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1. INTRODUCTION

In this abstract, we introduce a linear logic system CLLR in which a weakening
rule is completely omitted in the sense that not only the weakening rule for an
exponential modality is dropped but also the units 1 and L are dropped from the
syntax. The goal of this abstract is to establish that it is undecidable whether a
sequent is provable in CLLR.

Our weakening-free linear logic has the following syntax L:

L3A:=p|T|0|~A|AQA|ALA|ABA|AGA|A— A|1A]|?A.

Table 1 shows its sequent calculus system CLLR, in which a sequent is a pair of
finite multisets of formulas enriched with the symbol “ = ”. Classical propositional
logic CLL (Girard [1]) is obtained by adding to CLLR the units 1, L and the
following rules for them, as well as weakening rules for the exponentials ! and ?.
_I'sA (L] —r] _I'=A 4
I'=A L L= =1 ’ 1,1“:>A[”

[Lr]

It is known that CLL is undecidable [6, Theorem 3.7]. However, it is not obvious
whether CLL without structural rules or units is decidable. For example, CLL
without exponentials, MALL, which has neither weakening nor contraction, is
decidable (Lincoln et al. [6, Theorem 2.2]). However, non-commutative classical
propositional linear logic, NCCLL, which we can regard as CLL without exchange,
is undecidable (Lincoln et al. [6, Theorem 4.8]). Furthermore, NCCLL without
weakening is also undecidable (Kanovich et al. [4, Corollary 14]). This system is
still undecidable if one omits the units 1 and L.

In this abstract, we establish the undecidability of CLLR by showing that the
system can simulate any two-counter machine proposed by Minsky [7]. To show
this, we use Lafont’s method [5] with phase semantics. This method was originally
introduced to establish the undecidability of second-order version of MALL. Using
semantics allows us to avoid a combinatorial argument of translating proofs into
computations with lots of case distinctions, as seen in Lincoln et al [6].

In CLLR, a contraction rule is restricted only to formulas in the antecedent
prefixed with “!” (and dually in the succedent prefixed with “?”), while a weakening
rule is not allowed at all. This system is capable of representing resources that can
be freely copied but not discarded.

2. PHASE SEMANTICS

Let us introduce phase semantics. We adopt the definition of Girard [2, Section
2.1.2]. A phase space is a pair (M, L) where M = (|JM]|,-,1) is a commutative
1
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TABLE 1. Sequent Calculus of CLLR

——id F:>A,A A,F/:>A/ .
A=A I = A, A u
ATl = A '=AA [Tr] [0]]
'=AA I"'=A"B (1] A BT =A (1]
IT'=A A A@B " A@BT = A
r=AA '=AB A, L= A .
IT=AA&B [&or] T LA T oA Cli=01)
I'=AAB AT =A BTV = A/
i e i e o 1 [731]
I=AAXB AR B,O,T = A, A
'=AA; . AT = A B T'=A
TS A A oA, [0 =01) AGBT = A [#1]
AT =AB [ | I'=sAA B,F’:>A’[ I
T=AAoB " A—-BT,I' = AN
IAAT = A IT = 7A, A AT=A
ir=sa 9 roraa M arsa M
= A,?74,74 I=AA AL =28
r=aa O oA M sarsaa P

monoid and L be an arbitrary subset of the domain |[M| of M. A phase model P is
a pair ((M, L), v) of a phase space (M, L) and a function v: Prop — p(|M|) such
that for all p € Prop, v(p) = ~~wv(p), where for X C |M|, ~X C | M| is defined by

~X = {yeM|| (Ve e X)z-y e L]).

For a phase model P = ((|M|,-,1), L,v), we define an interpretation [-]p: L —
p(JM|) of formulas inductively as follows (if it is clear from the context which
model is considered, the subscript can be omitted), although only those of ®, &, &
1, —o and ! are used in this abstract:
] = v(p). [1] = ~~{1}, [L] = L, [T] = M|, [0] = ~~b, [~A] = ~[4],
[A® B] = ~~([A][B]), [A& B]=[A]N[B],
[A% B] = ~(~[A] - ~[B]), [A& B]=~~([A]JU[B]),
[A— Bl ={z € |M[| (Vz € [A])[z- = € [B]]},

(Al = ~~([A]NT), [74] = ~(~[A]INT),
where Z = {i € ~~{1} | i-i =1} and for X, Y C |[M|, X -Y C |M]| is defined as
follows (the operator “-” and parentheses may be omitted as (X -Y)-Z = XY Z):

X Y={z-ylzeXandyeY}.

We say that a formula A € £ is true in P if 1 € [A]p.
The following lemma is useful for proving the undecidability of CLLR and can
be shown by using the soundness theorem.

Lemma 1 (Lafont [5, p.545]). Let P be a phase model. If a sequent T, Ay, ..., A, =
C (n > 1) of £ is provable in CLLR and B is true in P for all B € T, then
[A1]p -+ [An]p C [Clp.
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3. Two-COUNTER MACHINE

Let us introduce a two-counter machine. We employ a formulation from Lafont
[5]. A two-counter machine M consists of a set S of states, the terminal state
s; € S and a function

7:S\{s:} = ({+} x {4, B} x SYU({—} x {4, B} x S x S).
An element of S x N x N is said to be an instantaneous description (ID), which
means a state and values of the two counters. For an ID (s;,p, q), 7(s;) represents
a program that commands a transition from one ID to the next, which can take
one of the following four forms: (+, A, sk), (-, 4, sk, s1), (+, B, sk), (—, B, Sk, s1).
Transitions of IDs by programs are as follows:
o if T(Sj) = (+7A7 sk)v then (Sjvpv Q) ~ (Sk7p + ]-7 Q),
o if 7(s;) = (—, A, sk, 81),
— if p > 0, then (s;,p,q) ~ (sk,p — 1,q), and
- lfp = Oa then (Sjap7 q) ~ (Slap7 Q)a
o if 7(s;) = (+, B, sx), then (s;,p,q) ~ (s, p,q + 1),
o if 7(s;) = (—, B, sk, 81),
— if ¢ > 0, then (s;,p,q) ~ (s, p,q— 1), and
— if ¢ =0, then (sj,p,q) ~ (s1,p,9),
Provided an ID (s;,p, q), M computes sequentially, starting with the program 7(s;)
corresponding to the state s;. The computation terminates when it reaches the
state s;. We call an accepted sequence of (s;,p,q) in M a finite sequence of IDs

(50>P0,(J0), (slaplv Q1)7 LR} (snapna Qn)v
such that for all s, € S\{s:}, 7(sk—1) is a program that makes (sx—1,Pk—1,qk—1)

transition to (Skapkan)a and (507130,(10) = (Siapv q)a (Snapru(IH) = (St,0,0). An ID
(siyp,q) is accepted by M if there is an accepted sequence of (s;,p,q) in M.

Lemma 2 (Minsky [7, Theorem Ta]). There exists a two-counter machine M such
that the problem of whether an input is accepted by M is undecidable.

4. UNDECIDABILITY OF CLLR

We define the formula that is a translation of programs of a two-counter machine.
Given a finite set S = {s¢,81,...,8,} of states, we stipulate that ¢, cy,...,c, are
propositional variables corresponding to s¢, s1, ..., S, respectively.

Definition 3. Let M = (S, s:,7) be a two-counter machine. Fix propositional
variables a,b,a’,b’. We write 6, for the formula obtained by connecting with &
the set of the following formulas corresponding to the programs of M and further
four others:

o for 7(s;) = (+,4,s1): ¢; —~ ¢ Qa,

o for 7(s;) = (—, A, sk, 81): ¢; ®a —ocp and ¢; — ¢; & (¢’ & ¢yp),

o for 7(s;) = (+,B, sg): ¢;j —cx @b,

e for 7(sj) = (—, B, sk, s1): ¢; ®b—ocp and ¢; — ;@ (V' & ),

e d wod&ci, (d&e)@b—od &ep, b — UV &y, (V&) @a—b & ey

7
)

The propositional variables “a”, “b” correspond to two counters, while a, o’
are introduced to deal with conditional branches of decrement commands. The
implication “—” represents the transition of states and the incrementing or decre-

“

menting of the counters. The variable “a” or “b” to the right of the implication,

)
‘o
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say in ¢; — ¢ ® a or ¢; — ¢ ® b, corresponds to incrementing of the first or
second counter, while “a” or “b” to the left of the implication, say in ¢; ® a —o ¢z
or ¢j ® b —o ¢y, corresponds to decrementing of the first or second counter.

This translation is obtained by modifying those of Kanovich [3] and Lafont [5].
Furthermore, however Kanovich and Lafont used a finite multiset of formulas, we
use a single formula ), made by &. This corresponds to the situation where only a
necessary program is extracted. This becomes important when expressing a system

where resources cannot be discarded.

Lemma 4. For any two-counter machine M = (S, s, 7) and any ID (s;,p,q), if
(si,p,q) is accepted by M, then the sequent (!9]\/1)~‘7(“”'i)7 c;,aP,b? = ¢, is provable in
CLLR, where g(s;) = 0 if s; = s¢, otherwise g(s;) = 1.

To prove the converse of Lemma 4, we introduce a special kind of phase model,
which is the same one used in Lafont [5]. In the following, we write a?b for a
multiset {a, a,b}.

Definition 5. Given a two-counter machine M = (.5, s, ), the phase model Py, =
((M, L),v) derived from M is defined as follows:
e (M| = {T' | T is a finite multiset of £ formulas}. The unit 1 = (. The
monoid operator - = U (the union operation of multisets).
e | is defined by

1 = {c;a?b? | (s4,p,q) is accepted by M}
U{a'd? | qe N}U{ba? | p e N}.

e v(p) = ~~{p}.
e It is clear by definition that Z = {1} and that v(c;) = L.

Lemma 6. For any two-counter machine M = (S, s¢, 7) and any ID (s;, p, q), if the
sequent (103,)9C%) ¢;,aP, b? = ¢, is provable in CLLR, then (s;,p,q) is accepted
by M.

Proof. Suppose that the sequent (!QM)Q(Si),cl-,a”,bq = ¢; is provable in CLLR.
By Lemma 1, if 163, is true in the phase model Py, ie., 1 = 0 € ['6;], then
[ei][a]P[b]? C [et], which means that, by the definition of Pj; and a property of “~n~",
ciaPb? € v(c;) = L. If ¢;aPb? € L, by the definition of L, the ID (s;,p, ¢) is accepted
by M. So we show that !0y, is true in Py;. By the fact that 10y = ~~(0y N T)
and Z = {1}, and by the definition of &, it suffices to show that all the formulas

connected by & when defining ), are true in Pyy. O

Corollary 7. For any two-counter machine M = (5, s;,7) and any ID (s;,p,q),
the sequent (1037)9¢%), ¢;,aP,b? = ¢, is provable in CLLR iff (s;,p, q) is accepted
by M.

Combining this with Lemma 2, we get the undecidability.
Theorem 8. CLLR is undecidable.
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