every diagram trivially commutes in a poset category.

There is another reason for considering such categories: In (proof-theoretic)
categorical logic, a category C provides semantics for a logic as follows: Each atomic
formula A of the logic is assigned to an object of C, and the connectives of the logic
are interpreted as natural operations on the category which inductively assign an
object [¢] of C to each formula ¢. As a simple example, if your logic of interest
has meets, then your category C providing semantics needs binary products, and
[¢ A ] is interpreted as [¢] x [¢].

Then ¢ - % is said to hold if and only if, for every such assignment of atomic
formulas to objects of C, there is a morphism from [¢] to [¢]. The naturality of
the operations interpreting the connectives ensures that when we take the poset
reflection’ of C, P(C), the associated ordered algebra provides semantics for the
same logic. The difference is, morphisms of the category are intended to represent
proofs, and the algebra captures derivability (or provability), i.e., only the existence
of a proof.

Although we lose a lot of information, ordered-algebraic semantics provides a
powerful and greatly simplified view into the associated logic. In what follows, we
study the order-theoretic specialization of the Dialectica construction, its associated
logics, and connections to the general construction. Special attention is paid to
D(Set) not only for its historical significance but also since it is the jumping off
point for the categorification.

2. DIALECTICA OVER MEET-SEMILATTICES

Recall that the Dialectica construction D(C) over a category C ([Pai89]) requires
that the category C has binary products and pullbacks. If C is a poset, then the
categorical product a X b is necessarily the meet a A b. Moreover, if a < ¢ (i.e.
df:a — ¢) and b < ¢ (i.e. Ig : b — ¢), then the pullback of f,¢ is simply a A b.
Applying these observations to the Dialectica morphism shown in Diagram 1, we
have:

IThe poset reflection is a functor P: Cat — Pos, which maps each category C to a poset
P(C) obtained first by identifying parallel morphisms and then identifying isomorphic objects.
One can see that functors F': C — D respect the resulting equivalence classes, and so P(F) is the
result of applying F' to representatives of the classes.
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Definition 1. The Dialectica category over a meet-semilattice M = (M, <, A, 1),
written as D(IM), is a preorder whose objects are triples (a,u,x) where a,u,z are
elements of M and a < u A z. In D(M), (a,u,z) < (b,v,y) if and only if the
following three inequalities hold:
(i) u<w
(ii) Ay <z and
(iii) a A (uAhy) <bA(uAy)

Since algebraists prefer to work with ordered, instead of pre-ordered algebras we
define the Dialectica Algebra, D’'(M), to be the sub-order of D(M) defined as

D'M) = {(a,u,x) € M : a < x < u}.

Proposition 2. For M a meet-semilattice, P D(M) is order-isomorphic to D'(M).
And so, as categories, D' (M) is equivalent to D(M).

In the sequel, we will take care to define operations on D(IM) so that they restrict
to operations on D'(M), allowing us to work with D’(M) instead of P D(M).

If M has a smallest element 0 then 1 := (0,1,0) is the top of D(M) and 0 :=
(0,0,0) is the bottom. Moreover, let i := (1,1,1) and for a = (a,u, ), and 3 =
(b,v,y), define a® 5 := (a Ab,uAv,z Ay). Observe that (D(M), ®, ) is an ordered
commutative monoid or in categorical language, (®,¢) a symmetric monoidal tensor
product.

Moreover, since the tensor product ® is defined on objects via coordinate-wise
meets, it is immediate that the associated logic satisfies the following inference
rules:

ATHB dupl A ATHB cont
A ATHEB ATFB
The first rule is a restricted form of weakening we call duplication, and the second
rule is contraction. Just as important are the rules the logic doesn’t satisfy. We will
see for the two element Boolean algebra 2, D(2) shown in Figure 1 fails to satisfy

the following more general rule of weakening:
ATHB
ACTHB

And so, the logics associated to classes of D'(M) algebras seem to be relevance
logics: That is, antecedents cannot be exhausted, but they need to play a role in
the derivation of the consequent.

We would now like a linear implication —o in the Dialectica preorder. In the
categorical semantics, what is needed is for the tensor ® on D(C) to be closed,
and in [deP91], it is shown this holds whenever C is Cartesian closed. The order
theoretic version of a Cartesian closed category is a residuated meet-semilattice R.
That is, R is a meet-semilattice such that for all x,y, z € R the following condition
is satisfied:

weak

T ANy <z <= y<x— 2.
Proposition 3. The operation —: (DR)°? x DR — DR, defined for 8 = (b,v,y)
and v = (¢,w, z) by
B—oy=((b—=c)AsAts,sAL)
where s = (v = w) A ((vAz) = y) and t = v A z is the internal-hom in D(R). Le.,
each a ® () in D(R) is residuated with residual o —o (+).
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FIGURE 1. The residuated meet-semilattice P D(2).

Consider R = 2. For simplicity, we write auz for (a,u,x). The preorder of D(2)
is shown in Figure 1: If we identify isomorphic objects and let 0 = 000, ¢ = 011,
i =111 and 1 = 010, we have the following operation table for P D(2) = D'(2):

®|0 a i 1 — [0 a i 1
0/0 0 0 O 01 1 1 1
a|l0 a a 1 a |0 i ¢ 1 (2)
110 a @ 1 t |0 a @ 1
110 1 1 1 170 0 01

The result is a four-element commutative, idempotent, involutive, residuated lat-
tice, which is not integral, known as the Sugihara algebra Sy. [Sugb5]

Moreover, assuming choice, D’(2) has the following striking connection to D(Set),
the motivating example for the original categorification:

Theorem 4. Over ZF, D'(2) = PD(Set) is equivalent to the axiom of choice.

Corollary 5. Assuming choice, the logic associated to D(Set) is the logic associated
Sy. As a consequence, the logic Fpset) 18 strictly stronger than ILL.

Let @ = (a,u,z), 8 = (b,v,y) and w = u Av. If R = H is a Heyting algebra
then D(H) has finite meets, where the binary meet is defined as
a&f=(((wAz) = a)AN((wWAy) = D) AwA (zVy),w,wA(xVy)).

Now we would like to search for a suitable operation !: D(H) — D(H) to interpret
the “of course” modality of intuitionistic linear logic. Informally, in linear logic,
!A means that we can “use” the argument A as many times as we want, including
none. If we were allowed infinitary formulas, we could express this as

T&ALARA)&ARARA) ...

However, in D(H), we have contraction, and so the above expression is reducible
to I & A. Using the definitions of I and & above we define

a,u,2) =i&(a,u,z) = ((uAz) = a) Nu,u,u) = (= a) A u,u,u).

Proposition 6. The ! operation defines an interior operator (comonad) on D(H)
satisfying (o, u,) ® (b, v,) < !((a,u,7) @ (b,v,y)).

All together we have the following result.

Theorem 7. If H is a Heyting algebra, then the associated logic Fp) satisfies
the rules of Intuitionistic Linear logic with the “of course” modality.
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3. OPEN QUESTIONS/FUTURE WORK

In investigating the algebraic case, we have converged on Heyting algebras, as
suitable structures over which the Dialectica construction should occur. However, in
[deP91] one considers not bi-Cartesian closed categories, but categories C which are
finitely complete, locally Cartesian closed, and with stable and disjoint coproducts.
There is unfinished work to reconcile the different assumption sets. Moreover, we
have barely scratched the surface of understanding the algebras D’(H), and it will
be interesting to see what results and algebraic approaches can lift to the general
Dialectica construction.

In algebraic logic, one often considers a logic associated to a class of algebras.
For example, the variety of Heyting algebras H provides semantics for intuitionistic
logic in the following sense: We say ¢ Fy 1 if and only if, for each Heyting algebra
H € H, ¢ Fg ¢. By definition, Fy is the infimum of the logics defined by Heyting
algebras, and it is the logic Fy where H is the free Heyting algebra over the
propositional atoms. Let C be the class of all (small) finitely complete locally
Cartesian closed categories with stable and disjoint products and D(C) all associated
Dialectical Categories. From [deP91], Fp ¢y satisfies all the rules of ILL but is Fpc)
equal to ILL? Moreover, is there a C € C, such that Fpc) = Fp()?

Let C be the class of all bi-Cartesian closed categories. Is Fpc) = Fpy)? Note
that a C € C such that Fp(c) does not satisfy contraction would disprove this
claim. While such C are thought to exist, we do not currently have a witness. A
model of ZF that doesn’t satisfy choice may seem like a good candidate but the
function
xp if (u,21) ¢

F(u,z1,29) = {

defined for a Dialectica object e C U x X is first-order definable over the signature
{€} and so can be defined in ZF via the Axiom of Specification. And F along with
the Diagonal function f: U — U x U determines a morphism from a to a ® a.

From Theorem 4, if Set is a model of ZF'C, then PD P(Set) = PD(Set), and
one may wonder if over C, PD P(-) = PD(+)? From Theorem 4 again this cannot
hold in general since there are models of ZF that do not satisfy choice. It would
be interesting to characterize the subclass of C over which this result holds.

Finally, we did not discuss the other construction G(C) from [deP91] which
provides semantics for classical linear logic. It is identical on objects to D(C) and
morphisms are the same except the backwards map F': U x Y — X is instead from
Y to X. The order theoretic analogue is already a partial order, and G(2) is a
pentagon where 000 is incomparable to 111.

ro otherwise.
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