UNDECIDABILITY OF LINEAR LOGIC WITHOUT WEAKENING

JUN SUZUKI AND KATSUHIKO SANO

1. Introduction

In this abstract, we introduce a linear logic system **CLLR** in which a weakening rule is *completely omitted* in the sense that not only the weakening rule for an exponential modality is dropped but also the units 1 and \perp are dropped from the syntax. The goal of this abstract is to establish that it is undecidable whether a sequent is provable in **CLLR**.

Our weakening-free linear logic has the following syntax \mathcal{L} :

$$\mathcal{L} \ni A ::= p \mid \top \mid \mathbf{0} \mid \sim A \mid A \otimes A \mid A \oplus A \mid A \to A \mid A \to A \mid A \mid A.$$

Table 1 shows its sequent calculus system **CLLR**, in which a sequent is a pair of finite multisets of formulas enriched with the symbol " \Rightarrow ". Classical propositional logic **CLL** (Girard [1]) is obtained by adding to **CLLR** the units 1, \perp and the following rules for them, as well as weakening rules for the exponentials! and?

$$\frac{\Gamma\Rightarrow\Delta}{\Gamma\Rightarrow\Delta,\perp}\left[\bot r\right]\,,\ \ \frac{}{\bot\Rightarrow}\left[\bot l\right]\,,\ \ \frac{}{\to\mathbf{1}}\left[\mathbf{1}r\right]\,,\ \ \frac{\Gamma\Rightarrow\Delta}{\mathbf{1},\Gamma\Rightarrow\Delta}\left[\mathbf{1}l\right]$$

It is known that **CLL** is undecidable [6, Theorem 3.7]. However, it is not obvious whether **CLL** without structural rules or units is decidable. For example, **CLL** without exponentials, **MALL**, which has neither weakening nor contraction, is decidable (Lincoln et al. [6, Theorem 2.2]). However, non-commutative classical propositional linear logic, **NCCLL**, which we can regard as **CLL** without exchange, is undecidable (Lincoln et al. [6, Theorem 4.8]). Furthermore, **NCCLL** without weakening is also undecidable (Kanovich et al. [4, Corollary 14]). This system is still undecidable if one omits the units 1 and \bot .

In this abstract, we establish the undecidability of **CLLR** by showing that the system can simulate any two-counter machine proposed by Minsky [7]. To show this, we use Lafont's method [5] with phase semantics. This method was originally introduced to establish the undecidability of second-order version of **MALL**. Using semantics allows us to avoid a combinatorial argument of translating proofs into computations with lots of case distinctions, as seen in Lincoln et al [6].

In **CLLR**, a contraction rule is restricted only to formulas in the antecedent prefixed with "!" (and dually in the succedent prefixed with "?"), while a weakening rule is not allowed at all. This system is capable of representing resources that can be freely copied but not discarded.

2. Phase Semantics

Let us introduce *phase semantics*. We adopt the definition of Girard [2, Section 2.1.2]. A *phase space* is a pair (\mathcal{M}, \perp) where $\mathcal{M} = (|\mathcal{M}|, \cdot, 1)$ is a commutative

Table 1. Sequent Calculus of CLLR

$$\frac{A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \sim A} \text{ id} \qquad \frac{\Gamma \Rightarrow \Delta, A}{\Gamma, \Gamma' \Rightarrow \Delta, \Delta'} Cut$$

$$\frac{A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \sim A} [\sim r] \qquad \frac{\Gamma \Rightarrow \Delta, A}{\sim A, \Gamma \Rightarrow \Delta} [\sim l] \qquad \frac{\Gamma \Rightarrow \Delta, A}{\Gamma \Rightarrow \Delta, \sim A} [\sim r] \qquad \frac{\Gamma \Rightarrow \Delta, A}{\sim A, \Gamma \Rightarrow \Delta} [\circ l]$$

$$\frac{\Gamma \Rightarrow \Delta, A}{\Gamma, \Gamma' \Rightarrow \Delta, \Delta', A \otimes B} [\otimes r] \qquad \frac{A, B, \Gamma \Rightarrow \Delta}{A \otimes B, \Gamma \Rightarrow \Delta} [\otimes l]$$

$$\frac{\Gamma \Rightarrow \Delta, A}{\Gamma \Rightarrow \Delta, A \otimes B} [\otimes r] \qquad \frac{A, B, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes A_1, \Gamma \Rightarrow \Delta} [\otimes l] \qquad \frac{A, \Gamma \Rightarrow \Delta}{A_0 \otimes$$

monoid and \perp be an arbitrary subset of the domain $|\mathcal{M}|$ of \mathcal{M} . A phase model \mathcal{P} is a pair $((\mathcal{M}, \perp), v)$ of a phase space (\mathcal{M}, \perp) and a function $v \colon \mathsf{Prop} \to \wp(|\mathcal{M}|)$ such that for all $p \in \mathsf{Prop}$, $v(p) = \sim v(p)$, where for $X \subseteq |\mathcal{M}|$, $\sim X \subseteq |\mathcal{M}|$ is defined by

$$\sim X = \{ y \in |\mathcal{M}| \mid (\forall x \in X)[x \cdot y \in \bot] \}.$$

For a phase model $\mathcal{P} = ((|\mathcal{M}|, \cdot, 1), \perp, v)$, we define an interpretation $[\cdot]_{\mathcal{P}} \colon \mathcal{L} \to \mathcal{L}$ $\wp(|\mathcal{M}|)$ of formulas inductively as follows (if it is clear from the context which model is considered, the subscript can be omitted), although only those of \otimes , &, \oplus \perp , \multimap and ! are used in this abstract:

- $\begin{array}{l} \bullet \ \ [p] = v(p), \ \ [\mathbf{1}] = \sim \sim \{1\}, \ \ [\bot] = \bot, \ \ [\top] = |\mathcal{M}|, \ \ [\mathbf{0}] = \sim \sim \emptyset, \ \ [\sim A] = \sim [A], \\ \bullet \ \ [A \otimes B] = \sim \sim ([A][B]), \quad [A \& B] = [A] \cap [B], \\ \bullet \ \ [A \ \Im \ B] = \sim (\sim [A] \cdot \sim [B]), \quad [A \oplus B] = \sim \sim ([A] \cup [B]), \end{array}$

- $\bullet \ [A \multimap B] = \{z \in |\mathcal{M}| \mid (\forall x \in [A])[x \cdot z \in [B]]\},\$
- $[!A] = \sim \sim ([A] \cap \mathcal{I}), \quad [?A] = \sim (\sim [A] \cap \mathcal{I}),$

where $\mathcal{I}=\{i\in \sim \sim \{1\}\mid i\cdot i=i\}$ and for $X,Y\subseteq |\mathcal{M}|,\ X\cdot Y\subseteq |\mathcal{M}|$ is defined as follows (the operator "·" and parentheses may be omitted as $(X \cdot Y) \cdot Z = XYZ$):

$$X \cdot Y = \{x \cdot y \mid x \in X \text{ and } y \in Y\}.$$

We say that a formula $A \in \mathcal{L}$ is true in \mathcal{P} if $1 \in [A]_{\mathcal{P}}$.

The following lemma is useful for proving the undecidability of **CLLR** and can be shown by using the soundness theorem.

Lemma 1 (Lafont [5, p.545]). Let \mathcal{P} be a phase model. If a sequent $\Gamma, A_1, ..., A_n \Rightarrow$ C $(n \geq 1)$ of \mathcal{L} is provable in **CLLR** and B is true in \mathcal{P} for all $B \in \Gamma$, then $[A_1]_{\mathcal{P}}\cdots[A_n]_{\mathcal{P}}\subseteq [C]_{\mathcal{P}}.$

3. Two-Counter Machine

Let us introduce a two-counter machine. We employ a formulation from Lafont [5]. A two-counter machine M consists of a set S of states, the terminal state $s_t \in S$ and a function

$$\tau \colon S \setminus \{s_t\} \to (\{+\} \times \{A, B\} \times S) \cup (\{-\} \times \{A, B\} \times S \times S).$$

An element of $S \times \mathbb{N} \times \mathbb{N}$ is said to be an *instantaneous description* (ID), which means a state and values of the two counters. For an ID (s_i, p, q) , $\tau(s_i)$ represents a program that commands a transition from one ID to the next, which can take one of the following four forms: $(+, A, s_k), (-, A, s_k, s_l), (+, B, s_k), (-, B, s_k, s_l)$. Transitions of IDs by programs are as follows:

```
• if \tau(s_i) = (+, A, s_k), then (s_i, p, q) \rightsquigarrow (s_k, p + 1, q),
• if \tau(s_i) = (-, A, s_k, s_l),
      - if p > 0, then (s_j, p, q) \rightsquigarrow (s_k, p - 1, q), and
      - if p = 0, then (s_j, p, q) \rightsquigarrow (s_l, p, q),
• if \tau(s_j) = (+, B, s_k), then (s_j, p, q) \rightsquigarrow (s_k, p, q + 1),
• if \tau(s_i) = (-, B, s_k, s_l),
      - if q > 0, then (s_j, p, q) \sim (s_k, p, q - 1), and
      - if q = 0, then (s_j, p, q) \rightsquigarrow (s_l, p, q),
```

Provided an ID (s_i, p, q) , M computes sequentially, starting with the program $\tau(s_i)$ corresponding to the state s_i . The computation terminates when it reaches the state s_t . We call an accepted sequence of (s_i, p, q) in M a finite sequence of IDs

$$(s_0, p_0, q_0), (s_1, p_1, q_1), \dots, (s_n, p_n, q_n),$$

such that for all $s_k \in S \setminus \{s_t\}$, $\tau(s_{k-1})$ is a program that makes $(s_{k-1}, p_{k-1}, q_{k-1})$ transition to (s_k, p_k, q_k) , and $(s_0, p_0, q_0) = (s_i, p, q)$, $(s_n, p_n, q_n) = (s_t, 0, 0)$. An ID (s_i, p, q) is accepted by M if there is an accepted sequence of (s_i, p, q) in M.

Lemma 2 (Minsky [7, Theorem Ia]). There exists a two-counter machine M such that the problem of whether an input is accepted by M is undecidable.

4. Undecidability of **CLLR**

We define the formula that is a translation of programs of a two-counter machine. Given a finite set $S = \{s_t, s_1, ..., s_n\}$ of states, we stipulate that $c_t, c_1, ..., c_n$ are propositional variables corresponding to $s_t, s_1, ..., s_n$, respectively.

Definition 3. Let $M = (S, s_t, \tau)$ be a two-counter machine. Fix propositional variables a, b, a', b'. We write θ_M for the formula obtained by connecting with & the set of the following formulas corresponding to the programs of M and further four others:

- for $\tau(s_j) = (+, A, s_k)$: $c_j \multimap c_k \otimes a$,
- for $\tau(s_i) = (-, A, s_k, s_l)$: $c_i \otimes a \multimap c_k$ and $c_i \multimap c_l \oplus (a' \& c_t)$,
- for $\tau(s_j) = (+, B, s_k)$: $c_j \multimap c_k \otimes b$,
- for $\tau(s_j) = (-, B, s_k, s_l)$: $c_j \otimes b \multimap c_k$ and $c_j \multimap c_l \oplus (b' \& c_t)$, $a' \multimap a' \& c_t$, $(a' \& c_t) \otimes b \multimap a' \& c_t$, $b' \multimap b' \& c_t$, $(b' \& c_t) \otimes a \multimap b' \& c_t$.

The propositional variables "a", "b" correspond to two counters, while a', b'are introduced to deal with conditional branches of decrement commands. The implication "-o" represents the transition of states and the incrementing or decrementing of the counters. The variable "a" or "b" to the right of the implication, say in $c_j \multimap c_k \otimes a$ or $c_j \multimap c_k \otimes b$, corresponds to incrementing of the first or second counter, while "a" or "b" to the left of the implication, say in $c_j \otimes a \multimap c_k$ or $c_j \otimes b \multimap c_k$, corresponds to decrementing of the first or second counter.

This translation is obtained by modifying those of Kanovich [3] and Lafont [5]. Furthermore, however Kanovich and Lafont used a finite multiset of formulas, we use a single formula θ_M made by &. This corresponds to the situation where only a necessary program is extracted. This becomes important when expressing a system where resources cannot be discarded.

Lemma 4. For any two-counter machine $M = (S, s_t, \tau)$ and any ID (s_i, p, q) , if (s_i, p, q) is accepted by M, then the sequent $(!\theta_M)^{g(s_i)}, c_i, a^p, b^q \Rightarrow c_t$ is provable in **CLLR**, where $g(s_i) = 0$ if $s_i = s_t$, otherwise $g(s_i) = 1$.

To prove the converse of Lemma 4, we introduce a special kind of phase model, which is the same one used in Lafont [5]. In the following, we write a^2b for a multiset $\{a, a, b\}$.

Definition 5. Given a two-counter machine $M = (S, s_t, \tau)$, the phase model $\mathcal{P}_M = ((\mathcal{M}, \bot), v)$ derived from M is defined as follows:

- $|\mathcal{M}| = \{\Gamma \mid \Gamma \text{ is a finite multiset of } \mathcal{L} \text{ formulas} \}$. The unit $1 = \emptyset$. The monoid operator $\cdot = \cup$ (the union operation of multisets).
- \perp is defined by

$$\bot = \{c_i a^p b^q \mid (s_i, p, q) \text{ is accepted by } M\}$$
$$\cup \{a' b^q \mid q \in \mathbb{N}\} \cup \{b' a^p \mid p \in \mathbb{N}\}.$$

- $v(p) = \sim \sim \{p\}.$
- It is clear by definition that $\mathcal{I} = \{1\}$ and that $v(c_t) = \bot$.

Lemma 6. For any two-counter machine $M = (S, s_t, \tau)$ and any ID (s_i, p, q) , if the sequent $(!\theta_M)^{g(s_i)}, c_i, a^p, b^q \Rightarrow c_t$ is provable in **CLLR**, then (s_i, p, q) is accepted by M.

Proof. Suppose that the sequent $(!\theta_M)^{g(s_i)}, c_i, a^p, b^q \Rightarrow c_t$ is provable in **CLLR**. By Lemma 1, if $!\theta_M$ is true in the phase model \mathcal{P}_M , i.e., $1 = \emptyset \in [!\theta_M]$, then $[c_i][a]^p[b]^q \subseteq [c_t]$, which means that, by the definition of \mathcal{P}_M and a property of " $\sim\sim$ ", $c_i a^p b^q \in v(c_t) = \bot$. If $c_i a^p b^q \in \bot$, by the definition of \bot , the ID (s_i, p, q) is accepted by M. So we show that $!\theta_M$ is true in \mathcal{P}_M . By the fact that $!\theta_M = \sim\sim(\theta_M \cap \mathcal{I})$ and $\mathcal{I} = \{1\}$, and by the definition of &, it suffices to show that all the formulas connected by & when defining θ_M are true in \mathcal{P}_M .

Corollary 7. For any two-counter machine $M = (S, s_t, \tau)$ and any ID (s_i, p, q) , the sequent $(!\theta_M)^{g(s_i)}, c_i, a^p, b^q \Rightarrow c_t$ is provable in **CLLR** iff (s_i, p, q) is accepted by M.

Combining this with Lemma 2, we get the undecidability.

Theorem 8. CLLR is undecidable.

REFERENCES

- [1] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
- [2] Jean-Yves Girard. Linear logic: its syntax and semantics. In Jean-Yves Girard, Yves Lafont, and Laurent Regnier, editors, Advances in Linear Logic, London Mathematical Society Lecture Note Series, pages 1–42. Cambridge University Press, 1995.

- [3] Max Kanovich. The direct simulation of Minsky machines in linear logic. Advances in Linear Logic, pages 123–145, 1995.
- [4] Max Kanovich, Stepan Kuznetsov, Vivek Nigam, and Andre Scedrov. Subexponentials in noncommutative linear logic. Mathematical Structures in Computer Science, 29(8):1217–1249, 2019.
- [5] Yves Lafont. The undecidability of second order linear logic without exponentials. *The Journal of Symbolic Logic*, 61:541–548, 1996.
- [6] Patrick Lincoln, John Mitchell, Andre Scedrov, and Natarajan Shankar. Decision problems for propositional linear logic. Annals of Pure and Applied Logic, 56:239–311, 1992.
- [7] Marvin L. Minsky. Recursive unsolvability of Post's problem of "tag" and other topics in theory of Turing machines. *Annals of Mathematics*, 74(3):437–455, 1961.